VAX Ada

Developing Ada Programs on VMS Systems

Order Number: AA-EF86B-TE

Developing Ada Programs on VMS
Systems

Order Number: AA-EF86B-TE

May 1989

This manual describes how to compile, link, execute, and debug VAX Ada programs.
It describes the use of the VAX Ada compiler, VAX Ada program library manager, and
VMS Debugger.

Revision/Update Information: This revised manual supersedes Developing Ada
Programs on VAX/VMS (Order No. AA-EF86A-TE)

Operating System and Version: VMS Version 5.0 or higher
Software Version: VAX Ada Version 2.0

THIS PRODUCT CONFORMS
TO ANSVIMIL-STD-1815A AS
DETERMINED BY THE AJPO
UNDER ITS CURRENT
TESTING PROCEDURES

digital equipment corporation
maynard, massachusetts

February 1985
Revised, May 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1985,1989.
All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1 EduSystem RT

DEC IAS ULTRIX
DEC/CMS MASSBUS UNIBUS
DEC/MMS PDP VAX

DECmate PDT VAXcluster
DECnet P/OS VAXELN
DECsystem-10 Professional VMS
DECSYSTEM-20 Q-bus VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX dlilolit]a]1 8

ZK3294

Contents

Preface i i e e xvii
New and Changed Features0 ittt ennnnnnns xxi
Chapter 1 Introduction to the VAX Ada Program Development Environment
1.1 Getting Started with VAX Ada 1-2
1.1.1 Creating a Working Directory and Defining a Current Default
=T o O 1-6
1.1.2 CreatingaSource File 1-5
1.1.3 Creating a Program Library 1-6
114 Defining the Current Program Library 1-7
1.1.5 Compilingthe Program 1-7
1.1.6 Displaying Unit Information 1-9
1.1.7 Linkingthe Program ovvn.. 1-9
1.1.8 Executingthe Program 1-10
1.1.9 Debugging the Program 1-10
1.1.10 Compiling and Recompiling a Modified Program 1-11
1.2 Using the VAX Ada Program Library Manager. 1-12
1.2.1 Overview of ACSCommands 1-12
1.2.2 Entering ACSCommandsc.u... 1-16
1.2.3 Exiting from the Program Library Manager and Interrupting ACS
Commands ettt e 1-17
124 Defining Synonyms for ACS Commands 1-17
1.25 Using DCL Commands with Program Libraries 1-18
13 Concepts and Terminologyot 1-18

1.3.1 Program and Compilation Units 1-19

1.3.11 Compilation Unit Dependences. 1-20
1.3.1.2 Current and Obsolete Units 1-20
1.3.1.3 Unit and File-Name Conventions 1-21
1.3.2 Order-of-Compilation Rules 1-23
1.3.3 ClosUre i i i e e e e 1-24

Chapter 2 Working with VAX Ada Program Libraries and Sublibraries

21 Program Library and Sublibrary Operations 2-2
2.1.1 Creating a Program Library or Sublibrary 2-3

21.2 Defining the Current Program Library 2-4

2.1.3 Identifying the Current Program Library 2-5

214 Obtaining Library Information 2-5

215 Controlling Library Access, 2-6

2.1.5.1 Read-Only Access, 2-7

2.1.5.2 Exclusive Access 2-8

2.1.6 _ Deleting a Program Library or Sublibrary 2-8

2.2 UnitOperations 2-9
2.2.1 Specifying Units in ACS Commands 2-10

2.2.2 Displaying General Unit Information 2-11

223 Displaying Dependence and Portability Information 2-12

224 Checking Unit Currency and Completeness 2-15

225 Using Units from Other Program Libraries 2-17

2.25.1 Copying Units into the Current Program Library . . 2-18

2252 Entering Units into the Current Program Library . . 2-19

2.2.6 Introducing Foreign (Non-Ada) Code into a Library 2-23

227 Deleting Units from the Current Program Library 2-25

23 Using Program Sublibraries 2-26
2.3.1 Using ACS Commands with Program Sublibraries 2-26

232 Creating a Nested Sublibrary Structure 2-27

2.3.3 Changing the Parent of a Sublibrary 2-28

234 Merging Modified Units into the Parent Library 2-29

2.35 Modifying and Testing Units in a Sublibrary Environment 2-30

Chapter 3 Compiling and Recompiling VAX Ada Programs
3.1 Compiling Units into a Program Library 3-3
3.2 Recompiling Obsolete Units e 3-6
33 Completing Incomplete Generic Instantiations 3-9
34 Compiling a Modified Program 3-13
3.5 Forcing the Compilation or Recompilation of
aSetofUnits 3-14
3.6 Using Search Lists for External Source Files e 3-15
37 Choosing Optimization Options 3-16
3.8 Processing and Output Options 3-18
3.8.1 Executing Compilations in Batch Mode 3-18
3.8.2 Saving the Load or Compiler Command File 3-19
3.8.3 Loading Units and Executing Compilations in a Subprocess . . 3-20
3.8.4 Conventions for Defaults, Symbols, and Logical Names 3-20
3.8.5 Directing Program Library Manager and Compiler Output 3-21
3.9 Compiler Diagnostic Messages 3-21
3.9.1 Diagnostic Messages and Their Severity 3-22
3.9.2 Informational Messages and the /[NOJWARNINGS Qualifier . . 3-24
3.9.3 Setting Compiler Error Limits 3-25
3.10 Compiler Listing Format 3-25
Chapter 4 Linking Programs
4.1 Linking Programs Having Only VAX Ada Units 4-2
4.2 Linking Mixed-Language Programs 4-2
4.21 Using the ACS COPY FOREIGN and ENTER FOREIGN
Commands e 4-3
4.2.2 Using the ACS LINK Command 4-6
4.2.3 Using the ACS EXPORT and DCL LINK Commands 4-7
43 Processing and Output Options 4-9
4.3.1 Conventions for Defaults, Symbols, and Logical Names 4-10

4.3.2 Executing the Link Operation in a Subprocess or in Batch
Mode e 4-10
433 Saving the Linker Command File and Package Elaboration
File . .o 4-11
Chapter 5 Managing Program Development
5.1 Decomposing Your Program for Efficient Development 5-1
5.2 Setting up an Efficient Program Library Structure 5-6
53 Integration with Other VAX Tools 5-10
5.3.1 Setting up Source Code Directories 5-10
5.3.2 Managing Source Code Modifications 5-12
5.4 System Considerations, 5-15
5.5 Distributed Programming Considerations 5-15
5.5.1 Configuring a Library Structure Across DECnet 5-16
5.5.2 Accessing a Program Library Across DECnet 5-18
5.5.3 Achieving Efficient DECnet Access to Program Libraries. 5-19
554 Effect of Network Failures 5-20
55.5 Restrictions on Using Program Libraries Across DECnet . 5-20
5.6 Protecting Program Libraries 5-21
5.6.1 Program-Library Access Requirements for ACS Commands . . 5-21
5.6.2 Standard User-ldentification-Code (UIC) Based Program
Library Protection. 5-23
5.6.3 Program Library Protection Through Access Control Lists 5-26
5.7 Maintaining Program Libraries. 5-27
5.7.1 Making References to Program Libraries Independent of
Specific Devices and Directories 5-28
5.7.1.1 Using Concealed-Device Logical Names 5-28
5.71.2 Using Rooted Directory Syntax. 5-29
5.7.2 Copying Program Libraries 5-29
5.7.3 Backing Up and Restoring Program Libraries 5-30
5.7.4 Reorganizing Program Libraries 5-32
5.7.5 Verifying and Repairing Program Libraries 5-32
5.7.6 Recompiling Units After a New Release or Update of VAX
Ada . . 5-36
5.8 Working with Multiple Targets 5-37

Vi

5.8.1 Determining VAX Ada Program Portability 5-37

5.8.1.1 Factors Affecting Portability:........... 5-38
5.8.1.2 Features Listed in the Portability Summary. 5-39
5.8.2 Seftingthe SystemName 5-43

Chapter 6 Debugging VAX Ada Programs

6.1 VMS Debugger Overview iiinen.. 6-2
6.2 Getting Started withthe Debugger. 6-3
6.2.1 Compiling and Linking a Program to Prepare for Debugging . . 6-4
6.2.2 Starting and Ending a Debugging Session 6-5
6.2.3 Entering Debugger Commands. 6-7
6.2.4 Viewing Your Source Code 6-8
6.2.4.1 NoscreenMode 6-8
6.2.4.2 ScreenMode 6-10
6.2.4.3 Source Code Display Considerations. 6-12
6.3 Controlling and Monitoring Program Execution. 6-13
6.3.1 Starting and Resuming Program Execution. 6-14
6.3.1.1 The GOCommand. 6-14
6.3.1.2 The STEP Command 6-15
6.3.2 Determining Where Execution is Suspended. 6-16
6.3.3 Suspending Program Execution 6-17
6.3.4 Tracing Program Execution 6-20
6.3.5 Monitoring Changes in Variables. 6-21
6.3.6 Debugging Ada Library Packages 6-24
6.3.7 Monitoring Ada Exceptions 6-25
6.3.7.1 Monitoring Any Exception 6-26
6.3.7.2 Monitoring Specific Exceptions 6-27
6.3.7.3 Monitoring Handled Exceptions and Exception
Handlers 6-28
6.4 Examining and ManipulatingData 6-30
6.4.1 Displaying the Values of Variables 6-30
6.4.2 Changing the Values of Variables 6-32
6.4.3 Current, Previous, and Next Locations I 6-33
6.4.4 Evaluating Expressions 6-33
6.4.5 Debugger Support for VAX AdaData 6-34
6.4.5.1 AdaNames................ ... 6-35
6.4.5.2 Ada Language Expressions 6-38
6.4.6 Special EXAMINE, DEPOSIT, and EVALUATE Options. 640
6.4.6.1 Specifying Data Type and Radix. 640
6.4.6.2 Obtaining Virtual Addresses 6—41

vii

642

6.4.7 Ada Data Types—Debugging Examples
6.4.7.1 Scalar Typeso i 643
6.4.7.2 Array TYpeS . . oot 646
6.4.7.3 Record Types e 6—49
6.4.7.4 Access Types 6-51
6.5 Controlling Symbol References 6-55
6.5.1 Creating Symbol Information for the Debugger 6-56
6.5.2 Module Setting 6-57
6.5.2.1 Dynamic and Related Module Setting 6-57
6.5.2.2 The SHOW MODULE Command 6-59
6.5.2.3 The SHOW MODULE/RELATED Command 6-60
6.5.2.4 The SET MODULE Command 6-62
6.5.2.5 The CANCEL MODULE Command 6-63
6.5.3 Resolving Multiply-Defined Symbols R 6-65
6.5.3.1 SCOPE . i 6-66
6.5.3.2 Path Name Conventions 6-66
6.5.3.3 Symbol Lookup Conventions 6-68
6.5.3.4 Using the SHOW SYMBOL Command and Path
Names to Specify Symbols Uniquely 6-69
6.5.3.5 Using the SET SCOPE Command to Specify a
Symbol Search Scope 671
6.5.4 Resolving Overloaded Names and Symbols 6-73
6.6 Supplementary Debugger Features 6-75
6.6.1 Logging a Debugging Sessionintoa File 6-76
6.6.2 Invoking an Editor from the Debugger 6-76
6.6.3 Using a Debugger Initialization File 6-77
6.6.4 Using Command Procedures to Control Debugging
SESSIONS e 6-78
6.6.5 The CALLCommand 6-79
6.7 Sample Debugging Session 6-80
Chapter 7 Debugging VAX Ada Tasks
74 A Sample Tasking Program PP 7-2
7.2 Referring to Tasks in Debugger Commands 7-7
7.2.1 Ada Language Expressions for Tasks 7-7
7.2.2 Task ID (%TASK)o 7-9

viii

7.2.3 Pseudotask Names 7-10

7.2.3.1 Active Task (%ACTIVE_TASK) 7-10

7.23.2 Visible Task (%VISIBLE_TASK) 7-11

7.2.3.3 Next Task (%NEXT_TASK) 7-11

7.2.3.4 Caller Task (%CALLER_TASK). 7-12

724 Debugger Support of Ada Task Attributes. 7-12

7.3 Displaying Task Information (SHOW TASK) 7-13
7.3.1 Displaying Basic Information on All Tasks 7-13

7.3.2 Selecting Tasks for Display 7-16

7.3.21 Task List.o 7-17

7.3.2.2 Task-Selection Qualifiers 7-17

7.3.23 Task List and Task Selection Qualifiers 7-18

7.3.3 Obtaining Additional Information 7-18

7.4 Examining and Manipulating Tasks e e 7-22
7.5 Changing Task Characteristics (SET TASK) 7-23
7.6 Setting Breakpoints and Tracepoints 7-25
7.6.1 Task-Specific and Task-Independent Debugger Eventpoints . . . 7-25

7.6.2 Task Bodies, Entry Calls, and Accept Statements 7-27

7.6.3 Monitoring Ada Task Events 7-29

7.7 Additional Task-Debugging Topics 7-35
7.7 Debugging Programs with Deadlock 7-35

7.7.2 Debugging Programs that Use Time Slicing 7-36

7.7.3 Using CTRL/Y when Debugging Tasks 7-37

7.7.4 Automatic Stack Checking in the Debugger 7-37

Appendix A ACS Command Dictionary

(B) ADA . . A-3
ATTACH . . e A-15

CHECK . . e A-17
COMPILE A-20
CONVERT LIBRARY i e e A-39

COPY FOREIGN e A-44

COPY UNIT .. e e e A-46
CREATE LIBRARY e e e A-51
CREATE SUBLIBRARY e A-55
DELETE LIBRARYo e e A-59
DELETE SUBLIBRARY e e A-62
DELETE UNIT e e e e A-65

DIRECTORYo e e A-70

ENTERFOREIGN A-75
ENTERUNIT ... e A-78
EXIT e A-83
EXPORT .. A-84
EXTRACT SOURCE. e A-88
HELP . . A-92
LINK A-94
LOAD . . e A-107
MERGE A-120
RECOMPILEo A-124
REENTER i e A-143
REORGANIZE. e A-147
SET LIBRARY e A-150
SET PRAGMA A-154
SETSOURCE. o e A-156
SHOW LIBRARY A-158
SHOW PROGRAM. e A-162
SHOW SOURCE e e e e A-168
SHOW VERSION. e A-169
SPAWN . A-170
VERIFY . . A-172

Appendix B Debugger Command Summary

B.1 Starting and Terminating a Debugging Session B-1
B.2 Controlling and Monitoring Program Execution. B-2
B.3 Examining and ManipulatingData B-2
B.4 Controlling Type Selection and Symbolization B-3
B.5 Controlling Symbol Lookup B-3
B.6 Displaying Source Code B—4
B.7 Using Screen Mode i B4
B.8 Editing Source Code B-5
B.9 DefiningSymbols B-5

B.10 UsingKeypad Modeo, B-5

B.11 Using Command Procedures and Log Files B-6
B.12 Using Control Structures B-6
B.13 Additional Commands B-7

Appendix C Using VAX Ada with the VAX Language-Sensitive Editor and
Source Code Analyzer

C.1 Using VAXAdawith LSE C-1
C.11 Starting and Ending an Editing Sesssion c-2
Ci1.2 ObtainingHelp C-2
C.1.3 Entering Source Code Using Tokens and Placeholders C-3
C.1.4 Compiling and Reviewing Source Code C-5
C.1.5 Sample LSE Session oL C-8

C.2 Using VAX Ada with SCA Cc-17
c.21 Setting Up an SCA Environment. C-18

C.2.1.1 Creatingan SCA Library C-19
c.21.2 Generating Data Analysis Files C-19
C.21.3 Loading Data Analysis Files into a Local Library . . Cc-20
c.2.2 Using SCA for Cross-Referencing C-20
c.2.21 Finding Files c-21
C.2.22 Finding Ada Symbols Cc-21
c.2.2.21 Declarations C-22
C.2222 References C-23
Cc.2.2.23 Symbol Classes C-24
c.23 Navigating Through Ada Source Code C-26
C.24 Using SCA for Static Analysis c-27
C.25 Multimodular Development. c-28
C.2.6 Additional Ada-Specific SCA Considerations C-28
C.2.6.1 Library Differences C-30
c.26.2 Ada-Related Effects and Restrictions C-31

Appendix D Program Library and Sublibrary Structure and Contents

Xi

Appendix E Efficient Compilation

E.1 Memory Usage S E-1
E.1.1 Working Sets E-1
E.1.1.1 Effect of Working Set on Paging Rate E-3
E.1.1.2 Effect of Working Set on Compilation Rate E-3
E.1.1.3 Suggestions for Controlling Working Set Sizes . . . E-5
E.1.2 Virtual Address Space E-7
E.2 Resource Requirements E-7
E.2.1 ASTLM—AST Queue Limit Parameter E-8
E.2.2 ENQLM—Enqueue Quota Parameter E-9
E.2.3 FILLM—Open File Limit Parameter E-9
E.24 PRCLM—Subprocess Creation Limit Parameter E-10
E.2.5 TQELM—Timer Queue Entry Limit Parameter. E-10
E.2.6 Virtual Memory Usage E-10

E.2.6.1 VIRTUALPAGECNT—Maximum Number of Virtual
Pages Parameter....................... E-11
E.2.6.2 PGFLQUOTA—Paging File Quota Parameter E-11
E.2.6.3 System Paging File E-11

E.2.6.4 WSQUOTA and WSEXTENT—Working Set Quota
and Extent Parameters "E-12
E.2.6.5 Batch Queue Parameters E-13

E.2.6.6 WSMAX—Working Set Maximum Number of Pages

Parameter E-13
E.2.7 Program Library Networking Effects E-13
E.2.8 Channel Count Parameters E-14

Appendix F Compile-Time Diagnostic Messages

F.1 Diagnostic Message Format F-1
F.2 Diagnostic Message Severity Codes F-2
F.3 VAX Ada Compiler Informational Messages F-2
F.4 VAX Ada Compiler Diagnostic Messages F-3

Xii

Appendix G ACS Diagnostic Messages

G.1 Diagnostic Message Format G—-1
G.2 Diagnostic Message Severity Codes G-2
G.3 ACS Diagnostic Messages00uouen... G-2

Appendix H Run-Time Diagnostic Messages

H.1 Diagnostic Message Format H-1
H.2 Diagnostic Message Severity Codes H-2
H.3 VAX Ada Run-Time Diagnostic Messages H-2

Appendix | Reporting Problems

Index

Examples
3-1 Sample VAX Ada Compiler Listing 3-27
5-1 Decomposed Stack Application 5-3
5-2 Command Procedure for Doing LSE Ada Compilations in Batch Mode . . . 5-12
7-1 Procedure TASK_EXAMPLE 7-2
72 Sample Debugger Initialization File for VAX Ada Tasking Programs 7-34
C-1 Complete Ada Program Developed Using LSE C-9

Figures
1 Figure Conventions e XX
1-1 Dependences Among the Hotel Reservation Program Compilation Units . . 1-3
1-2 Source Files for the Hotel Reservation Program 14
1-3 Directory Structure for the Hotel Reservation Program 1-6
14 Sample Compilation Units Used to Show Closure 1-26
2-1 Simple Nested Sublibrary Structure e 2-28

xiii

2-2 Sublibrary Configuration for the HOTEL Program 2-31
51 Diagram of Decomposed Stack Application 5-6
5-2 Efficient Program Library and Sublibrary Structure 5-8
5-3 Ada Program Library and Sublibrary Structure with CMS Libraries 5-11
54 DECnet Program Library Configuration 5-17
61 Debugger Keypad Key Functions 6-9
6-2 Access Objects in Virtual Memory 6-52
6-3 Depositing to Access Object Components 6-54
7-1 Task State Transitions. 7-15
7-2 DiagramofaTask Stack 7-21
C—1 Using LSE and SCA for Multimodular Development C-29
D-1 Current Default Directory and Current Program Library After

Compilation e D4
D-2 Compilation Units as Entries in the Library Index File. D-5
E-1 Page Faults Versus Working SetSize E-4
E-2 Compilation Rate Versus Working Set Size E-6

Tables

1-1 ACS Program Library Management Commands 1-13
1-2 Compilation, Linking, and Execution Commands 1-15
1-3 Additional ACS Commands it 1-16
14 Conventions for Naming VAX Ada Source Files 1-22
3-1 Summary Comparison of the DCL ADA and ACS LOAD, RECOMPILE, and

COMPILE Commands.ottt e e et 3-2
3-2 Comparison of the DCL ADA and ACS LOAD Commands 34
3-3 Differences Between ACS RECOMPILE and COMPILE in Recompiling

Obsolete Units. e 3-7
5-1 Program Library Access Needed to Use ACS Commands. 5-22
5-2 Minimum UIC Protection for Each Kind of Library Access 5-25
5-3 Features or Constructs that May Appear in a Portability Summary 5-40
6-1 Debugger Exception Symbols L 6-28
6-2 Exception-Related VAX Ada EventNames 6-29
6-3 Debugger Support for Ada Names 6-35
64 Debugger Support for Ada Predefined Attributes 6-37
6-5 Debugger Support for Ada Language Expressions. 6-38
6-6 Debugger Support for Ada Predefined Operators. 6-39
7-1 Task States o e 7-14
7-2 Task Substates 7-15

Xiv

C-5
E-1

SHOW TASK Command Qualifiers for Task - Selection
SHOW TASK Command Qualifiers for Information Selection
SET TASK Command Qualifiers
VAX AdaEventNames
Kinds of Deadlock and Debugger Commands for Diagnosing Them
VAX LSE Commands for Manipulating Tokens and Placeholders
VAX LSE Commands for Compiling a Program and Reviewing Errors
VAX LSE Commands for Making SCA Queries

Ada Constructs Associated with SCA PRIMARY and
ASSOCIATED Keywords oottt e et e e e

Comparison of SCA and ACS Library Characteristics
Description of Test Programs

7-17
7-19
7-23
7-30
7-36

C-8
c-21

C-23

C-30
E-2

XV

Preface

This manual describes how to compile, link, execute, and debug VAX Ada
programs. It describes the use of the VAX Ada compiler, VAX Ada program
library manager, and VMS Debugger.

Intended Audience

This manual is intended for any programmer who needs information on
compiling, linking, executing, and debugging VAX Ada programs. The
reader should have a working knowledge of Ada, the Digital Command
Language (DCL), and DCL command procedures. Experience with compiling
and linking another VMS-supported language is helpful.

Structure of This Document

This manual has seven chapters and nine appendixes. The first chapter
provides introductory material on VAX Ada and the VAX Ada programming
environment. The remaining chapters discuss in detail how to compile,
link, execute, and debug VAX Ada programs and use the VAX Ada program
library manager.

The appendixes provide reference information on ACS commands, debugger
commands, using VAX Ada with the VAX Language-Sensitive Editor (LSE)

and VAX Source Code Analyzer (SCA), memory usage, diagnostic messages,
and problem reporting.

xvii

Associated Documents

For more information on the VAX Ada language, see the VAX Ada Language
Reference Manual; for more information on implementation details of VAX
Ada in the context of the VMS operating system, see the VAX Ada Run-
Time Reference Manual. You should have all or most of the VMS system
documentation available for reference.

The following Ada textbooks may be of interest:
e Barnes, J.G.P. Programming in Ada. Reading, Massachusetts: Addison-
Wesley, second edition, 1984.

¢ Booch, Grady. Software Components with Ada: Structures, Tools
and Subsystems. Menlo Park, California: The Benjamin/Cummings
Publishing Company, Inc., 1987.

* Booch, Grady. Software Engineering with Ada. Menlo Park, California:
The Benjamin/Cummings Publishing Company, Inc., second edition,
1987.

* Cherry, G.W. Parallel Programming in ANSI Standard Ada. Reston,
Virginia: Reston Publishing Company, Inc., 1984.

* Gehani, Narain. Ada, Concurrent Programming. Englewood Cliffs, New
Jersey: Prentice Hall, Inc., 1984.

¢ Habermann, A.N,, and D.E. Perry. Ada for the Experienced Programmer.
Reading, Massachusetts: Addison-Wesley, 1983.

¢ Weiner, Richard, and Richard Sincovec. Programming in Ada. New
York: John Wiley & Sons, 1983.

Conventions
Convention Meaning
A symbol with a one- to six-character abbre-

Xviii

viation indicates that you press a key on the
terminal, for example, [RETURN].

The phrase CTRL/x indicates that you must
press the key labeled CTRL while you simul-

taneously press another key, for example,
CTRL/C, CTRL/Y, CTRL/O.

Convention

Meaning

$ SHOW TIME
05-JUN-1988 11:55:22

file-spec, . . .

task

type_name
[expression]

{, mechanism_name }

quotation marks
apostrophes

Interactive examples show all output lines
or prompting characters that the system
prints or displays in black. All user-entered
commands are shown in red.

A horizontal ellipsis in an Ada example or
figure indicates that not all of the statements
are shown.

A vertical ellipsis in an interactive figure
or example indicates that not all of the
commands and responses are shown.

A horizontal ellipsis following a parameter,
option, or value in syntax descriptions indi-
cates that additional parameters, options, or
values can be entered.

Boldface indicates Ada reserved words.

Italicized words in syntax descriptions indi-
cate descriptive prefixes that are intended to
give additional semantic information rather
than to define a separate syntactic category.

Square brackets indicate that the enclosed
item is optional. (However, square brackets
are not optional in the syntax of a directory
name in a file specification.)

Braces in Ada syntax indicate that the en-
closed item can be repeated zero or more
times. Braces in debugger command syntax
enclose lists from which you must choose one
item.

The term “quotation marks” is used to refer
to double quotation marks ("). The term
“apostrophe” is used to refer to a single
quotation mark (/).

Figure 1 explains the shapes and conventions used in figures that diagram

Ada programs.

Xix

Figure 1:

Figure Conventions

NONGENERIC GENERIC GENERIC
COMPILATION UNITS COMPILATION UNITS INSTANTIATIONS
Package units and subunits Package units Package units
package A is generic package D is
package Cis _____J newC...
l .. K S .
I A |
package body package body
Als... o is
separate (A)
package body
Bis...
Subprogram units and subunits Subprogram units Subprogram units
(procedures or functions) (procedures or functions) (procedures or functions)
’—‘
function A; I/ generic
. H function C;] function D is
| ! e T newC...
L 4 r T
j 1)
R PR | 1
function A Is function C is |
.. . 2
CONVENTIONS:

separate (A)
function B Is

Task subunits

separate (A)
task body B is

Arrows point from dependent units to the units on which
they depend.

Heavy lines indicate relative importance; primary dependence
relationships, specifications, main subprograms, and so on.

Generic instantiations look like nongeneric units, but will

always depend on the generic units from which they are
derived.

ZK-0827A-GE

XX

New and Changed Features

For this release, this manual has been reorganized, information has been
clarified and corrected, and examples have been added.

This version of the manual also discusses the following features, which have
been added or changed since VAX Ada Version 1.0:

By default, the completion of a generic instantiation no longer causes
units that depend on the unit containing the incomplete instantiation to
become obsolete. (You can revert to the Version 1 behavior by using the
pragma INLINE_GENERIC or by specifying the equivalent /OPTIMIZE
qualifier options at compilation time.)

The ACS COMPILE command has changed; when recompiling obsolete
units or completing incomplete generic units it now looks for external
source files first, and uses copied source files only when external source
files are not available.

The default job name for the ACS COMPILE, LINK/NOMAIN, and
RECOMPILE commands has changed. If you have not specified a job
name with the /NAME qualifier to these commands, the program library
manager creates a name comprising up to the first 39 characters of the
first unit specified in the command. Previously, the program library
manager created a name using the first unit compiled.

If the first unit specified contains a wildcard character, then the default
name for the job is ACS_COMPILE, ACS_LINK, or ACS_RECOMPILE,
as appropriate.

This new behavior also applies to the new ACS LOAD command,;
however, because the ACS LOAD command accepts file names, not unit
names, the program library manager creates a name from the first file
specified in the command.

xxi

XXii

The ACS COPY UNIT, ENTER UNIT, DELETE UNIT, and MERGE
commands apply only to the specification and body of the specified units;
they no longer automatically apply to subunits of the specified units.

The ACS MERGE command now checks for a more recent external
source file for a unit in the parent library with the same name as a
unit in the sublibrary. This check is done to prevent units in the parent
library from being overwritten by units from the sublibrary if the parent
units come from more recent external source files.

When you specify an invalid directory specification with the ACS SET
LIBRARY command, the program library manager now sets the library
to whatever you specified. This effect prevents you from incorrectly
modifying the wrong library.

The output from the ACS SHOW LIBRARY/FULL and SHOW
PROGRAM commands has been enhanced.

An ACS LOAD command has been added. It processes units in the
specified source files, and puts them into the current program library as
obsolete units. This command is useful for putting a set of units into a
library for the first time, especially if you do not know the compilation
order. It is also useful for adding units to an existing program.

The ACS CONVERT LIBRARY, REORGANIZE, and SHOW VERSION
commands have been added.

A /BATCH_LOG qualifier has been added to the ACS COMPILE,
RECOMPILE, and LINK commands. The new ACS LOAD command
also has a /BATCH_LOG qualifier.

The /BODY qualifier to the ACS COMPILE and RECOMPILE commands
has been deleted. In its place is a new /FORCE_BODY qualifier,

which provides the capability of the former combination of /BODY and
/NODATE_CHECK qualifiers.

The /BODY qualifier to the ACS DELETE UNIT command has been
renamed /BODY_ONLY. A similar /BODY_ONLY qualifier has been
added to the ACS COPY UNIT, DIRECTORY, ENTER UNIT, EXTRACT
SOURCE, MERGE, REENTER, and SHOW LIBRARY/UNITS
commands.

The behavior of the /COMMAND qualifier to the ACS COMPILE,
RECOMPILE, or LINK/NOMAIN command has been corrected and
changed. If you do not specify a file name with this qualifer, the
program library manager creates a name comprising up to the first 39
characters of the first unit specified in the command. Previously, the
program library manager created a name using the name of the first
unit compiled.

If the first unit specified contains a wildcard character, then the default
name for the command file is ACS_COMPILE, ACS_RECOMPILE, or
ACS_LINK, as appropriate

This new behavior also applies to the /COMMAND quahﬁer to the new
ACS LOAD command.

The /[NOJENTERED qualifier to the ACS DIRECTORY command

now allows you to optionally specify a program library. A similar
/INOJENTERED qualifier has been added to the ACS COPY UNIT,
DELETE UNIT, ENTER UNIT, EXTRACT SOURCE, MERGE, and
SHOW LIBRARY/UNITS commands. A similar /ENTERED qualifier has
been added to the ACS REENTER command.

The behavior of the /[NOJERROR_LIMIT qualifier to the DCL ADA and
ACS COMPILE and RECOMPILE commands has changed. When the
error limit is reached within a compilation unit, compilation of that unit
is terminated, but compilation of subsequent units continues. Previously,
the first unit that reached the error limit caused the entire compilation
to terminate.

This new behavior also applies to the /NOJERROR_LIMIT qualifier to
the new ACS LOAD command.

A /LOAD qualifier has been added to the DCL ADA command.

A /[NOJLOCAL qualifier has been added to the ACS COPY UNIT,
DELETE UNIT, DIRECTORY, ENTER UNIT, EXTRACT SOURCE,
MERGE, and SHOW LIBRARY/UNITS commands. It controls whether
local units (those units that were added to the library by a compilation
or a COPY UNIT command) are selected for the given operation. Note
that when you specify the /LOCAL qualifier, entered units are selected
unless the /NOENTER qualifier is also in effect (the defaults for these
commands are /LOCAL and /ENTERED).

An /INCLUDE qualifier has been added to the ACS LINK command.

The behavior of the /OPTIMIZE qualifier for the compilation commands
has changed, and a new set of qualifier options has been added
(DEVELOPMENT, INLINE, SHARE, and so on). These options allow
you to control subprogram and generic inline expansion, as well as
generic code sharing, in the code generated for your program by the
compiler.

An /OBJECT qualifier has been added to the ACS ENTER FOREIGN
command.

A /PRELOAD qualifier has been added to the ACS COMPILE and
RECOMPILE commands.

XXiii

XXiv

The /SHOW=PORTABILITY option is the default when you specify
the /LIST qualifier with the DCL ADA and ACS COMPILE and
RECOMPILE commands.

A /SPECIFICATION_ONLY qualifier has been added to the ACS
COMPILE, COPY UNIT, DELETE UNIT, DIRECTORY, ENTER
UNIT, EXTRACT SOURCE, MERGE, RECOMPILE, and REENTER
commands.

The behavior of the /SYNTAX_ONLY qualifier to the DCL ADA command
has changed. It now updates the program library with successfully
syntax-checked units. Previously, it processed the specified files, but did
not update the library. You can prevent the /SYNTAX ONLY qualifier
from updating the library by also specifying the new /NOLOAD qualifier.

A /USERLIBRARY qualifier has been added to the ACS LINK command.

When an ACS COMPILE/WAIT, RECOMPILE/WAIT, LOAD/WAIT,
LINK, or LINK/WAIT command is entered, the subprocess generated to
execute the compiler or linker command file inherits all process logical
names.

Program libraries can be accessed across DECnet.
Error messages have been been revised and improved.

Messages about incomplete generic units are now status-level
messages. To see them during compilation, you need to use the
/WARNINGS=(STATUS:TERMINAL) qualifier on your compilation
command.

By default, the debugger obtains the displayed Ada source code from
either copied source files or external source files, depending on whether
or not the units were compiled with the /COPY_SOURCE qualifier
(the /COPY_SOURCE qualifier is the default for all of the VAX Ada
compilation commands).

The debugger uses Ada unit-name rather than file-name conventions
in symbol names and path names. However, specifications are still
distinguished from bodies by an appended underscore.

The debugger SHOW TASK/STATISTICS command no longer reports
statistics on locks.

Support for the VAX Source Code Analyzer (SCA) has been added. An
/ANALYSIS_DATA qualifier can be specified with any of the compilation
commands (DCL ADA and ACS COMPILE and RECOMPILE) to produce
data analysis files for SCA. A predefined library of data analysis files

is provided for the VAX Ada predefined units (the units in the library
ADAS$PREDEFINED); this library has the logical name ADA$SCA_
PREDEFINED.

¢ The built-in predefined units (package STANDARD, package SYSTEM,
procedure UNCHECKED_DEALLOCATION, function UNCHECKED_
CONVERSION, and so on) are visible units in the library of predefined
units (ADA$PREDEFINED).

¢ VAXELN is a possible system choice for the /SYSTEM_NAME qualifiers
to the ACS CREATE LIBRARY, CREATE SUBLIBRARY, EXPORT,
LINK, and SET PRAGMA commands.

¢ The package VAXELN_SERVICES is part of the set of VAX Ada
predefined packages, and is a visible unit in the library of predefined
units (ADA$PREDEFINED).

XXV

Chapter 1

Introduction to the VAX Ada Program
Development Environment

The Ada programming language is a general-purpose, block-structured
language. Ada is strongly typed, supports the abstraction of data and
algorithms, promotes modular programming, provides for exact or
approximate numerical calculations, and supports concurrency. Thus, Ada
is well-suited for writing and maintaining large, complex systems that may
include real-time or concurrent operations.

VAX Ada implements the American National Standards Institute (ANSI)
and International Standards Organization (ISO) standard Ada programming
language on the VMS operating system. Where allowed by the standard,
VAX Ada also implements features designed to make programming in the
VMS environment convenient and efficient.

The environment for developing VAX Ada programs consists of the set of
tools and utilities provided by VAX Ada and the VMS operating system, plus
any optional layered products you have installed on your system.

VAX Ada provides a program library manager, which is also the user
interface to the VAX Ada compiler and the VMS Linker (linker). The VMS
operating system provides the VMS Debugger (debugger) and a choice of
text editors. Some of the optional layered products that you can install for
use in developing VAX Ada programs are:

¢ The VAX Language-Sensitive Editor (LSE)

¢ The VAX DEC/Code Management System (CMS)

¢ The VAX DEC/Test Manager

¢ The VAX Performance and Coverage Analyzer (PCA)
¢ The VAX Source Code Analyzer (SCA)

¢ Various VAX Information Architecture products

Introduction to the VAX Ada Program Development Environment 1-1

VAX Ada is an integral part of the development environment for VAXELN
Ada, which allows Ada programs to be developed on a VMS system and run
on a VAXELN target. VAX Ada is also related to XD Ada, a family of VMS
cross-compilers that produce Ada code for a number of non-VAX targets. See
the VAXELN Ada User’s Manual for more information on VAXELN Ada. See
the XD Ada documentation for more information on XD Ada.

This chapter provides a step-by-step tutorial on developing Ada programs.
This chapter also provides an overview of the program library manager
and its command language, and explains the VAX Ada conventions and
terminology related to compiling, linking, and managing program libraries.

1.1 Getting Started with VAX Ada

When you develop a VAX Ada program, you perform the following steps:

1. Create a working directory for your Ada source files, and define a
current default directory for operations such as editing, debugging, and
SO on.

Create Ada source files for all of the compilation units in your program.

Create a program library.

B~ oo

Define a current program library for operations such as compilation,
recompilation, and so on.

Compile the program into the current program library.
Link the program.

Execute the program.

Debug the program, if necessary.

© ® N

Go back to step 5, and compile the program again if debugging has
resulted in modifications to any of the source files.

The following sections explain these steps using an example program. The
program, a hotel reservation system, consists of a main program named
HOTEL and a library package named RESERVATIONS. The program has
three compilation units:

* The specification of the library package RESERVATIONS
* The body of the library package RESERVATIONS

¢ The procedure body HOTEL, which names the library package
RESERVATIONS in a with clause

1-2 Introduction to the VAX Ada Program Development Environment

Figure 1-1 shows the dependences among these compilation units. The
dependences affect the order in which the compilation units can be compiled,
and determine how the units must be recompiled as units are modified,
compiled again, and so on. In Figure 1-1, arrows point from dependent
units to the units they depend on.

Figure 1-1: Dependences Among the Hotel Reservation Program
Compilation Units

package
RESERVATIONS

package body
RESERVATIONS

procedure
HOTEL

Figure 1-2 shows the source files and the relevant fragments of the compila-
tion units for the example program. Note the following points:

ZK-6743-GE

¢ Each compilation unit is in a separate source file.

* The name of each source file matches the name of the compilation unit it
contains. Specifications and bodies share the same unit name. However,
the name of the source file for the package specification has a trailing
underscore character (RESERVATIONS_.ADA) to distinguish it from
the source file for the package body (RESERVATIONS.ADA). (These
file-name conventions are also used by the VAX Ada program library
manager and the VMS Debugger.)

Introduction to the VAX Ada Program Development Environment 1-3

* The working directory and current default directory are the VMS direc-
tory [JONES.HOTEL].

¢ The program library is the VMS directory [JONES.HOTEL.ADALIB]
(in this case a subdirectory of the working directory and current default
directory).

Figure 1-2: Source Files for the Hotel Reservation Program

USER: [JONES.HOTEL]JRESERVATIONS_.ADA

package RESERVATIONS is

end RESERVATIONS:

USER: [JONES.HOTEL]JRESERVATIONS.ADA

package body RESERVATIONS is

end RESERVATIONS;

USER: [JONES.HOTEL]HOTEL.ADA

with RESERVATIONS;
procedure HOTEL is

end HOTEL;

ZK-3090-GE

1-4 |Introduction to the VAX Ada Program Development Environment

1.1.1 Creating a Working Directory and Defining a Current Default
Directory

The first steps in developing a VAX Ada program are to create a working
directory and define a current default directory. You create a working
directory by entering the DCL CREATE/DIRECTORY command. You define
a current default directory by entering the DCL SET DEFAULT command.
For example:

$ CREATE/DIRECTORY [JONES.HOTEL]
$ SET DEFAULT [JONES.HOTEL]

The working directory is the directory that contains your source files; the
current default directory is the target directory for DCL commands (such as
text-editing commands) and for some of the files produced during program
development. As shown in the preceding example, these directories are
usually the same.

1.1.2 Creating a Source File

You create an Ada source file in your working directory by using a text
editor. For example:

$ EDIT HOTEL.ADA

This command invokes VAX EDT, the VMS default editor. EDT is one of two
interactive text editors available with the VMS operating system. The other
VMS editor is the Extensible VAX Editor (EVE), which is an interface to the
VAX Text Processing Utility (VAXTPU).

You can also use the VAX Language-Sensitive Editor (LSE) to create

Ada source files. LSE is an optional, multilanguage text editor designed
specifically for software development. LSE provides formatted language
templates to help you construct syntactically correct Ada source code, and
allows you to compile, review, and correct compilation errors from within
the editor. VAXTPU is part of and accessible from LSE. LSE is integrated
with the VAX Source Code Analyzer (SCA) and VAX DEC/Code Management
System (CMS). See Appendix C for Ada-specific information on LSE and for
an example of using LSE to develop an Ada program.

For further information on the available text editors, see the following
manuals:

* Guide to VMS Text Processing—provides tutorial information on the
EDT editor, EVE editor, and Digital Standard Runoff (DSR)

Introduction to the VAX Ada Program Development Environment 1-5

¢ VAX EDT Reference Manual—provides comprehensive reference informa-
tion on the EDT editor

e VAX Text Processing Utility Manual—provides comprehensive reference
information on VAXTPU and EVE

* Guide to VAX Language-Sensitive Editor and VAX Source Code
Analyzer—provides tutorial and reference information on LSE

1.1.3 Creating a Program Library

To compile or link an Ada program, you must have a program library. A
program library is a special VMS directory that you create with the ACS
CREATE LIBRARY command, specifying the name of the directory as a
parameter. For example:

$ ACS CREATE LIBRARY [JONES.HOTEL.ADALIB]

The program library holds the products of VAX Ada compilations (object files
and so on), and is used by the program library manager to keep track of
compilation units. You should not use it for any purpose other than the one
for which it was designed; for example, do not use it to store Ada source files
or other files that have not been created by the program library manager.

Figure 1-3 shows the directory structure for the hotel reservation program.
In this case, the program library [JONES.HOTEL.ADALIB] is a subdirectory
of the working directory that contains the source files.

Figure 1-3: Directory Structure for the Hotel Reservation Program

[JONES] Main directory
[JONES.HOTEL] Working directory and
current default directory

[JONES.HOTEL.ADALIB] Program library
ZK-3091-GE

1-6 Introduction to the VAX Ada Program Development Environment

VAX Ada also allows you to create one or more program sublibraries. See
Chapters 2 and 5 for more information on using sublibraries.

1.1.4 Defining the Current Program Library

To use a program library for a compilation, you must first define it as the
current program library. You define a current program library by entering
the ACS SET LIBRARY command, specifying the name of the program
library as the parameter. For example:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

The current program library is the library to which compiler and ACS
command operations apply. As such, the current program library is also the
context for any units that are compiled or linked. For example, when the
unit HOTEL is compiled, the compiler searches the current program library
for the specification of the unit RESERVATIONS, because HOTEL mentions
RESERVATIONS in a with clause.

The ACS SET LIBRARY command allows you to change the definition of the
current program library from one library to another.

When working with several program libraries, you can determine which
library is the current program library with the ACS SHOW LIBRARY
command. For example:

$ ACS SHOW LIBRARY
%I, Current program library is USER: [JONES.HOTEL.ADALIB]

1.1.5 Compiling the Program

To compile VAX Ada compilation units, enter either the DCL ADA com-
mand or the ACS LOAD and COMPILE commands. The ADA and LOAD
commands take one or more Ada source file names as parameters; the
COMPILE command takes one or more Ada compilation unit names as
parameters.

For example, the following ADA command compiles the files for the units
RESERVATIONS and HOTEL. Because the ADA command assumes a .ADA
file type by default, the file type is omitted.

$ ADA RESERVATIONS , RESERVATIONS, HOTEL

Introduction to the VAX Ada Program Development Environment 1-7

Similarly, the following ACS LOAD and COMPILE commands compile the
same set of files (again, .ADA is the default file type):

$ ACS LOAD RESERVATIONS*, HOTEL
$ ACS COMPILE HOTEL

Each time a compilation is successful, the program library is updated with
information about the compilation units, as well as with files that are
products of the compilation (object files and so on). One difference between
the DCL ADA and ACS LOAD commands is that the ADA command fully
compiles the units it processes; the LOAD command only partially compiles
the units it processes. After entering an ACS LOAD command, you must
subsequently enter an ACS COMPILE or RECOMPILE command to finish
the processing.

For the ADA or LOAD command to execute successfully, you must have
satisfied the following prerequisites:

¢ Defined a current default directory for your Ada source files (see
Section 1.1.1)

¢ Created and set a current program library for the products of compila-
tion (see Section 1.1.3)

For the ADA command to execute successfully, you must also have specified
the files so that the units contained in the files are compiled in the correct
order. The ACS LOAD command processes the units contained in the source
files in any order, so it does not have this requirement.

You can determine the order of compilation by following the Ada rules for
dependences among compilation units. For example, the order of compilation
for the three compilation units of the hotel reservation program is as follows:

* The specification of RESERVATIONS must be compiled before the main
procedure HOTEL because HOTEL names RESERVATIONS in a with
clause.

¢ The specification of RESERVATIONS must be compiled before its body.

¢ The procedure HOTEL and the body of RESERVATIONS may be
compiled in either order once the specification of RESERVATIONS has
been compiled.

See Section 1.3.2 and the VAX Ada Language Reference Manual for more
information on Ada order-of-compilation rules.

1-8 Introduction to the VAX Ada Program Development Environment

1.1.6 Displaying Unit Information

To display the contents of your program library, enter the ACS DIRECTORY
command, specifying zero or more unit names as parameters. For example:

$ ACS DIRECTORY HOTEL, RESERVATIONS

HOTEL
procedure body 15-Apr-1989 14:53
RESERVATIONS)
package specification 15-Apr-1989 14:52
package body 15-Apr-1989 14:51

Total of 3 units.

The ACS DIRECTORY command identifies all compilation units that are
part of the program library. Compilation units are listed alphabetically by
unit name, and the date and time of the most recent compilation is given for
each unit.

You can obtain information on how portable your program is by using the
/PORTABILITY qualifier with the ACS SHOW PROGRAM command.

1.1.7 Linking the Program

Once you have compiled all of the units of a program into the current
program library, you link the program by entering the ACS LINK command
(not the DCL LINK command). You specify the unit name (not the file name)
of the main program unit as the parameter. For example:

$ ACS LINK HOTEL

The ACS LINK command invokes the VAX Ada program library manager,
which serves as the interface to the VMS Linker and performs the following
link-related operations:

* Checks that a complete set of units exists for the unit specified (the main
program), and that all of the units are current

¢ If the set of units is complete and current (see Sections 1.3.1.2 and
1.3.3), generates a temporary command file for the linker

¢ Invokes the linker

Introduction to the VAX Ada Program Development Environment 1-9

The linker uses the information in the command file to link the appro-
priate object modules and produces an executable image file ((EXE) with
the same name as the main program. This image file is stored in your
current default directory (not the current program library). Thus, in the
example hotel reservation program, the resulting executable image file,
HOTEL.EXE, is in the directory [JONES.HOTEL], not in the directory
[JONES.HOTEL.ADALIB].

1.1.8 Executing the Program

To execute a successfully linked program, enter the DCL RUN command,
specifying the name of the executable image file as the parameter. For
example:

$ RUN HOTEL
Because the DCL RUN command assumes a .EXE file type by default, you

can omit the file type of the executable image when you enter the DCL RUN
command, as shown in this example.

1.1.9 Debugging the Program

If you expect to encounter run-time errors or need to check your Ada
program as it is running, you can compile and link the program so that it
will run under the control of the VMS Debugger when you execute the DCL
RUN command. While you are executing your program under debugger
control, you can set breakpoints, watchpoints, tracepoints, examine the
contents of variables, control the operation of tasks, and so on (see
Chapters 6 and 7).

The following commands show how the example hotel reservation program
is compiled and linked for execution under debugger control. Because the
/DEBUG qualifier is a default qualifier for the DCL ADA command, it is not
shown here.

$ ADA HOTEL
$ ACS LINK/DEBUG HOTEL
$ RUN HOTEL

VAX DEBUG Version 5.0-00

$DEBUG-I-INITIAL, language 1is ADA, module set to HOTEL
$DEBUG-I-NOTATAMAIN, type GO to get to start of main program
DBG>

1-10 Introduction to the VAX Ada Program Development Environment

Once you are in the debugger, you can obtain help on any of the debugger’s
features by typing the HELP command at the debugger prompt (DBG>). You
can exit from the debugger at any time with the debugger EXIT command.

If you have compiled and linked a program with the /DEBUG qualifiers,
and want to execute it without debugger control, you can enter the DCL
RUN/NODEBUG command, as follows:

$ RUN/NODEBUG HOTEL

1.1.10 Compiling and Recompiling a Modified Program

If your program has been compiled once and then modified, you can compile
it again by entering the DCL ADA command as described in Section 1.1.5.
Alternatively, you can use the ACS COMPILE command. If the compilation
order of the units in the program has not changed, enter the ACS COMPILE
command, specifying the unit name of the main pfogram. For example:

$ ACS COMPILE HOTEL

The ACS COMPILE command finds all of the compilation units that are
required for the execution of the unit specified, automatically compiles any
source files that have been modified, and recompiles any units that are made
obsolete or incomplete by the compilation. (See Section 1.3.1.2 for more
information on obsolete units, incomplete units, and recompilation.)

If you expect that the compilation order has changed, you can use the
/PRELOAD qualifier with the ACS COMPILE command. You can add new
units to an existing set of units by first compiling them into the library with
the ADA command or loading them into the library with the ACS LOAD
command, and then entering the ACS COMPILE/PRELOAD command.

If you have a set of units that have not been modified but are obsolete
because a unit that they depend on has changed, you can recompile them
using the ADA command, or you can use either the ACS RECOMPILE or
COMPILE command. For example:

$ ACS RECOMPILE HOTEL

The COMPILE or RECOMPILE command finds all of the compilation units
that are required for the execution of the unit specified, and recompiles any
obsolete or incomplete units.

By entering the COMPILE and RECOMPILE commands with the
/NODATE_CHECK qualifier, you can use them to force the compilation
or recompilation of a set of units.

Introduction to the VAX Ada Program Development Environment 1-11

Like the DCL ADA command, the ACS COMPILE and RECOMPILE
commands assume the /DEBUG qualifier by default.

See Chapter 3 for more information on using the ACS COMPILE and
RECOMPILE commands.

1.2 Using the VAX Ada Program Library Manager

The VAX Ada program library manager is an interactive utility with DCL-
like commands—ACS commands—that you enter to perform a variety of
functions. The program library manager handles all of the program library
operations associated with Ada compilation units and automates many of
those functions for you. The program library manager also provides much of
the user interface to the VAX Ada compiler and VMS Linker.

This section gives an overview of the ACS commands, and discusses the
following topics:

¢ Entering ACS commands

* Exiting from the program library manager and interrupting ACS
commands

* Defining synonyms for ACS commands
¢ Using DCL commands with program libraries

1.2.1 Overview of ACS Commands

ACS commands provide program library management, compilation, and
linking operations. These operations are summarized in this section as
follows:

e Table 1-1 summarizes program library management commands. (See
Chapters 2 and 5 for more information on program library management.)

¢ Table 1-2 summarizes compilation and linking commands. (See
Chapter 3 for more information on compilation; see Chapter 4 for
more information on linking.)

e Table 1-3 summarizes additional ACS commands that are useful in the
VMS environment.

Appendix A of this manual is a dictionary of all of the ACS commands. It
provides details on the format, parameters, and qualifiers for each command.
The same information is provided on line when you type ACS HELP at the
DCL prompt ($).

1-12 Introduction to the VAX Ada Program Development Environment

NOTE

For completeness, the DCL ADA and DCL RUN commands are
included in these tables. These are the only non-ACS commands

presented.

Table 1-1: ACS Program Library Management Commands

Command Function

CHECK Forms the execution closure! of one or more compiled
units, and checks the completeness and currency of the
units in the closure.

CONVERT LIBRARY Converts a VAX Ada Version 1.n program library to a VAX
Ada Version 2.0 program library.

COPY FOREIGN Copies a foreign (non-Ada) object file into the current
program library as a library unit body.

COPY UNIT Copies a compiled unit from one program library to the
current program library.

CREATE LIBRARY Creates a VAX Ada program library.

CREATE SUBLIBRARY Creates a VAX Ada program sublibrary, which allows you
to isolate the development of selected units.

DELETE LIBRARY Deletes a program library and its contents.

DELETE SUBLIBRARY Deletes a program sublibrary and its contents.

DELETE UNIT Deletes one or more compiled units from the current
program library.

DIRECTORY Lists the units in the current program library. Displays
information, such as the name and date-time of the
last compilation, about one or more units in the current
program library.

ENTER FOREIGN Enters a reference (pointer) from the current program
library to an external file as a foreign (non-Ada) library
body.

ENTER UNIT Enters a reference (pointer) from the current program

library to a unit that has been compiled into another
program library. “Entered” units can be used in the
current program library as if they were actually in it.

1In simple terms, execution closure is the complete set of units that a given unit depends on,
plus any other units needed for its execution. Currency and closure are discussed in Sections
1.3.1.2 and 1.3.3, respectively.

(continued on next page)

Introduction to the VAX Ada Program Development Environment 1-13

Table 1-1 (Cont.):

ACS Program Library Management Commands

Command Function

EXPORT Creates an object file that contains the object code for one
or more units in the current program library.

EXTRACT SOURCE Obtains copies of source files contained in the current
program library.

MERGE Merges, into the parent library, new versions of one or
more units from the sublibrary where they were modified.
MERGE replaces the older, obsolete versions in the parent
library.

REENTER Enters current references to units that were compiled after
they were last entered with the ENTER UNIT command.

REORGANIZE Optimizes the organization of a program library.

SET LIBRARY Defines a program library to be the current program
library—that is, the library that is to be the compilation
context, as well as the target library for compiler output
and ACS commands in general.

SET PRAGMA Redefines specified values of the library characteristics
LONG_FLOAT, MEMORY_SIZE, and SYSTEM_NAME.

SHOW LIBRARY Displays the name and characteristics of one or more
program libraries. _

SHOW PROGRAM Displays information, such as dependence on other units,
about the closure of one or more units in the current
program library. Also displays a portability summary.

SHOW VERSION Displays the version of the VAX Ada compiler and program
library manager being used.

VERIFY Performs a series of consistency checks on a program

library to determine whether the library structure and
library files are in valid form. Optionally corrects some of
the inconsistencies detected.

Introduction to the VAX Ada Program Development Environment

Table 1-2: Compilation, Linking, and Execution Commands

Command

Function

DCL Commands

ADA

RUN

Invokes the VAX Ada compiler to compile the specified Ada
source files.

Executes the specified executable image file.

ACS Commands

COMPILE

LOAD

LINK
RECOMPILE

SET SOURCE

SHOW SOURCE

Forms the execution closure! of one or more specified
units; checks the completeness and currency of the units in
the closure; identifies units that have revised source files;
compiles units that have revised source files; recompiles
units that are obsolete or will be made obsolete. Completes
incomplete generic instantiations.

Loads (partially compiles) the units in the specifed Ada
source files into the current program library as obsolete
units; updates the current program library with unit
dependence and source-file information.

Creates an executable image file for the specified units.

Forms the execution closure! of one or more specified
units; checks the completeness and currency of the units
in the closure; recompiles any obsolete units in the appro-
priate order to make them current. Completes incomplete
generic instantiations.

Defines a source file search list for the COMPILE
command.

Displays the source file search list used by the COMPILE
command.

In simple terms, execution closure is the complete set of units that a given unit depends on,
plus any other units needed for its execution. Currency and closure are discussed in Sections
1.3.1.2 and 1.3.3, respectively.

Introduction to the VAX Ada Program Development Environment 1-15

Table 1-3: Additional ACS Commands

Command Function

ATTACH Switches control of your terminal from the current process
running the VAX Ada program library manager (same as
the DCL ATTACH command).

EXIT Exits from the program library manager. You can also use
CTRL/Z.

HELP Invokes the VMS HELP facility to obtain information
about ACS commands.

SPAWN Creates a subprocess of the current process (same as the
DCL SPAWN command).

1.2.2 Entering ACS Commands

1-16

You can enter ACS commands in two ways:

¢ By invoking the program library manager interactively
¢ In the form of one-line DCL commands

To use the program library manager interactively, you must first invoke it
by typing ACS at the DCL prompt ($). The library manager responds with
the ACS prompt. For example:

$ ACS
ACS>

Once you have invoked the program library manager, you can enter any
ACS command. For example:

ACS> SET LIBRARY [JONES.HOTEL.ADALIB]

To enter an ACS command as a one-line DCL command, type the ACS prefix
and then the ACS command line. For example:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

This form allows you to use DCL symbol substitution, parameter passing,
and lexical functions in ACS commands (these DCL features are described
in the VMS DCL Concepts Manual and Guide to Using VMS Command

Procedures). For example:

Introduction to the VAX Ada Program Development Environment

$! CLG.COM —-- DCL procedure for compile-link-go processing.
$! Parameter Pl is source file name and main program name.
$ ADA ’'Pl’

$ ACS LINK ‘Pl

$ RUN 'P1’

Regardless of the ACS command format you choose, the program library
manager prompts you for any required parameters that are missing.

If your ACS command is too long to fit on one line, you can continue the
command by typing a hyphen (-) as the last character of a line. For
example:

ACS> LINK/DEBUG/MAP/FULL/CROSS_REFERENCE -
_ACS> MY_MAIN_PROGRAM -
_ACS> DISK: [MATRIX.SHARE]MATHPACK.OLB/LIB

An ACS command can have a maximum of 1024 characters. Individual
command lines can have a maximum of 256 characters.

1.2.3 Exiting from the Program Library Manager and Interrupting ACS
Commands

If you are using the program library manager interactively, you can exit
and return to DCL level by entering the ACS EXIT command or by pressing
CTRL/Z at the ACS> prompt. For example:

ACS> EXIT
$

If you need to interrupt an ACS command before its execution has com-
pleted, press CTRL/C rather than CTRL/Y. CTRL/C interrupts the command
in an orderly fashion, while CTRL/Y may not. In particular, use CTRL/C

if the ACS command is one that alters the contents of a program library,
for example, the ACS DELETE UNIT command. When you use CTRL/Y to
interrupt an ACS command, control passes directly to DCL, and the program
library may be left in an inconsistent state.

1.2.4 Defining Synonyms for ACS Commands

As with DCL commands, you can define synonyms (symbols) to abbreviate
commonly used combinations of ACS commands and qualifiers. You can
place these symbol definitions in your LOGIN.COM file so that they take
effect whenever you log in to your system.

Introduction to the VAX Ada Program Development Environment 1-17

A synonym for an ACS command must have the prefix ACS$. Otherwise, the
conventions are identical to those for defining synonyms for DCL commands
(see the VMS DCL Concepts Manual). For example:

$ ACS$DB == "DIRECTORY/BRIEF"
$ ACSS$DF == "DIRECTORY/FULL"

You can use these synonyms when working interactively with the program
library manager. For example:

ACS> DB
HOTEL
QUEUE_MANAGER
RESERVATIONS
SCREEN_IO

Total of 7 units.

Note from this example that you use only the letters following the ACS$
prefix as the synonym.

1.2.5 Using DCL Commands with Program Libraries

Program libraries are implemented in VAX Ada as VMS directories.
However, the file relationships inside a program library are quite differ-
ent from those in a conventional VMS directory. Therefore, in general, you
should use only ACS commands to manipulate program libraries and their
contents.

You may need to use DCL commands in certain situations. For example,
you may need to use the DCL SET PROTECTION command to change the
protection of a library directory so that you can delete it (see Chapters 2
and 5). Similarly, you may need to use the DCL BACKUP command to copy
or back up a program library (see Chapter 5).

1.3 Concepts and Terminology

The following sections summarize the basic concepts and terminology that
apply to compilation and linking in the VAX Ada environment. These
concepts are related to modular program development, which is a primary
feature of the Ada language.

1-18 Introduction to the VAX Ada Program Development Environment

1.3.1 Program and Compilation Units

Program units are the functional building blocks of Ada programs. There
are four kinds of program units: subprograms (procedures and functions),
packages, tasks, and generic units. An Ada program generally consists of a
main program and its related program units. A main program is always a
subprogram.

To facilitate modular development, each program unit consists of a specifica-
tion and sometimes a body. The specification contains only the declarations
that need to be made visible to other program units; the body contains the
implementation of the declarations in the specification.

The parts of Ada prdgram units that can be compiled separately are called
compilation units. Compilation units consist of the following:

* Package specifications and bodies

¢ Subprogram specifications and bodies

* Generic unit (subprogram and package) specifications and bodies
* Generic instantiations (subprogram and package) of generic units
* Subunits

NOTE

A task specification or body must be contained within a package
or a subprogram before it can be compiled, except when the task
body is a subunit.

The Ada language distinguishes between two classes of compilation units:

* Library units are the compilation units that are essential for program
compilation. They consist of library unit specifications, or library
specifications (consisting of subprogram, package, and generic specifica-
tions), generic instantiations, and subprogram bodies that do not have
corresponding specifications.

* Secondary units are the compilation units that are not essential for
program compilation, but they are essential for program linking and
running. They consist of library unit bodies, or library bodies (consisting
of subprogram, package, and generic bodies), and subunits.

Thus, Ada allows you to begin program development by designing and
compiling a program consisting only of library units. Once you have a
consistent program structure that you can compile, you can implement any
corresponding secondary units (bodies and subunits), and then link and run
the program. See Chapter 5 for more information.

Introduction to the VAX Ada Program Development Environment 1-19

1.3.1.1 Compilation Unit Dependences

During and after compilation, the compiler and program library manager
maintain current data on the status of compilation units and the depen-
dences among units. In this way, the compiler can enforce certain order-of-
compilation rules (see Section 1.3.2), and the program library manager can
manage the program library to support those rules.

Compilation unit dependences are derived from Ada’s scope and visibility
conventions:

* Alibrary body depends on its library specification, if there is one.

* A subunit depends on its parent unit and therefore depends on its
parent’s associated library body and library specification.

¢ Each compilation unit depends on the library specifications of any units
that are named in with clauses.

Compilation unit dependences can also be caused by the following:

¢ The value of the predefined constant SYSTEM.SYSTEM_NAME if the
package SYSTEM is named in a with clause. (Chapter 5 describes this
constant and its effects in more detail.)

¢ (Calls of subprograms that have been specified with the pragma INLINE.

* Instantiations of generics that have been specified with the pragma
INLINE_GENERIC.

1.3.1.2 Current and Obsolete Units

Whenever a unit is compiled, any dependent unit, as defined in Section 1.3.1.1,
is made obsolete and must eventually be compiled again before it can be in-
cluded in a set of units to be linked. For example, compiling a library
specification makes the associated library body and any subunits obsolete;
moreover, if the library specification is named in a with clause of a unit,
that unit is also made obsolete, as are its dependent units. Incomplete in-
stantiations (instantiations that were compiled before their corresponding
generic body was compiled or recompiled) are also counted as obsolete units.

The program library manager keeps track of current and obsolete units.
ACS commands such as SHOW PROGRAM and CHECK allow you to
determine the status of the units in the current program library. If you
try to link a set of units that contains any obsolete units, the program
library manager warns you about those units and terminates the operation.
Because obsolete units are a natural consequence of Ada’s compilation rules
(see Section 1.3.2), VAX Ada provides the ACS COMPILE and RECOMPILE

1-20 Introduction to the VAX Ada Program Development Environment

commands. These commands automatically find the set of units that need to
be compiled to make an obsolete unit current, and then compile that set in
the right order. This process makes the units current.

NOTE

The verb to recompile is used in a restricted sense in this manual;
it means to make a set of obsolete units current.

1.3.1.3 Unit and File-Name Conventions

While developing programs in the VAX Ada environment, you need to
recognize the distinction between source files and units. A source file
(having a default file type of .ADA) can contain several compilation units.
However, after a file is compiled, the program library manager maintains
information about the individual units, and most of the ACS commands
operate on units (not on source files).

If you have one source file for all of your compilation units, the name of
the file will be different from most, if not all, of the units. Because most
program library manager commands accept unit names and give information
about units, having one source file with a different name from most units
can become confusing. To keep the distinction between source files and
compilation units clear, use a separate source file for each compilation unit.

Use of a separate source file for each compilation unit also promotes efficient
use of the compiler. For example, every time a unit is compiled, any depen-
dent unit in the program library is made obsolete and must be recompiled.
Thus, if you have two library specifications in the same source file, every
time you modify one specification, you must compile both in the same com-
pilation. Then, the units that depend on both specifications become obsolete
and must be recompiled. If the specifications were in separate source files,
only the modified specification would be compiled, and only the units that
depend on the modified specification would become obsolete and have to be
recompiled.

When you use separate source files for individual compilation units, you
should follow file-name conventions that parallel the Ada language rules for
naming compilation units. For example, although a library specification and
its library body are distinct compilation units, they share the same name,
called the unit name. All of the unit names in a program library must be
unique. Similarly, all of the subunit names associated with a given ancestor
unit must be unique. (Every subunit mentions the name of its parent unit,
and the top-level parent in a hierarchy of subunits is the ancestor unit.)

Introduction to the VAX Ada Program Development Environment 1-21

To support these rules, the following file-name conventions are recom-
mended. These conventions are consistent with program library manager
and VMS file-name conventions.

* The name of the source file for a library specification should be the name
of the unit, followed by a trailing underscore character (_): for example,
SCREEN_IO_.ADA.

¢ The name of the source file for a library body should be the name of the
unit (without a trailing underscore): for example, SCREEN_IO.ADA.

¢ The name of the source file for a library generic instantiation should be
the name of the instantiation: for example, INTEGER_TEXT_IO.ADA.

* The name of the source file for a subunit should be the name of the
ancestor unit, followed by two underscore characters, followed by the
name of the subunit: for example, SCREEN_IO__INPUT.ADA (where
INPUT is a subunit of SCREEN_IO).

Table 1-4 shows the conventions for naming source files by comparing
unit names with source file names. The names in the table represent the
following arbitrary set of units:

* Package specification and body SCREEN_IO
¢ Generic package declaration and body MATH
¢ Generic instantiation HOTEL_MATH

¢ Subunit INPUT (of SCREEN_IO)

* Subunit BUFFER (of INPUT)

Table 1-4: Conventions for Naming VAX Ada Source Files

Compilation Unit Ada Unit Name Ada Source File Name
package SCREEN_IO
specification SCREEN_IO SCREEN_IO_
body SCREEN_IO SCREEN_IO
generic package MATH
declaration MATH MATH_
body MATH MATH
generic instantiation HOTEL_MATH HOTEL_MATH

(continued on next page)

1-22 Introduction to the VAX Ada Program Development Environment

Table 14 (Cont.): Conventions for Naming VAX Ada Source Files

Compilation Unit Ada Unit Name Ada Source File Name
subunits
INPUT SCREEN_IO.INPUT SCREEN_IO__INPUT
BUFFER SCREEN_IO.INPUT.BUFFER SCREEN_IO__BUFFER

1.3.2 Order-of-Compilation Rules

The VAX Ada compiler and program library manager enforce the rules
governing the order in which compilation units are compiled. These order-
of-compilation rules stem from Ada’s scope and visibility conventions, which
create the dependences among units described in Section 1.3.1.1. The rules
are as follows:

* You can compile a given unit only after compiling all of the library
specifications named in that unit’s context clause.

* You can compile a library body only after compiling its library specifi-
cation. However, the body of a nongeneric library subprogram can also
serve as its own library specification, and therefore does not necessarily
depend on a separately compiled specification.

* You can compile a subunit only after compiling its parent unit.

In summary, a unit must be compiled before any of its dependent units.
If you follow these rules, then the following additional rules are true:

* You can submit the compilation units of a program to the compiler in
one or more compilations (invocations of the compiler). Also, you can
submit one or more compilation units of a program at any one time. The
units of any one compilation are compiled in the given order, whether
submitted in one or more files. Thus, a pragma that applies to the whole
of a compilation must appear before the first unit of that compilation.

¢ Units can be compiled in an otherwise arbitrary order relative to each
other. For example, compiling a subunit affects only its subunits, if any;
compiling a library body generally does not affect any other units except
its own subunits, if any. However, compiling a library body does affect
other units in the following three cases:

— If a pragma INLINE or equivalent /OPTIMIZE qualifier option
applies to a subprogram, then compiling the library body containing
the subprogram body makes obsolete any unit in which a call of the
subprogram is expanded inline.

Introduction to the VAX Ada Program Development Environment 1-23

— If a pragma INLINE_GENERIC or equivalent /OPTIMIZE qualifier
option applies to a generic unit or to an instance of a generic unit,
then compiling the generic body makes obsolete any unit in which an
instantiation of the generic is expanded inline.

— If an inline pragma or equivalent /OPTIMIZE qualifier option does
not apply, then compiling a generic body makes all instantiations of
the generic incomplete. However, units that contain instantiations
of the generic do not become obsolete. (See Chapter 3 for more
information on completing incomplete generic instantiations.)

If you follow these rules when you compile a unit or set of units, and no
other errors are detected during the compilation, then the program library
is updated with information on all of the units in the compilation. If the
compilation is unsuccessful for any reason, no updating is done.

Although the VAX Ada compiler always processes compilation units in a
manner that is consistent with Ada’s order-of-compilation rules, observance
of the compilation rules does not ensure that the set of units in a program
library is current. Nor does observance of the rules ensure that the set

of units is complete. For example, a library body or a subunit may still

be missing from the program library, or may have been made obsolete

by a previous compilation. If you try to link an incomplete set of units, the
program library manager warns you about the missing units, and terminates
the operation.

Obsolete units are discussed in Section 1.3.1.2; what constitutes a complete
set of units is discussed in Section 1.3.3.

1.3.3 Closure

When you compile a given unit, the compiler identifies any unit that the
given unit depends on, as specified in Section 1.3.1.1, and determines
whether that unit is defined and current in the current program library. For
example, if the given unit is a library body, the compiler looks for the unit’s
specification.

Any unit that a given unit depends on may itself depend on another unit,
which must also be defined in the current program library. The total set of
library units that the given unit depends on, directly and indirectly, is called
the compilation closure of that unit. Thus, the compilation closure of a given
unit consists of all the units that must be defined and current in the current
program library before you can compile that unit.

1-24 Introduction to the VAX Ada Program Development Environment

To link a program into an executable image, the execution closure of the
main program must be formed. The execution closure consists of the
compilation closure plus all associated secondary units (library bodies and
subunits). A set of units is complete when no units in the execution closure
are missing.

A number of ACS commands operate on the execution closure of a spec-
ified set of units—for example, the ACS CHECK, COMPILE, COPY
UNIT/CLOSURE, ENTER UNIT/CLOSURE, EXPORT, LINK, RECOMPILE,
and SHOW PROGRAM commands.

NOTE

In this manual, the term closure is used to signify execution
closure, unless otherwise specified.

The execution closure of a specified set of compilation units is defined
formally as the smallest set of units with the following properties:

¢ All the specified units are contained in the closure.

¢ For any given unit in the closure, the following are also contained in the
closure, as applicable:

— Its specification, if the given unit is a body

— Its body, if the given unit is a specification

— Its immediate subunits, if any

— Its immediate parent unit, if the given unit is a subunit
— All units named by the given unit in its with clause

A unit that names a given unit in its with clause is not part of the execution
closure of the given unit.

Figure 1-4 shows one possible configuration of an extended version of the
HOTEL reservation program. The units involved are the library packages
RESERVATIONS, SCREEN_IO, and HOTEL_MATH, the library subpro-
grams HOTEL and CONFIRM, and the subunit RESERVATIONS.CANCEL.
Arrows point from dependent units to the units they depend on.

The units shown in Figure 1-4 form the following closures:

¢ The closure of the unit CONFIRM consists of the function CONFIRM.

* The closure of the specification or body of the package SCREEN_IO
consists of the specification and body of the package SCREEN_IO.

Introduction to the VAX Ada Program Development Environment 1-25

Figure 1-4: Sample Compilation Units Used to Show Closure

! generic package E
i MATH 1
i i
Lcmpmcmccogan J F———— -
/'Y _"f _________ | E
| package body :
I MATH :
I
package package
HOTEL_MATH SCREEN_IO
‘ I
package body
SCREEN_IO

/ function
CONFIRM /
package

RESERVATIONS 3
* I I separate
package body <« (RESERVATIONS)
procedure
RESERVATIONS CANCEL
procedure
HOTEL

ZK-6744-GE

1-26 Introduction to the VAX Ada Program Development Environment

¢ The closure of the specification, body, or subunit of the package
RESERVATIONS consists of all of the units shown, except for the
procedure HOTEL.

¢ The closure of the procedure HOTEL consists of all of the units shown.

The following command recompiles any of the units shown that are obsolete,
except HOTEL (the closure of RESERVATIONS does not include HOTEL):

$ ACS RECOMPILE RESERVATIONS

The following command recompiles any of the units shown that are obsolete
(the closure of HOTEL includes all of the units):

$ ACS RECOMPILE HOTEL

Introduction to the VAX Ada Program Development Environment 1-27

Chapter 2

Working with VAX Ada Program Libraries and
Sublibraries

Ada compilations are performed in the context of a program library. The
program library manager and compiler use the program library to maintain
information about compilation units.

A VAX Ada program library is a dedicated VMS directory that contains
a set of files for each compilation unit successfully compiled. A VAX Ada
program sublibrary is a program library that has a parent library. Units
in a sublibrary are compiled in the context of both the sublibrary and the
parent library, but only the sublibrary is updated.

NOTE

Because program libraries and sublibraries are so similar, many
library and compilation unit operations have the same effect.
Thus, this chapter uses the term library to denote a sublibrary

as well as a program library. The terms program library and
sublibrary are used only where emphasis is needed or a distinction
must be made.

When your library context is a sublibrary, the units in the sublibrary and
parent libraries are visible in a fashion analogous to multiple panes of glass.
The units in the sublibrary appear on the top pane, units in the immediate
parent library appear on the next pane, units in the parent of the immediate
parent appear on a following pane, and so on. Then, units by the same
name hide each other such that a unit in a parent library is hidden (made
not visible) by a unit of the same name in a closer sublibrary. Thus, the
search for a unit begins with the closest pane of glass (the sublibrary) and
follows through the parent panes until the unit is found.

Working with VAX Ada Program Libraries and Sublibraries 2-1

You can organize program libraries and sublibraries to suit the needs

of your project. For example, you can store the compilation units of an
entire Ada program in a single program library, or you can distribute them
among a number of program libraries. Sublibraries are designed to allow
you to isolate particular compilation units so that you can develop them
individually.

This chapter explains how you can work with program libraries and
sublibraries using ACS commands. Chapter 5 covers additional topics
related to program library management and maintenance.

NOTE

The information in this chapter is task oriented. For full
details on the format, parameters, and qualifiers of the various
ACS commands, see Appendix A. For information on the
implementation of VAX Ada program libraries and sublibraries,
see Appendix D.

2.1 Program Library and Sublibrary Operations

The following sections describe a number of program library and sublibrary
operations:

* Creating a program library or sublibrary

* Defining the current program library

* Identifying the current program library

¢ Obtaining library information

* Controlling library access

* Deleting a program library or sublibrary

In general, the effect of these operations on program libraries and subli-
braries is the same. When the effect is different, information is provided, as

appropriate. See Section 2.3.1 for a summary of the commands where the
effect is different.

See Chapter 5 for information on how to configure, protect, and maintain
program libraries and sublibraries.

NOTE

Use only ACS commands (not DCL commands) to manipulate
program libraries and sublibraries. Exceptions to this rule are
noted where appropriate.

2-2 Working with VAX Ada Program Libraries and Sublibraries

2.1.1 Creating a Program Library or Sublibrary

To create a program library, enter the ACS CREATE LIBRARY command,
specifying a VMS directory as a parameter. For example:

$ ACS CREATE LIBRARY [JONES.HOTEL.ADALIB]

To create a sublibrary, enter the ACS CREATE SUBLIBRARY command,
specifying a VMS directory as a parameter, and optionally specifying the
parent library with the /PARENT qualifier. For example:

$ ACS CREATE SUBLIBRARY/PARENT=[JONES.HOTEL.ADALIB] -
_$ [JONES.HOTEL.SUBLIB]

When creating a sublibrary, you can specify any previously created program
library or sublibrary to be the parent library. If you omit the /PARENT
qualifier, the current program library is defined to be the parent library by
default. See Section 2.1.2 for information on defining and identifying the
current program library; see Section 2.1.4 for information on identifying the
parent of a sublibrary.

NOTE

By using concealed-device logical names and rooted directory
syntax for program library and sublibrary directories, you can
make the maintenance of program libraries and sublibraries
easier. In particular, you can change the parent of a sublibrary.
See Section 2.3.3 and Chapter 5 for more information.

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands are
the same in the following respects:

¢ They create the specified VMS directory (if it does not already exist).

¢ They cannot be used across DECnet unless the VMS directory for the
library already exists.

* They create the library, but do not automatically make it a target for
compilation and ACS commands. To use the library, you must enter the
ACS SET LIBRARY command (see Section 2.1.2).

* They cause the library directory to inherit the default system file
protection. Both commands have a /PROTECTION qualifier, which
allows you to change the default. See Chapter 5 for more information on
library protection.

Working with VAX Ada Program Libraries and Sublibraries 2-3

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands are
different in the following respects:

¢ The CREATE LIBRARY command initializes the program library to be
self-contained. The CREATE SUBLIBRARY command puts a reference
to the parent library in the sublibrary.

¢ The CREATE LIBRARY command enters the Ada predefined units
into the newly created program library by default. The CREATE
SUBLIBRARY command does not enter the Ada predefined units into
the newly created sublibrary.

e When you create a program library, the following system characteristics
are in effect by default:

— LONG_FLOAT = G_FLOAT
— MEMORY_SIZE = 2147483647
— SYSTEM_NAME = VAX_VMS

When you create a sublibrary, the sublibrary inherits the defaults of
its parent library or sublibrary. The CREATE LIBRARY and CREATE
SUBLIBRARY commands have qualifiers that allow you to override
these defaults. See Chapter 5 and the descriptions of these commands
in Appendix A for more information; see also the description of the
ACS SET PRAGMA command, which allows you to change the system
characteristics for existing libraries or sublibraries.

A program library or sublibrary is meant to hold only the files needed for

the program library manager. You should not use it for any other purpose.
For example, you should keep it distinct from any working directory (such
as the current default directory) where you store and edit your source files.

2.1.2 Defining the Current Program Library

The current program library is the target library for compilation and many
ACS commands. To define a library as the current program library, enter the
ACS SET LIBRARY command, specifying the VMS directory specification for
the library as the parameter. For example:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

The program library manager assigns the directory specification provided
in the SET LIBRARY command to the process logical name ADA$LIB. Both
the program library manager and the compiler use that logical name to
maintain the current program library context when performing various
operations.

2-4 Working with VAX Ada Program Libraries and Sublibraries

Note that if you specify an invalid library directory specification, the
program library manager issues a diagnostic message and then sets the
library (and assigns ADA$LIB) to the invalid specification. This behavior is
designed to protect you from incorrectly modifying the wrong library with
subsequent ACS commands.

2.1.3 Identifying the Current Program Library
To identify the current program library, enter the ACS SHOW LIBRARY
command without a parameter. For example:

$ ACS SHOW LIBRARY
%I, Current program library is USER: [JONES.HOTEL.ADALIB]

2.1.4 Obtaining Library Information

To obtain information about the current program library, enter the ACS
SHOW LIBRARY command with one of a number of qualifiers. For ex-
ample, you can use the /FULL qualifier to determine a library’s system
characteristics:

$ ACS SHOW LIBRARY/FULL
%I, Current program library is USER: [JONES.HOTEL.ADALIB]

Program library USER: [JONES.HOTEL.ADALIB]

Created: 13-Apr-1989 15:51, by VAX Ada 2.0
Last reorganized: 16-Apr-1989 13:46

Pragmas that affect STANDARD and SYSTEM:

pragma LONG_FLOAT (G_FLOAT)
pragma MEMORY SIZE (2147483647)
pragma SYSTEM NAME (VAX VMS)

You can also use the /FULL qualifier to determine the parent of a sublibrary.

To obtain information about libraries that are not the current program
library, enter the ACS SHOW LIBRARY command, specifying the libraries
of interest as parameters. For example:

$ ACS SHOW LIBRARY/FULL [JONES.HOTEL.SUBLIB.SUBSUBLIB]
Program library USER:[JONES.HOTEL.SUBLIB.SUBSUBLIB]

Sublibrary
of USER: [JONES.HOTEL.SUBLIB]
of USER: [JONES.HOTEL.ADALIB]

Created: 13-Apr-1989 15:53, by VAX Ada 2.0
Last reorganized: <No reorganization date>

Working with VAX Ada Program Libraries and Sublibraries 2-5

Pragmas that affect STANDARD and SYSTEM:

pragma LONG_FLOAT (G_FLOAT)
pragma MEMORY SIZE (2147483647)
pragma SYSTEM NAME (VAX VMS)

To display the contents of a library, you can use the /UNITS qualifier on
the ACS SHOW LIBRARY command. To display the contents of the current
program library, you can use the ACS DIRECTORY command. The results
of the SHOW LIBRARY/UNITS command and the DIRECTORY command
are the same. However, you can apply the DIRECTORY command only to
the current program library; you can apply the SHOW LIBRARY/UNITS
command to any library. See Section 2.2.2 for more information on the ACS
DIRECTORY command.

2.1.5 Controlling Library Access

The ACS SET LIBRARY command has two qualifiers that allow you to
temporarily control library access:

¢ The /READ_ONLY qualifier temporarily allows you to access libraries in
a read-only manner

* The /EXCLUSIVE qualifier temporarily limits library access to one
process

To use either qualifier, execute the ACS SET LIBRARY command interac-
tively from the program library manager. For example:

ACS> SET LIBRARY/READ ONLY DISK: [SMITH.SHARE.ADALIB]

ACS> SET LIBRARY/EXCLUSIVE [JONES.HOTEL.ADALIB]

When you use these qualifiers, they remain in effect until you exit from the
program library manager or until you execute another ACS SET LIBRARY
command.

The following sections describe the use of these qualifiers in more detail. See
Chapter 5 for information on permanently controlling library access using
file and directory protection mechanisms.

2-6 Working with VAX Ada Program Libraries and Sublibraries

2.1.5.1 Read-Only Access

The /READ_ONLY qualifier to the ACS SET LIBRARY command is use-
ful when you want to limit your access to a library for reading only. For
example, the /READ_ONLY qualifier is useful when you want to protect
yourself from accidentally modifying a library to which you also have write
access. (Read access is also determined by the protection set for the library
directory; see Section 2.1.1 and Chapter 5.)

The /READ_ONLY qualifier has an effect only when you enter the ACS SET
LIBRARY command interactively. After executing the ACS SET LIBRARY
command with the /READ_ONLY qualifier, you have read-only access to
that library until you exit from the program library manager or until you
enter another SET LIBRARY command. Read-only access means that you
can enter only those ACS commands that do not require write access. For

example:

¢ CHECK

¢ DIRECTORY

¢ EXPORT

¢ EXTRACT SOURCE
¢ LINK

* SHOW LIBRARY
¢ SHOW PROGRAM
e SHOW VERSION
* VERIFY

In the following example, the /READ_ONLY qualifier limits the user to
read-only access of a general project library:

ACS> SET LIBRARY/READ_ONLY [PROJ.ADALIB]

%I, Current program library is DISK: [PROJ.ADALIB]
ACS> CHECK HOTEL

%I, All units current, no recompilations required
ACS> EXPORT HOTEL

ACS> EXIT

Working with VAX Ada Program Libraries and Sublibraries 2-7

2.1.5.2 Exclusive Access

When more than one process has both read and write access to a library,
although the library will not be corrupted, there is some risk that it may
be updated in a way that gives unexpected results. For example, a unit
can become obsolete the moment it enters the library because a unit that

it depends on has been simultaneously updated. You can use the ACS SET
LIBRARY/EXCLUSIVE command to make sure that your process is the only
one updating a library at a particular time.

For example, on a multiperson project you can use this command to tem-
porarily protect the project program library while you enter, copy, or link
units from another library:

$ ACS
ACS> CREATE LIBRARY [HOTEL.TEST]

%I, Library DISK: [HOTEL.TEST] created

ACS> SET LIBRARY/EXCLUSIVE [HOTEL.TEST]

$I, Current program library is DISK: [HOTEL.TEST]
. Enter, copy, or link units

ACS> EXIT

The /EXCLUSIVE qualifier is also useful when you are repairing (ACS
VERIFY/REPAIR) or reorganizing (ACS REORGANIZE) a library.

After executing an ACS SET LIBRARY command with the /EXCLUSIVE
qualifier, you have exclusive read and write access to that library until
you exit from the program library manager or until you enter another SET
LIBRARY command. If your process has exclusive access to a library, no
other process can access that library for either reading or writing.

Note that while the /EXCLUSIVE qualifier is in effect, batch jobs (subpro-
cess or your own) will not be able to access the library. In other words, this
qualifier will affect the behavior of any commands (ACS LOAD, COMPILE,
RECOMPILE, and so on) that process in batch mode by default.

You cannot execute the ACS SET LIBRARY command with the /EXCLUSIVE
qualifier while another process is accessing the specified library. You also
cannot use the /EXCLUSIVE qualifier across DECnet.

2.1.6 Deleting a Program Library or Sublibrary

To delete a program library or sublibrary, enter the ACS DELETE LIBRARY
or DELETE SUBLIBRARY command, specifying a VMS directory as a
parameter. The directory you specify must be a VAX Ada library that

was previously created with the ACS CREATE LIBRARY or CREATE
SUBLIBRARY command.

2-8 Working with VAX Ada Program Libraries and Sublibraries

For example:
$ ACS DELETE LIBRARY [JONES.TEMP.ADALIB]

You cannot use the ACS DELETE LIBRARY command to delete a sublibrary;
similarly, you cannot use the ACS DELETE SUBLIBRARY command to
delete a program library.

NOTE

Use the ACS DELETE LIBRARY and DELETE SUBLIBRARY
commands with caution when you have program sublibraries.
A parent library does not contain references to its sublibraries;
therefore, when you delete a program library or sublibrary, you
will not be warned of the existence of any sublibraries.

The effect of either command is to delete the contents of the library. If
there are no more files in the library directory, and if the directory is not
delete protected against the owner, then the directory is also deleted (by
default, the VMS operating system protects a directory against deletion by
its owner). If the directory still contains other files, or if the directory is
delete protected against the owner, then the directory is not deleted. You
must use the DCL DELETE command to first empty and then delete the
directory. If the library directory is delete protected against the owner, you
must use the DCL SET PROTECTION command to change the protection
before you can delete the directory.

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands
cause a library directory to inherit the default system file protection. Both
commands have a /PROTECTION qualifier that allows you to specify the
protection when you create the library or sublibrary (see Chapter 5 for more
information on library protection).

2.2 Unit Operations

The following sections describe a number of unit operations:
* Obtaining information about the units in a library

* Checking units for currency and completeness

¢ Sharing units among different libraries

¢ Putting non-Ada “units” into a library

¢ Deleting units

Working with VAX Ada Program Libraries and Sublibraries 2-9

In general, the effect of these operations on program libraries and subli-
braries is the same. When the effect is different, information is provided, as
appropriate. For a summary of the commands where the effect is different,
see Section 2.3.1.

NOTE

Use only ACS commands (not DCL commands) to manipulate
units in program libraries and sublibraries.

2.2.1 Specifying Units in ACS Commands

ACS commands that operate on compilation units accept one or more unit
names, not file names, as parameters. When you enter ACS commands
involving compilation units, observe the following conventions:

* You can specify a single unit name, or a list of unit names separated by
commas (,). For example:

$ ACS DIRECTORY SCREEN_IO, RESERVATIONS.CANCEL

* You can use the standard VMS wildcard characters in many ACS
commands. The wildcarding rules are similar to those for VMS file
specifications (see the VMS DCL Dictionary). The percent sign (%)
matches any single character in the position that the percent sign
occupies in the unit name. The asterisk (*) matches zero or more
characters in the position that the asterisk occupies in the unit name.
Wildcard matching treats the unit name as a string. In a unit name, the
period character (.) has no special standing as a punctuation character.
For example, the following command displays information about the unit
RESERVATIONS and any of its subunits:

$ ACS DIRECTORY RESERVATIONS*

By default, ACS commands usually operate on groups of related units,
such as the specification and the body (for example, ACS DIRECTORY or
DELETE UNIT) or the execution closure of the specified units (for example,
ACS CHECK). The exact behavior reflects the typical use of the command.

Qualifiers are available to modify the default behavior. For example, the
ACS DELETE UNIT/BODY_ONLY command deletes the body without
affecting the specification; the ACS COPY UNIT/CLOSURE command copies
the closure of the specified units.

2-10 Working with VAX Ada Program Libraries and Sublibraries

Commands that operate on several units provide /[LOG and /CONFIRM
qualifiers. The /LOG qualifier allows you to control whether or not infor-
mation about an operation is displayed when the operation is performed.
The /CONFIRM qualifier allows you to confirm that an operation should be
carried out for one or more units involved in the operation. For example, the
ACS MERGE/LOG command displays a list of the units being merged. The
ACS DELETE UNIT/CONFIRM command asks you for confirmation before
deleting each of the units specified in the command.

2.2.2 Displaying General Unit Information

You enter the ACS DIRECTORY command to list units in the current
program library and display general information about them. The ACS
DIRECTORY command lists compilation units alphabetically by unit name.
Subunit names are expressed using selected component notation. For
example:

$ ACS DIRECTORY *QUEUE, HOTEL, SCREEN_TIO*
. GUEST_QUEUE

package instantiation 15-Apr-1989 15:25 <entered>
QUEUE

generic package 15-Apr-1989 15:25 <entered>

generic package body 15-Apr-1989 15:25 <entered>
HOTEL

procedure body 15-Apr-1989 15:26
SCREEN_IO

package specification 15-Apr-1989 15:25

package body 15-Apr-1989 15:25

SCREEN_IO.INPUT
procedure body 15-Apr-1989 15:25

SCREEN_IO.INPUT.BUFFER
function body 15-Apr-1989 15:25

SCREEN_IO.OUTPUT
procedure body 15-Apr-1989 15:25

Total of 9 units.

As shown in this example, the ACS DIRECTORY command identifies units
by name and by kind (package specification, procedure body, and so on). The
display also shows the date and time of the compilation of each unit, and
identifies entered units.

Working with VAX Ada Program Libraries and Sublibraries 2-11

By using an asterisk wildcard (*) or by omitting its parameter, you can use
the ACS DIRECTORY command to list all of the units that are defined in
the current program library.

By using qualifiers (/BRIEF, /FULL, and /ENTERED), you can control the
level of information displayed.

If the current program library is a sublibrary, the ACS DIRECTORY
command shows only the units in the sublibrary; it does not show units in
any of the parent libraries.

2.2.3 Displaying Dependence and Portability Information

The ACS SHOW PROGRAM command displays information about the
execution closure of a set of compilation units in the current program
library. In particular, the ACS SHOW PROGRAM command displays
information about unit dependences (the use of with clauses), potential
portability: constraints, unit currency, and so on.

Because it displays information about the execution closure of a set of units,
the ACS SHOW PROGRAM command displays information about all of the

relevant units, even if the current program library is a sublibrary and some
of the units are in parent libraries.

The ACS SHOW PROGRAM command lists compilation units alphabetically
by unit name. Subunit names are expressed using selected component
notation. The command has qualifiers (/BRIEF, /FULL, and /PORTABILITY)
that allow you to specify the level of information and the kind of information
to be displayed.

You can use the /BRIEF qualifier with the ACS SHOW PROGRAM command
to limit the display to the following information:

¢ The name of the program and the time the ACS SHOW PROGRAM
command was executed

¢ The name of the library

* The values of pragmas that affect the predefined packages STANDARD
and SYSTEM

* The name and kind of each unit contained in the closure
® The compilation date for each unit in the closure

¢ The directory containing the source file for each unit or the library from
which the unit was entered

2-12 Working with VAX Ada Program Libraries and Sublibraries

For example:

$ ACS SHOW PROGRAM/BRIEF SCREEN_IO

SCREEN_IO
15-Apr-1988 15:26

Program library USER:[JONES.HOTEL.ADALIB]

Created: 15-Apr-1989 14:47, by VAX Ada 2.0
Last reorganized: 15-Apr-1989 15:35

Pragmas that affect STANDARD and SYSTEM:

pragma LONG_FLOAT (G_FLOAT)
pragma MEMORY SIZE (2147483647)
pragma SYSTEM NAME (VAX VMS)

The closure of the specified units is:

I0_EXCEPTIONS
Package specification

Compiled: 13-Apr-1989 23:35
Entered from: SYS$COMMON: [SYSLIB.ADALIB]

SCREEN_IO
Package specification

39 USER: [PROJ])SCREEN_IO_.ADA;1

39 USER: [PROJ]SCREEN_IO.ADA;1

39 USER: [PROJ]SCREEN_IO__INPUT.ADA;1

Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:
Package body
Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:
SCREEN_IO.INPUT
Procedure body
Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:
SCREEN_IO.INPUT.BUFFER
Function body
Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER
SCREEN_IO.OUTPUT
Procedure body
Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER
SYSTEM
Builtin package
TEXT_IO
Package specification
Compiled: 13-Apr-1989 23:37

: [PROJ] SCREEN_IO BUFFER.ADA;1

: [PROJ]SCREEN_IO__ OUTPUT.ADA;1

Entered from: SYS$COMMON: [SYSLIB.ADALIB]

Working with VAX Ada Program Libraries and Sublibraries 2-13

Package body
Compiled: 13-Apr-1989 23:37
Entered from: SYSSCOMMON:[SYSLIB.ADALIB]

You enter the ACS SHOW PROGRAM command with no qualifiers to add
dependence information (with list information) to the display. For example:

$ ACS SHOW PROGRAM SCREEN_IO

SCREEN_IO

Package specification
Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER: [PROJ]SCREEN_IO .ADA;1
Package body
Compiled: 15-Apr-1989 15:25 ,
Source file: 1-Sep-1988 10:39 USER: [PROJ]SCREEN_IO.ADA;1
With list: TEXT_IO

You can use the /PORTABILITY qualifier to display a portability summary
(see Chapter 5 for details on the kinds of information that appear in the
portability summary). For example:

$ ACS SHOW PROGRAM/PORTABILITY SCREEN_IO

SCREEN_IO

Package specification
Compiled: 15-Apr-1989 15:25

Source file: 1-Sep-1988 10:39 USER:[PROJ]SCREEN_IO_.ADA;1
Package body

Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER:[PROJ]SCREEN_IO.ADA;1
With list: TEXT_ IO

PORTABILITY SUMMARY

predefined SHORT_INTEGER or SHORT SHORT INTEGER
SYSTEM spec

with SYSTEM TEXT_IO body

predefined F_FLOAT, D_FLOAT, G_FLOAT or H_FLOAT*
TEXT IO body

enumeration representation clause
SYSTEM spec
TEXT_IO spec

2-14 Working with VAX Ada Program Libraries and Sublibraries

length SIZE representation clause
SYSTEM spec

record representation clause
SYSTEM spec

pragma PACK SYSTEM spec

pragma IMPORT_EXCEPTION*
IO0_EXCEPTIONS spec

pragma IMPORT_FUNCTION* TEXT IO spec

pragma IMPORT_PROCEDURE*
TEXT_IO

pragma INTERFACE TEXT_IO

where * indicates an implementation-defined feature

2.2.4 Checking Unit Currency and Completeness

The VAX Ada compiler processes compilation units in a manner that is
consistent with Ada’s rules. However, observance of the compilation rules
does not ensure that the execution closure of a set of units in a program
library is either complete or current (see Chapter 1 for definitions of closure,
completeness, and currency). For example, a library package body may
still be missing from the program library, or a library specification may
have been modified and compiled more recently than some dependent units,
making the dependent units obsolete and in need of recompilation.

If you try to link a program that has missing or obsolete units, these
errors will be automatically detected, and the operation will be terminated.
Alternatively, you can enter the ACS CHECK command to check the
completeness and currency of the units in your program before you link it.

The ACS CHECK command accepts one or more unit names as parameters,
and then searches the execution closure of the set of units specified for miss-
ing or obsolete units. Because it searches for the execution closure of a set of
units, the ACS CHECK command searches the current program library and
any parent libraries, if the current program library is a sublibrary. Note,
however, that for units specified with wildcards, the ACS CHECK command
searches only the current program library for the specified units.

If the set of units in the closure is both complete and current, the following
message is displayed:

%I, All units current, no recompilations required

Working with VAX Ada Program Libraries and Sublibraries 2-15

If the ACS CHECK command finds that a unit, such as a subunit, is
missing, a message like the following is displayed:

$E, Separate procedure body SCREEN_IO.OUTPUT not found in library
For example, consider the following situation:

¢ The body of RESERVATIONS names SCREEN_IO in a with clause.

¢ The specification of SCREEN_IO has been compiled more recently than
the specification, body, and subunits of RESERVATIONS.

The following ACS CHECK command identifies the obsolete units that need
to be recompiled. Note that because SCREEN_IO is in the execution closure
of RESERVATIONS, the CHECK command also identifies the missing
subunit SCREEN_IO.OUTPUT.

$ ACS CHECK RESERVATIONS

%$E, Separate procedure body SCREEN_IO.OUTPUT not found in
library

$E, Obsolete library units are detected

%I, The following units need to be recompiled:

RESERVATIONS

package specification 15-Apr-1989 15:44

package body 15-Apr-1989 15:44
SCREEN_IO

package body 15-Apr-1989 15:44
SCREEN_IO.INPUT

procedure body 15-Apr-1989 15:44
SCREEN_IO.INPUT.BUFFER

function body 15-Apr-1989 15:44
RESERVATIONS.RESERVE

procedure body 15-Apr-1989 15:44
RESERVATIONS.RESERVE.BILL

procedure body 15-Apr-1989 15:44
RESERVATIONS.CANCEL

procedure body 15-Apr-1989 15:44
%I, The following units have missing subunits:
SCREEN_IO

package body 15-Apr-1989 15:44

You can also use the ACS CHECK command to identify units that depend
on generic bodies. A unit that depends on a generic body must be completed
with the ACS RECOMPILE or COMPILE command under the following
conditions:

¢ After the generic body is first compiled
¢ Whenever the generic body is compiled again

2-16 Working with VAX Ada Program Libraries and Sublibraries

For example, consider the following situation:

¢ The package GUEST_QUEUE is a library instantiation of the generic
package QUEUE.

* The specification of the package QUEUE_MANAGER names GUEST_
QUEUE in a with clause.

If the generic body of package QUEUE is compiled more recently than its
instantiation GUEST_QUEUE, then GUEST_QUEUE becomes incomplete
and must be recompiled:

$ ADA QUEUE_, QUEUE, GUEST_QUEUE, QUEUE_MANAGER_, QUEUE_MANAGER

$ ADA QUEUE
$ ACS CHECK QUEUE_MANAGER

$E, Obsolete library units are detected

%I, The following units need to be completed (use ACS COMPILE or
ACS RECOMPILE) :

GUEST QUEUE
package instantiation 15-Apr-1989 15:43

Note that when GUEST_QUEUE is completed, QUEUE_MANAGER, the
unit that depends on GUEST _QUEUE, does not become obsolete. See

Chapter 3 for more information on generic completions and their effect on
dependent units.

2.2.5 Using Units from Other Program Libraries

The program library manager allows you to use units from other program
libraries either by direct copy or by reference.

The ACS COPY UNIT command allows you to copy one or more units into
the current program library from another library. The ACS ENTER UNIT
command allows you to create a reference from the current program library
to units in another library. The process of entering references to units with
the ACS ENTER UNIT command is called entering units (into the current
program library from another library).

The choice of whether to copy or enter units depends on the circumstances,
as described in the following sections. To use the ACS COPY UNIT or
ENTER UNIT command, you must have read access to the program library

Working with VAX Ada Program Libraries and Sublibraries 2-17

where the unit is stored (see Chapter 5 for more information on library
access and library protection).

2.2.,5.1 Copying Units into the Current Program Library

The ACS COPY UNIT command copies one or more units into the current
program library from another library.

The following example shows the use of the ACS COPY UNIT com-
mand to copy the unit QUEUE_MANAGER from the program library
DISK:[SMITH.SHARE.ADALIB] into the current program library:

$ ACS COPY UNIT DISK:[SMITH.SHARE.ADALIB] QUEUE_MANAGER

For each unit specified, the ACS COPY UNIT command copies the specifica-
tion and body. Units that have been loaded with the ACS LOAD command
or converted with the ACS CONVERT LIBRARY command, but not yet
recompiled, are not copied.

When a unit is copied, information about the external source file associated
with the unit is also copied. This information may affect the behavior of
any subsequent ACS COMPILE commands, if you change the location of the
external source file. Thus, you may need to manage the behavior of the ACS
COMPILE command by taking one of the following actions:

¢ Using the ACS SET SOURCE command to direct the ACS COMPILE
command to the correct location

¢ Using a concealed logical name to refer to the directory containing the
source files and change the meaning of the logical name as necessary.
See Chapter 5 for more information on concealed logical names.

Copied units behave and can be handled as if they had been compiled
directly into the current program library. The ACS COPY UNIT command
has no effect on the program library from which a unit has been copied.

Once a unit has been copied, it is independent of the unit from which it
was copied. The same is not true for a unit that has been entered (see
Section 2.2.5.2). Therefore, if the external unit you need is subject to fre-
quent unexpected changes, you may want to use the ACS COPY UNIT
command, rather than the ACS ENTER UNIT command, to create a stable
local copy and minimize the impact on dependent units. However, when
you use the ACS COPY UNIT command, you must keep track of when the
original unit you copied has been modified.

2-18 Working with VAX Ada Program Libraries and Sublibraries

If you find that the original unit has been revised and compiled again in
its original program library, you can use the ACS COPY UNIT/REPLACE
command to copy the modified version. If you use the ACS COPY UNIT
command without the /REPLACE qualifier in this situation, the program
library manager informs you that the unit already exists in the current
program library and does not replace it.

If the unit you need to copy depends on other units, you can use the
/CLOSURE qualifier to automatically copy the entire execution closure
of the unit into the current program library. If the specified library is a
sublibrary, then all parent libraries are searched for units in the closure.

For example, consider the following situation:

* The package QUEUE_MANAGER names the generic instantiation
GUEST_QUEUE in a with clause.

* The generic instantiation GUEST_QUEUE depends on the generic
package QUEUE.

¢ The units QUEUE_MANAGER, GUEST_QUEUE, and QUEUE have all
been compiled into the program library DISK:[SMITH.SHARE.ADALIB].

The closure of the unit QUEUE_MANAGER includes the units QUEUE_
MANAGER, GUEST _QUEUE, and QUEUE. The following command copies
all of these units into the current program library:

$ ACS COPY UNIT/LOG/CLOSURE DISK: [SMITH.SHARE.ADALIB] QUEUE MANAGER
%I, Generic instantiation GUEST_ QUEUE copied -

%I, Generic package QUEUE copied

%I, Generic package body QUEUE copied

%I, Package specification QUEUE_MANAGER copied

%I, Package body QUEUE_MANAGER copied

Note that the ACS COPY UNIT command makes local copies of units that
have been entered into a given library (see Section 2.2.5.2), as well as
units that have been compiled into a given library. Thus, the result of this
example would have been the same if the unit QUEUE had been entered
into DISK:[SMITH.SHARE.ADALIB] from yet another library, such as
USER:[PROJECT.ADALIB].

2.2,5.2 Entering Units into the Current Program Library

The ACS ENTER UNIT command creates a reference in the current program
library to a unit in another library. Units that have been loaded with the
ACS LOAD command or converted with the ACS CONVERT LIBRARY
command, but not yet recompiled, are not entered.

Working with VAX Ada Program Libraries and Sublibraries 2-19

NOTE

The use of concealed-device logical names and rooted directory
syntax to specify program libraries helps in working with entered
units. See Chapter 5 for more information.

The following example shows the use of the ACS ENTER UNIT command to
enter the unit QUEUE_MANAGER into the current program library from
DISK:[SMITH.SHARE.ADALIB]I:

$ ACS ENTER UNIT DISK: [SMITH.SHARE.ADALIB] QUEUE_MANAGER

For each unit specified, the ACS ENTER UNIT command enters a reference
to the specification and a reference to the body. The ACS ENTER UNIT
command has no effect on the library from which units have been entered.

You can determine which units are entered in the current program library
by using the ACS DIRECTORY command. For example:

$STANDARD
package specification 17-Feb-1983 00:00 <entered>

AUX_IO_EXCEPTIONS

package specification 13-Apr-1989 23:36 <entered>
CALENDAR

package specification 13-Apr-1989 23:51 <entered>

package body 13-Apr-1989 23:52 <entered>
CDD_TYPES

package specification 13-Apr-1989 23:52 <entered>

You can also identify entered units by using the ACS SHOW PROGRAM
command.

An example of entered units is the set of VAX Ada predefined units
(STANDARD, SYSTEM, TEXT_IO, STARLET, and so on) that are en-
tered into any newly created program library. The predefined units are
entered from the program library on your system denoted by the logical
name ADA$PREDEFINED.

If an entered unit is subsequently compiled in its original program library,
any reference to that unit from another library is made obsolete. You cannot
use the entered unit until you have reentered it using the ACS ENTER
UNIT/REPLACE or ACS REENTER command. In contrast, compiling a
unit that has been copied has no effect on the copies. Therefore, you may

2-20 Working with VAX Ada Program Libraries and Sublibraries

want to use the ACS COPY UNIT command rather than the ACS ENTER
UNIT command if the external unit is subject to frequent changes; see
Section 2.2.5.1.

The ACS ENTER UNIT command is particularly useful for units that need
to be used by several program libraries. You may want to share units for
two reasons:

¢ Maintaining one master copy of a shared unit (or a set of shared units)
conserves disk space.

¢ If an entered unit is modified and compiled again in its original library,
all references to that unit from other libraries are made obsolete (the
program library manager issues appropriate messages when you try
to use the entered unit). Thus, you are assured that a revision to an
entered unit is automatically detected in all libraries that share that
unit.

The ACS CHECK, COMPILE, LINK, and RECOMPILE commands automat-
ically warn you of any obsolete references to units that have been entered
into the current program library. For example, consider the following
situation:

¢ The main program, HOTEL, depends on the package RESERVATIONS.

* The specification of RESERVATIONS depends on the package SCREEN_
10, which has been entered from the library USER:[PROJECT.ADALIB].

¢ The body of RESERVATIONS depends on the package QUEUE_
MANAGER, which has been entered from the library
DISK:[SMITH.SHARE.ADALIB].

¢ Both SCREEN_IO and QUEUE_MANAGER have been modified and
compiled more recently than HOTEL and RESERVATIONS.

When the main program HOTEL is linked, the program library manager
issues the following messages:

$ ACS LINK HOTEL

%E, package specification SCREEN_IO has been recompiled in
USER: [PROJECT.ADALIB] and must be reentered

%E, package body SCREEN_IO has been recompiled in
USER: [PROJECT.ADALIB] and must be reentered

%$E, package specification QUEUE_MANAGER has been recompiled in
DISK: [SMITH.SHARE.ADALIB] and must be reentered

%E, package body QUEUE_MANAGER has been recompiled in
DISK: [SMITH.SHARE.ADALIB] and must be reentered

Working with VAX Ada Program Libraries and Sublibraries 2-21

These messages identify the entered units that need to be reentered to
make their references current and usable. These units must be reentered
before the obsolete dependent units in the current program library can be
recompiled.

You can reenter units using either the ACS ENTER UNIT/REPLACE
command or the ACS REENTER command. Use the ACS ENTER
UNIT/REPLACE command when you need to reenter one or more units
from one library; use the ACS REENTER command when you need to
reenter a number of units from a number of libraries.

For example, you can use the ACS REENTER command with the asterisk
wildcard character (*) to make current all obsolete references in your
current program library, regardless of whether or not the references are to
more than one other library:

$ ACS REENTER/LOG *

oe

I, Package specification $STANDARD entered

%I, Package specification AUX IO _EXCEPTIONS entered
$I, Package specification CALENDAR entered

%I, Package body CALENDAR entered

%I, Package specification CDD_TYPES entered

%I, Package specification CLI entered

%I, Package specification CONDITION_ HANDLING entered
%I, Package specification CONTROL C_INTERCEPTION entered
%I, Generic package DIRECT_IO entered

%I, Generic package body DIRECT_IO entered)

%1, Package specification DIRECT_MIXED_ IO entered
%I, Package body DIRECT MIXED IO entered

%I, Package specification QUEUE_MANAGER entered
%1, Package body QUEUE_MANAGER entered

%I, Package specification SCREEN_IO entered

%I, Package body SCREEN_IO entered

The units reentered in this example are from the libraries ADA$PREDEFINED,
USER:[PROJECT.ADALIB], and DISK:[SMITH.SHARE.ADALIB].

After the obsolete entered units have been reentered, the remaining obsolete
units can be recompiled in the current program library, using the ACS
RECOMPILE command. By specifying HOTEL as the parameter to the
ACS RECOMPILE command, all obsolete units in the closure of HOTEL are

2-22 Working with VAX Ada Program Libraries and Sublibraries

recompiled. (See Chapter 3 for more information on recompilation and the
ACS RECOMPILE command.)

$ ACS RECOMPILE HOTEL

The program HOTEL can now be linked.

2.2.6 Introducing Foreign (Non-Ada) Code into a Library

When you are working with mixed-language programs, you can use the ACS
COPY FOREIGN and ENTER FOREIGN commands to introduce linkable
non-Ada code into the current program library. You can then use ACS
commands to manipulate the resulting units as though they were VAX Ada
units.

The ACS COPY FOREIGN command copies a foreign object file into the
current program library. The ACS ENTER FOREIGN command enters

a reference to an external file into the current program library. An en-
tered foreign file may be an object file, object library, shareable image
library, shareable image, or linker options file. The /[LIBRARY, /OBJECT,
/OPTIONS, and /SHAREABLE qualifiers to the ACS ENTER FOREIGN
command specify the kind of file you are entering; the default is an object
file.

Before copying or entering a foreign file, you must create an Ada specifica-
tion for it and compile that specification into the library. You then copy or
enter the foreign file as a library body—that is, the body of a library package
specification, library procedure specification, or library function specification.
Note that compiling the specification of a unit that has a foreign body does
not cause the body to become obsolete.

When you write a subprogram (procedure or function) specification that
will have a foreign body, you must use the pragma INTERFACE and
(optionally) a VAX Ada import pragma. See Chapter 4 for examples of
linking; see the VAX Ada Run-Time Reference Manual for examples of
writing mixed-language programs.

The ACS COPY FOREIGN and ENTER FOREIGN commands provide useful
mechanisms for importing package bodies. In the following example, the
body for IMPORTED_BODY is written in VAX Pascal. Note the use of the
INITIALIZE attribute with the declaration of the Pascal procedure; without
it the package body code is never “elaborated” and the variable Total never
receives the value it is assigned in Procedure Pas_Body.

Working with VAX Ada Program Libraries and Sublibraries 2-23

-~ Ada package specification.
package IMPORTED_ BODY is

TOTAL: FLOAT;

pragma IMPORT_ OBJECT (TOTAL) ;
end IMPORTED BODY;

{ Pascal body. }

Module Pas_Body;
VAR
Total: [GLOBAL]REAL;

[INITIALIZE] Procedure Pas_Body;

CONST
Rate = 0.06;
VAR
Amt, Tax: REAL;
BEGIN
Amt := 5.0;
Tax := Amt * Rate;
Total := Tax + Amt;
END;
END.

~- Ada main program.

with IMPORTED_BODY; use IMPORTED_ BODY;
with FLOAT TEXT IO; use FLOAT TEXT IO;
procedure PRINT TOTAL is
begin

PUT (Total);
end PRINT TOTAL;

You would compile the Ada and Pascal code in this example using the VAX
Ada and VAX Pascal compilers, and then you would either copy or enter the
resulting Pascal object file into the current program library. For example:

$ ACS ENTER FOREIGN PAS_BODY IMPORTED_ BODY

Now, because the Pascal module Pas_Body is known to the current program
library as the body of the Ada package IMPORTED_BODY, the Ada pro-
cedure PRINT TOTAL can be linked using the ACS LINK command. See
Chapter 4 for more information on linking mixed-language programs.

2-24 Working with VAX Ada Program Libraries and Sublibraries

2.2.7 Deleting Units from the Current Program Library

You enter the ACS DELETE UNIT command to delete one or more units
from the current program library. For each unit name specified, the ACS
DELETE UNIT command deletes the specification and body. For example:

$ ACS DELETE UNIT/LOG SCREEN_IO
%I, Package specification SCREEN_IO deleted
%1, Package body SCREEN_IO deleted

This command is used in the same way regardless of whether a unit was
compiled, copied, or entered into the library. The ACS DELETE UNIT
command operates only on the current program library and has no effect on
any other library.

If you want to delete only the body of a specified unit, you can use the
/BODY_ONLY qualifier with the ACS DELETE UNIT command. In this
case, the specification is not deleted. Thus, you can use the /BODY_ONLY
qualifier to delete a package body for a package that has been redefined so
that it no longer needs a body. For example:

$ ACS DELETE UNIT/BODY_ONLY/LOG SCREEN_IO
%I, Package body SCREEN IO deleted
$ ACS DIRECTORY SCREEN_TO
SCREEN_IO
package specification 15-Apr-1988 16:19

Total of 1 unit.

If you want to delete one or more entered units, you can use the /ENTERED
qualifier with the ACS DELETE UNIT command. For example, the
following command deletes all of the units entered from the library
[SMITH.SHARE.ADALIB]:

$ ACS DELETE UNIT/LOG/NOLOCAL/ENTERED=[SMITH.SHARE.ADALIB] *
%I, Package instantiation GUEST QUEUE deleted

%I, Generic package QUEUE deleted

%I, Generic package body QUEUE deleted

%I, Package specification QUEUE_MANAGER deleted

%I, Package body QUEUE_MANAGER deleted

Note that in this case, the /NOLOCAL qualifier is also required to prevent
the local (nonentered) units from also being deleted (/LOCAL is the default).

Working with VAX Ada Program Libraries and Sublibraries 2-25

2.3 Using Program Sublibraries

Although a single program library is useful in many software project
situations, it may prove unwieldy when used for a system with many
components or many developers. For example, every time a compilation
unit is compiled, it is redefined in its program library, and the previous
versions are discarded. Any errors introduced during the modification
immediately affect dependent units. Moreover, if the modified unit is a
library specification, all dependent units must be recompiled. Program

sublibraries alleviate these problems by allowing you to isolate a collection
of units while they are being developed or maintained.

The following sections give more detail on how to use sublibraries. The
techniques discussed in these sections can be used with a project of any size.
See Chapter 5 for information related to choosing a particular sublibrary
configuration.

2.3.1

Using ACS Commands with Program Sublibraries

When using ACS commands with sublibraries, note the following points:

The ACS CHECK, COMPILE, COPY FOREIGN, ENTER FOREIGN,

EXPORT, EXTRACT SOURCE, LINK, RECOMPILE, and SHOW

PROGRAM commands search the entire library hierarchy, starting with
the crurent program library and working up through its parents to the
root or ancestor parent library, for all units specified as parameters to
the command using names that do not involve wildcard characters.

For units selected with names that have wildcard characters, only the
current program library is searched. The ACS LINK/MAIN (the default)
and EXPORT/MAIN commands do not accept names with wildcard
characters, However, the ACS LINK/NOMAIN and EXPORT/NOMAIN
(the default) do accept names with wildcard characters.

The ACS COPY UNIT, DELETE UNIT, DIRECTORY, ENTER UNIT,
MERGE, and REENTER commands search only the current program
library for the specified units, irrespective of wildcards.

The ACS CHECK, COMPILE, COPY UNIT/CLOSURE, ENTER
UNIT/CLOSURE, EXPORT, LINK, RECOMPILE, and SHOW
PROGRAM commands, which operate on the execution closure of

the units specifie<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>