
VAX Ada

Developing Ada Programs on VMS Systems

Order Number: AA—EF86B-TE

Developing Ada Programs on VMS
Systems

Order Number: AA-EF86B-TE

May 1989

This manual describes how to compile, link, execute, and debug VAX Ada programs.
It describes the use of the VAX Ada compiler, VAX Ada program library manager, and
VMS Debugger.

Revision/Update Information: This revised manual supersedes Developing Ada
Programs on VAX/VMS (Order No. AA-EF86A-—TE)

Operating System and Version: VMSVersion 5.0 or higher

Software Version: VAX Ada Version 2.0

v
TESTING PROCEDURES

digital equipment corporation
maynard, massachusetts

February 1985
Revised, May 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appearin this document.

The software described in this document is furnished undera license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use orreliability of software on equipment that is
not supplied by Digital Equipment Corporation orits affiliated companies.

© Digital Equipment Corporation 1985,1989.

Ail Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-—1 EduSystem RT
DEC IAS ULTRIX
DEC/CMS MASSBUS UNIBUS
DEC/MMS PDP VAX
DECmate PDT VAxXcluster
DECnet P/OS VAXELN
DECsystem—10 Professional VMS
DECSYSTEM-20 Q—-bus VT
DECUS Rainbow Work Processor

DECwriter RSTS
DIBOL RSX PASHGeo

ZK3294

Contents

Preface .. 0.1...eeee ee ee ee eee eens xvii

New and Changed Features 0... cece eee eee tee ee eee Xxi

Chapter 1 Introduction to the VAX Ada Program Development Environment

1.1 Getting Started with VAX Ada ce eee ees 1-2

1.1.1 Creating a Working Directory and Defining a Current Default
Directory. 2... eeee et ee ee eee 1—5

1.1.2 Creating a Source File .. 2... ... cee ee ee ee ee eee 1-5

1.1.3 Creating a Program Library 0c eee eee eee 1-6

1.1.4 Defining the Current Program LibraryShee 1-7

1.1.5 Compiling the Program 1... ee ee ee ee ns 1-7

1.1.6 Displaying Unit Information 0.2 ee eee eee ee 1-9

1.1.7 Linking the Program 2.2... eee ee ee ee eee 1-9

1.1.8 Executing the Program 2... 2... eee eee eee eee 1—10

1.1.9 Debugging the Program 0. eee eee ee eee 1-10

1.1.10 Compiling and Recompiling a Modified Program 1-11

1.2 Using the VAX Ada Program Library Manager.................. 1-12

1.2.1 Overview of ACS Commands.............00 eee eeeee 1-12

1.2.2 Entering ACS Commands 0.2.0 cece ee eens 1-16

1.2.3 Exiting from the Program Library Manager and Interrupting ACS
Commandsee et ew ee eee ee ene 1-17

1.2.4 Defining Synonyms for ACS Commands 1-17

1.2.5 Using DCL Commands with Program Libraries 1-18

1.3 Concepts and Terminology 00. eee ee eee tees 1-18

1.3.1 Program and Compilation Units 1-19
1.3.1.1 Compilation Unit Dependences.............. 1-20
1.3.1.2 Current and Obsolete Units 1-20
1.3.1.3 Unit and File-Name Conventions 1-21

1.3.2 Order-of-Compilation Rules-..200 000% 1-23

1.3.3 Closure 2...eeee eee 1-24

Chapter 2 Working with VAX Ada Program Libraries and Sublibraries

2.1 Program Library and Sublibrary Operations 2-2

2.1.1 Creating a Program Library or Sublibrary.............. . 2-3

2.1.2 Defining the Current Program Library 2-4

2.1.3 Identifying the Current Program Library 2-5

2.1.4 Obtaining Library Information00008 2-5

2.1.5 Controlling Library Accesseens 2-6
| 2.1.5.1 Read-Only Access0 2. eee eens 2-7

2.1.5.2 Exclusive ACCe€SS 0... e eee eee 2-8

2.1.6 _ Deleting a Program Library or Sublibrary 2-8

2.2 Unit Operations0.0 0... 0... ceeeeee 2-9

2.2.1 Specifying Units in ACS Commands 2-10

2.2.2 Displaying General Unit Informationeae 2—11

2.2.3 Displaying Dependence and Portability Information 2-12

2.2.4 Checking Unit Currency and Completeness 2-15

2.2.5 Using Units from Other Program Libraries 2-17
2.2.5.1 Copying Units into the Current Program Library .. 2-18
2.2.5.2 Entering Units into the Current Program Library . . 2-19

2.2.6 Introducing Foreign (Non-Ada) Code into a Library 2-23

2.2.7 Deleting Units from the Current Program Library.......... 2-25

2.3 Using Program Sublibraries 20.0... 0... cee eee 2-26

2.3.1 Using ACS Commands with Program Sublibraries 2-26

2.3.2 Creating a Nested Sublibrary Structure 2-27

2.3.3 Changing the Parent of a Sublibrary 2-28

2.3.4 Merging Modified Units into the Parent Library 2-29

2.3.5 Modifying and Testing Units in a Sublibrary Environment 2-30

Chapter 3 Compiling and Recompiling VAX Ada Programs

3.1 Compiling Units into a Program Library...................... 3-3

3.2 Recompiling Obsolete Unitseee eeeeeeae | 3-6

3.3 Completing Incomplete Generic Instantiations 3-9

3.4 Compiling a Modified Program 02200 eee 3-13

3.5 Forcing the Compilation or Recompilation of
aSetof Units 0.0.0...eee 3-14

3.6 Using Search Lists for External Source Filesee eee 3-15

3.7 Choosing Optimization Options 00000 ee 3-16

3.8 Processing and Output Options02008] 3-18

3.8.1 Executing Compilations in Batch Mode 3-18

3.8.2 Saving the Load or Compiler Command File 3-19

3.8.3 Loading Units and Executing Compilations in a Subprocess . . 3-20

3.8.4 Conventions for Defaults, Symbols, and Logical Names 3-20

3.8.5 Directing Program Library Manager and Compiler Output 3-21

3.9 Compiler Diagnostic Messageseee ee ee eee ee eee 3—2 1

3.9.1 Diagnostic Messages and Their Severity 3-22

3.9.2 Informational Messages and the /[NOJWARNINGS Qualifier . . 3-24

3.9.3 Setting Compiler Error Limits0.-00008 3-25

3.10 Compiler Listing Format........... 0.0... 0... 2c eee eee es 3-25

Chapter 4 Linking Programs

4.1 Linking Programs Having Only VAX Ada Units 4-2

4.2 Linking Mixed-Language Programs2005% 4-2

4.2.1 Using the ACS COPY FOREIGN and ENTER FOREIGN
Commands 2.0... cee ee ee eee eee 4-3

4.2.2 Using the ACS LINK Command-05. 4-6

4.2.3 Using the ACS EXPORT and DCL LINK Commands 4-7

4.3 Processing and Output Options 2.000002 ee 4-9

4.3.1 Conventions for Defaults, Symbols, and Logical Names 4—10

4.3.2 Executing the Link Operation in a Subprocessor in Batch
Mode...ceeeeeee 4-10

4.3.3 Saving the Linker Command File and Package Elaboration
File 2...eeeee 4—11

Chapter 5 Managing Program Development

5.1 Decomposing Your Program for Efficient Development 5—1

5.2 Setting up an Efficient Program Library Structure............... 5-6

5.3 Integration with Other VAX Tools................ 020000 eee 5-10

5.3.1 Setting up Source Code Directories044 5—10

5.3.2 Managing Source Code Modifications 5-12

5.4 System Considerations0..... 0.2 0cee es 5-15

5.5 Distributed Programming Considerations 5-15

5.5.1 Configuring a Library Structure Across DECnet........... 5-16

5.5.2 Accessing a Program Library Across DECnet............ 5-18

5.5.3 Achieving Efficient DECnet Access to Program Libraries..... 5-19

5.5.4 Effect of Network Failures 2.02022 ee eee 5-20

5.5.5 Restrictions on Using Program Libraries Across DECnet 5—20

5.6 Protecting Program Libraries 0.2.0.2. eee eee 5-21

5.6.1 Program-Library Access Requirements for ACS Commands .. 5-21

5.6.2 Standard User-Identification-Code (UIC) Based Program
Library Protection... .. 2.2... 0.0.00. eee ee ene 5-23

5.6.3 Program Library Protection Through Access Control Lists... . 5-26

5.7 Maintaining Program Libraries................. 0.008000 000 5-27

5.7.1 Making References to Program Libraries independent of
Specific Devices and Directories................-006- 5-28
5.7.1.1 Using Concealed-Device Logical Names 5-28
5.7.1.2 Using Rooted Directory Syntax.............. 5-29

5.7.2 Copying Program Libraries 002 e eens 5-29

5.7.3 Backing Up and Restoring Program Libraries 5-30

5.7.4 Reorganizing Program Libraries000 00 5-32

5.7.5 Verifying and Repairing Program Libraries 5-32

5.7.6 Recompiling Units After a New Release or Update of VAX
Ada...eeeee es 5-36

5.8 Working with Multiple Targets 0... 00.0. eee ene 5-37

vi

5.8.1 Determining VAX Ada Program Portability 5-37
5.8.1.1 Factors Affecting Portabiliy:........... 5-38
5.8.1.2 Features Listed in the Portability Summary...... 5-39

5.8.2 Setting the System Name 0. eee eee 5-43

Chapter 6 Debugging VAX Ada Programs

6.1 VMS Debugger Overview 0. cee eee ee eens 6-2

6.2 Getting Started with the Debugger.................. 0.0002 6-3

6.2.1 Compiling and Linking a Program to Prepare for Debugging . . 6—4

6.2.2 Starting and Ending a Debugging Session 6-5

6.2.3 Entering Debugger Commands...............220000- 6-7

6.2.4 Viewing Your Source Code 0c ce eee 6-8
6.2.4.1 Noscreen Mode.............. 0 eee eens 6-8
6.2.4.2 Screen Mode 0. cee eee eee eee 6-10
6.2.4.3 Source Code Display Considerations.......... 6-12

6.3 Controlling and Monitoring Program Execution................. 6-13

6.3.1 Starting and Resuming Program Execution.............. 6-14
6.3.1.1 The GO Command............ 0.0.0. 6-14
6.3.1.2 The STEP Command2008% 6-15

6.3.2 Determining Where Execution is Suspended............. 6-16

6.3.3 Suspending Program Execution0000 eee 6-17

6.3.4 Tracing Program Execution 0... 0.0... eee ees 6-20

6.3.5 Monitoring Changes in Variables..................... 6-21

6.3.6 Debugging Ada Library Packages.............. 000005 6-24
6.3.7 Monitoring Ada Exceptions 0002s 6-25

6.3.7.1 Monitoring Any Exception 6-26
6.3.7.2 Monitoring Specific Exceptions 6-27
6.3.7.3 Monitoring Handled Exceptions and Exception

Handlerscceee ne 6-28

6.4 Examining and Manipulating Data00005 6-30

6.4.1 Displaying the Values of Variables 6-30

6.4.2 Changing the Values of Variables 0000s 6-32

6.4.3 Current, Previous, and Next Locations............ees 6-33

6.4.4 Evaluating Expressions 000 ce eee ee ee eee 6-33

6.4.5 Debugger Support for VAX Ada Data 6-34
6.4.5.1 Ada Names. 0... cee ee ee 6-35
6.4.5.2 Ada Language Expressions 6-38

6.4.6 Special EXAMINE, DEPOSIT, and EVALUATE Options...... 6-40
6.4.6.1 Specifying Data Type and Radix............. 6-40
6.4.6.2 Obtaining Virtual Addresses................ 6-41

vil

6-42

6.4.7 Ada Data Types—Debugging Examples................
6.4.7.1 Scalar Types.............00000.eee 6-43
6.4.7.2 Array TypeS 2.0.00 eee eee ee eee. 6—46
6.4.7.3 Record Types-..-00--Dee eee 6-49
6.4.7.4 Access Types Lee ne eee ene eae 6-51

6.5 Controlling Symbol References 0.00000 eue 6—55

6.5.1 Creating Symbol Information for the Debugger De eee eee 6-56

6.5.2 Module Setting 0... 0. eee ee eee 6-57
6.5.2.1 Dynamic and Related Module Setting 6—57
6.5.2.2 The SHOW MODULE Command 6-59
6.5.2.3 The SHOW MODULE/RELATED Command 6-60
6.5.2.4 The SET MODULE Command 6-62
6.5.2.5 The CANCEL MODULE Command........... 6-63

6.5.3 Resolving Multiply-Defined Symbolseee 6-65
6.5.3.1 Scope ceee ee es 6-66
6.5.3.2 Path Name Conventions05. 6—66
6.5.3.3 Symbol Lookup Conventions 6-68
6.5.3.4 Using the SHOW SYMBOL Command and Path

Names to Specify Symbols Uniquely.......... 6—69
6.5.3.5 Using the SET SCOPE Commandto Specify a

- Symbol Search Scope000005 6-71
— ~6.5.4 Resolving Overloaded Names and Symbolsre 6-73

6.6 Supplementary Debugger Features0 00 eee 6-75

6.6.1 Logging a Debugging Session intoaFile............... 6-76

6.6.2 Invoking an Editor from the Debugger 6—76

6.6.3 Using a DebuggerInitialization File................... 6-77

6.6.4 Using Command Procedures to Control Debugging
SESSIONS 1...eeeee eens 6-78

6.6.5 The CALL Command 0... eee eee eee 6-79

6.7 Sample Debugging Session 20... 0.0. cee ee ee eee 6-80

Chapter 7 Debugging VAX Ada Tasks

7.1 A Sample Tasking Program..................020 00 ees eae 7-2

7.2 Referring to Tasks in Debugger Commands 7-7

7.2.1 Ada Language Expressions for Tasks 7-7

7.2.2 Task ID (%TASK).. 0...eee 7-9

vill

7.2.3 Pseudotask Names 2.0000 eee eee eee eae 7-10
7.2.3.1 Active Task (%ACTIVE_TASK) 7-10
7.2.3.2 Visible Task (%VISIBLE_TASK) Lee 7-11
7.2.3.3 Next Task (YNEXT_TASK) 7-11
7.2.3.4 Caller Task (%CALLER_TASK)......... wea 7-12

7.2.4 Debugger Support of Ada Task Attributes............... 7-12

7.3 Displaying Task Information (SHOW TASK) 7-13

7.3.1 Displaying Basic Information on All Tasks 7-13

7.3.2 Selecting Tasks for DisplayLee ee eee 7-16
7.3.2.1 Task List...ne 7-17
7.3.2.2 Task-Selection Qualifiers20-- 7-17
7.3.2.3 Task List and Task Selection Qualifiers 7-18

7.3.3 Obtaining Additional Information0.--- 7-18

14 Examining and Manipulating Tasks Vee eee 7-22

7.5 Changing Task Characteristics (SET TASK) 7-23

7.6 Setting Breakpoints and Tracepoints see 7-25

| 7.6.1 Task-Specific and Task-Independent Debugger Eventpoints. . . 7-25

7.6.2 Task Bodies, Entry Calls, and Accept Statements 7-27

7.6.3 Monitoring Ada Task Events2. 200s 7-29

77 Additional Task-Debugging Topics...................0000 ee 7-35

| 7.7.1 Debugging Programs with Deadlock 7-35

7.7.2. Debugging Programsthat Use Time Slicing 7-36

(72.7.3 Using CTRL/Y when Debugging Tasks 7-37
7.7.4 Automatic Stack Checking in the Debugger 7-37

Appendix A ACS Command Dictionary
($) ADA ee ee eeeee ee ee eee eens A-3

ATTACH... 0...eeee ene ee teens ~A-15
CHECK 0...cceeeee eee nee A-17

COMPILE... 0.0...eeene A-20

CONVERT LIBRARYeeeee ee nee A-39

COPY FOREIGN 2.0.00 eee ee eee eee A-44

COPY UNITLe ee eee eee wee eaewan A-46

CREATE LIBRARY... 0.0 ccc eee ee ee esLee A-51

CREATE SUBLIBRARY 0. cee eee ee ee eee A-55

DELETE LIBRARY.......Leee eee ee eens A-59

DELETE SUBLIBRARY............. 0.0.00. cee eee eee ee eens A-62

DELETE UNIT... . 2...eeeee A-65

DIRECTORY .. 1... 0... cccneeee eens A-70

ENTER FOREIGN 0.0.00 ccc eee eee ee tenes A-75

ENTER UNIT 0... 0. ccceee nee A-78

EXIT2.eeee eee eee A-83

EXPORT 0...cceeeee eee A-84

EXTRACT SOURCE... 1.1... ... ccee ee eee A-88

HELP...eeeee eee eee A-92

aA-94

LOAD 1.1...neeeens A-107

MERGE ... 2...eeeee eens A-120

RECOMPILE... 2... 0...eeeeens A-124

REENTER eee ee ee neeeee A-143

REORGANIZE... 2...eeeeens A-147

SET LIBRARY... 2... cee ee eee ees A-150

SET PRAGMA.........0. 00 ceeeeeee eee A-154

SET SOURCE... 1.1...eeene A-156

SHOW LIBRARY 0.0.eeeee A-158

SHOW PROGRAM.......... 0.00. eee ee eee A-162

SHOW SOURCE 1...eenee A-168

SHOW VERSION........0.0.0 000.ceeee A-169

SPAWN .. 0.0...ceeeee A-170

VERIFY 2.0...cceeee ee ene A-172

Appendix B Debugger Command Summary

B.1 Starting and Terminating a Debugging Session B-1

B.2 Controlling and Monitoring Program Execution................. B-2

B.3 Examining and Manipulating Data B-2

B.4 Controlling Type Selection and Symbolization B-3

B.5 Controlling Symbol Lookup............. 2... .. 0.00 eee eens B-3

B.6 Displaying Source Code 0... 0c cee ee ees B-4

B.7 Using Screen Mode 0... cccees B-4

B.8 Editing Source Code0 000 eeeeee eae. B-5

B.9 Defining Symbols0... 0... 00 ce ee ees B-5

B.10 Using Keypad Mode 0.0 ee eee B-5

B.11 Using Command Procedures and Log Files B-6

B.12 Using Control Structures 0.0... 0... cee ee es B-6

B.13 Additional Commands 2.00. cece eee ne B-7

Appendix C Using VAX Ada with the VAX Language-Sensitive Editor and
Source Code Analyzer

C.1 Using VAX Ada with LSE 0... 0... 0...ns C1

C.1.1 Starting and Ending an Editing Sesssion C-2

C.1.2 Obtaining Help 0... cee eee ee eee C-2

C.1.3 Entering Source Code Using Tokens and Placeholders C-3

C.1.4 Compiling and Reviewing Source Code C-5

C.1.5 Sample LSE Session 00.0 cee eee ee eee C—8

C.2 Using VAX Ada with SCA 2.0...ee C-17

C.2.1 Setting Up an SCA Environment................0005- C-18
C.2.1.1 Creating an SCA Library4.4. C-19
C.2.1.2 Generating Data Analysis Files C-19
C.2.1.3 Loading Data Analysis Files into a Local Library . . C-20

C.2.2 Using SCA for Cross-Referencing................+--- C-—20
C.2.2.1 Finding Files heees C-21
C.2.2.2 Finding Ada Symbols005. C-21
C.2.2.2.1 Declarations 2.00.0 e eee eee C-—22
C.2.2.2.2 References 0000s C-23
C.2.2.2.3 Symbol Classes...............20 0005. C—24

C.2.3 Navigating Through Ada Source Code................. C—26

C.2.4 Using SCAfor Static Analysis 00008. C27

C.2.5 Multimodular Development................220 0200 C-28

C.2.6 Additional Ada-Specific SCA Considerations............. C-28
C.2.6.1 Library Differences000000- C-30
C.2.6.2 Ada-Related Effects and Restrictions.......... C-31

Appendix D_ Program Library and Sublibrary Structure and Contents

XI

Appendix E Efficient Compilation

E.1 Memory Usage..........eeee eee eeekee E—1

E.1.1 Working SetS 2... ec ee ee ees E-1
E.1.1.1 Effect of Working Set on Paging Rate......... E-3
E.1.1.2 Effect of Working Set on Compilation Rate...... E-3
E.1.1.3 Suggestions for Controlling Working Set Sizes ... E-5

E.1.2 Virtual Address SpaceLecce eee e eens E-7

E.2 Resource Requirements0.. 0.0.0 eee eee eee | E-7

E.2.1 ASTLM—AST Queue Limit Parameter................. E-8

E.2.2 ENQLM—Enqueue Quota Parameter E-9

E.2.3 FiLLM—OpenFile Limit Parameter..............0005. E-9
E.2.4 PRCLM—Subprocess Creation Limit Parameter E-10

E.2.5 TQELM—Timer Queue Entry Limit Parameter............ E-10

E.2.6 Virtual Memory Usage eee eee eee E-10
E.2.6.1 VIRTUALPAGECNT—Maximum Numberof Virtual

Pages Parameter.............. dee eee E-11
E.2.6.2 PGFLQUOTA—Paging File Quota Parameter E-11
E.2.6.3 System Paging File2-00- E-11
E.2.6.4 WSQUOTA and WSEXTENT—Working Set Quota

and Extent Parameters- -E-12
E.2.6.5 Batch Queue Parameters--. E-13
E.2.6.6 WSMAX—Working Set Maximum Number of Pages

Parameter .. 0.0... 00 cece eee eee eee E-13

E.2.7 Program Library Networking Effects-. E-13

E.2.8 Channel Count Parameters 0000 eee E-14

Appendix F Compile-Time Diagnostic Messages

F.1 Diagnostic Message Format 0.00. cee eee eee F—1

F.2 Diagnostic Message Severity Codes0000.% F—2

F.3 VAX Ada Compiler Informational Messages F—2

F.4 VAX Ada Compiler Diagnostic Messages F-3

Xil

Appendix G ACS Diagnostic Messages

G.1__ Diagnostic Message Format Lenten eee. G-1

G.2 Diagnostic Message Severity Codes 0002 eee G-2

G.3 ACS Diagnostic Messages 2.2... eee eee eee G-2

Appendix H Run-Time Diagnostic Messages

H.1 Diagnostic Message Format 0.0.0.0 H-1

H.2 Diagnostic Message Severity Codes-005. H-2

H.3 VAX Ada Run-Time Diagnostic Messages..................... H-2

Appendix | Reporting Problems

Index

Examples

3-1 sample VAX Ada Compiler Listing 0... 000 eee eee 3-27

5-1 Decomposed Stack Application 2... 0.2 eee es 5-3

5-2 Command Procedure for Doing LSE Ada Compilations in Batch Mode .. . 5-12

7-1 Procedure TASK_EXAMPLE 0.000 e eee ee eee 7-2

7-2 Sample DebuggerInitialization File for VAX Ada Tasking Programs 7-34

C-1 Complete Ada Program Developed Using LSE C-9

Figures

1 Figure Conventions 0.2.0. cee ee ee eee XX

1-1 Dependences Among the Hotel Reservation Program Compilation Units . . 1-3

1-2 source Files for the Hotel Reservation Program0... 1-4

1-3 Directory Structure for the Hotel Reservation Program 1-6

1-4 Sample Compilation Units Used to Show Closure 1-26

2-1 Simple Nested Sublibrary Structure...................Le eee 2-28

Xill

2-2 Sublibrary Configuration for the HOTEL Program 2-31

5—1 Diagram of Decomposed Stack Application-.. 5-6

5-2 Efficient Program Library and Sublibrary Structure................. 5-8

5-3 Ada Program Library and Sublibrary Structure with CMS Libraries 5—11

5-4 DECnet Program Library Configuration-..0202005 5-17

6-1 Debugger Keypad Key Functions 02.02 e eee eee 6-9

6-2 Access Objects in Virtual Memory..............2.-.220 00-2 eee 6-52

6-3 Depositing to Access Object Components--00200- 6-54

7-1 Task State Transitions... 0.0...eeeee 7-15

7-2 Diagram of a Task Stack... 0...ee 7-21

C1 Using LSE and SCA for Multimodular Development................ C-29

D-1 Current Default Directory and Current Program Library After
Compilation. 2.0...eeeeee ene D-4

D-2 Compilation Units as Entries in the Library Index File............... D—5

E—1 Page Faults Versus Working Set Size2-.--000% E-—4

E-2 Compilation Rate Versus Working Set Size 0.00 eee E-6

Tables

1-1 ACS Program Library Management Commands-. 1-13

1-2 Compilation, Linking, and Execution Commands 1-15

1-3 Additional ACS Commands 0. cece eee eee 1-16

1-4 Conventions for Naming VAX Ada Source Files0.. 1-22

3-1. Summary Comparison of the DCL ADA and ACS LOAD, RECOMPILE, and
COMPILE Commands........... 2... 00 eee eee ee eee eee 3-2

3-2 Comparison of the DCL ADA and ACS LOAD Commands 3-4

3-3 Differences Between ACS RECOMPILE and COMPILE in Recompiling
Obsolete Units..............eeeee ee eee 3-7

5—1 Program Library Access Needed to Use ACS Commands............ 5-22

5-2 Minimum UIC Protection for Each Kind of Library Access 5-25

5-3 Features or Constructs that May Appearin a Portability Summary 5—40

6-1 Debugger Exception Symbols 2... eee eee eee 6-28

6-2 Exception-Related VAX Ada Event Names0000 eae 6-29

6-3 Debugger Support for Ada Names 0.0... ce eee nes 6-35

6—4 Debugger Support for Ada Predefined Attributes 6-37

6-5 Debugger Support for Ada Language Expressions................. 6-38

6-6 Debugger Support for Ada Predefined Operators.................. 6-39

7-1 Task StateS. 6...eeeee eee ne 7-14

7-2 Task SubstateS 2.0... 0.2... .cceee ns 7-15

XIV

C-—5

E-1

SHOW TASK Command Qualifiers for Task-Selection

SHOW TASK Command Qualifiers for Information Selection

SET TASK Command Qualifiers 0... 2.2.0 2020 20 eee

VAX Ada Event Names......... 0... eee ee ee ee ee

Kinds of Deadlock and Debugger Commandsfor Diagnosing Them

VAX LSE Commandsfor Manipulating Tokens and Placeholders

VAX LSE Commands for Compiling a Program and Reviewing Errors... .

VAX LSE Commandsfor Making SCA Queries4..

Ada Constructs Associated with SCA PRIMARY and

ASSOCIATED Keywords 0.00. cece ee ee eee

Comparison of SCA and ACSLibrary Characteristics...............

Description of Test Programs 2... 00 cee ee ee eee

XV

Preface

This manual describes how to compile, link, execute, and debug VAX Ada

programs. It describes the use of the VAX Ada compiler, VAX Ada program
library manager, and VMS Debugger.

Intended Audience

This manual is intended for any programmer who needs information on
compiling, linking, executing, and debugging VAX Ada programs. The
reader should have a working knowledge of Ada, the Digital Command
Language (DCL), and DCL commandprocedures. Experience with compiling
and linking another VMS-supported languageis helpful.

Structure of This Document

This manual has seven chapters and nine appendixes. Thefirst chapter
provides introductory material on VAX Ada and the VAX Ada programming
environment. The remaining chapters discuss in detail how to compile,
link, execute, and debug VAX Ada programs and use the VAX Ada program
library manager.

The appendixes provide reference information on ACS commands, debugger
commands, using VAX Ada with the VAX Language-Sensitive Editor (LSE)
and VAX Source Code Analyzer (SCA), memory usage, diagnostic messages,
and problem reporting.

XVvil

Associated Documents

For more information on the VAX Ada language, see the VAXAda Language
Reference Manual; for more information on implementation details of VAX
Ada in the context of the VMSoperating system, see the VAXAda Run-
Time Reference Manual. You should have all or most of the VMS system
documentation available for reference.

The following Ada textbooks maybeof interest:

e Barnes, J.G.P. Programming in Ada. Reading, Massachusetts: Addison-
Wesley, second edition, 1984.

¢ Booch, Grady. Software Components with Ada: Structures, Tools
and Subsystems. Menlo Park, California: The Benjamin/Cummings
Publishing Company, Inc., 1987.

¢ Booch, Grady. Software Engineering with Ada. Menlo Park, California:
The Benjamin/Cummings Publishing Company, Inc., second edition,
1987.

¢ Cherry, G.W. Parallel Programming in ANSI Standard Ada. Reston,
Virginia: Reston Publishing Company, Inc., 1984.

¢ Gehani, Narain. Ada, Concurrent Programming. Englewood Cliffs, New
Jersey: Prentice Hall, Inc., 1984.

¢ Habermann, A.N., and D.E. Perry. Ada for the Experienced Programmer.
Reading, Massachusetts: Addison-Wesley, 1983.

¢ Weiner, Richard, and Richard Sincovec. Programming in Ada. New

York: John Wiley & Sons, 1983.

Conventions

Convention Meaning

A symbol with a one- to six-character abbre-

XViil

viation indicates that you press a key on the
terminal, for example, [RETURN].

The phrase CTRL/x indicates that you must
press the key labeled CTRL while you simul-
taneously press another key, for example,
CTRL/C, CTRL/Y, CTRL/O.

Convention Meaning

$ SHOW TIME
05-JUN-1988 11:55:22

file-spec, ...

task

type_name

[expression]

{, mechanism_name}

quotation marks
apostrophes

Interactive examples showall output lines
or prompting characters that the system
prints or displays in black. All user-entered
commands are shownin red.

A horizontal ellipsis in an Ada example or
figure indicates that not all of the statements
are shown.

A vertical ellipsis in an interactive figure
or example indicates that not all of the
commandsand responses are shown.

A horizontal ellipsis following a parameter,
option, or value in syntax descriptions indi-
cates that additional parameters, options, or
values can be entered.

Boldface indicates Ada reserved words.

Italicized words in syntax descriptions indi-
cate descriptive prefixes that are intended to
give additional semantic information rather
than to define a separate syntactic category.

Square brackets indicate that the enclosed
item is optional. (However, square brackets
are not optional in the syntax of a directory
namein file specification.)

Braces in Ada syntax indicate that the en-
closed item can be repeated zero or more
times. Braces in debugger command syntax
enclose lists from which you must choose one
item.

The term “quotation marks”is used to refer
to double quotation marks ("). The term
“apostrophe”is used to refer to a single
quotation mark (’).

Figure 1 explains the shapes and conventions usedin figures that diagram
Ada programs.

xix

Figure 1: Figure Conventions

NONGENERIC GENERIC GENERIC
COMPILATION UNITS COMPILATION UNITS INSTANTIATIONS

Package units and subunits Packageunits Package units

package A is generic package D is

tee package C is pon--4 newcC...

LenecilenaJ peewee
| a1

package body package body

Ais... C... is

separate (A)

package body

Bis...

Subprogram units and subunits Subprogram units Subprogram units
(proceduresor functions)(proceduresorfunctions) (proceduresorfunctions)

function A; 7 generic
cae | function C; : function D Is

! . a newC...
Lo-------,--.4 roo--- 1

['
--d-.-.~-----! I

function A is function C is
a

CONVENTIONS:

Arrows point from dependentunits to the units on which
they depend.

Heavy lines indicate relative importance; primary dependence
relationships, specifications, main subprograms, and so on.

Generic instantiations looklike nongeneric units, butwill
always depend on the generic units from which they are
derived.

separate (A)

function B is

Task subunits

separate (A)

task body is

ZK-0827A-GE

XX

New and Changed Features

For this release, this manual has been reorganized, information has been

clarified and corrected, and examples have been added.

This version of the manualalso discusses the following features, which have
been added or changed since VAX Ada Version 1.0:

By default, the completion of a generic instantiation no longer causes
units that depend on the unit containing the incomplete instantiation to
becomeobsolete. (You can revert to the Version 1 behavior by using the
pragma INLINE_GENERICorby specifying the equivalent /OPTIMIZE
qualifier options at compilation time.)

The ACS COMPILE commandhas changed; when recompiling obsolete
units or completing incomplete generic units it now looks for external
source files first, and uses copied source files only when external source
files are not available.

The default job name for the ACS COMPILE, LINK/NOMAIN,and

RECOMPILE commandshas changed. If you have not specified a job
name with the /NAMEqualifier to these commands, the program library
manager creates a name comprising upto thefirst 39 characters of the
first unit specified in the command. Previously, the program library
manager created a name usingthefirst unit compiled.

If the first unit specified contains a wildcard character, then the default
namefor the job is ACS_COMPILE, ACS_LINK, or ACS_RECOMPILE,

as appropriate.

This new behavior also applies to the new ACS LOAD command;

however, because the ACS LOAD commandaccepts file names, not unit

names, the program library manager creates a namefrom thefirstfile
specified in the command.

Xxi

XXil

The ACS COPY UNIT, ENTER UNIT, DELETE UNIT, and MERGE
commands apply only to the specification and body of the specified units;
they no longer automatically apply to subunits of the specified units.

The ACS MERGE command nowchecksfor a more recent external

source file for a unit in the parent library with the same name as a
unit in the sublibrary. This check is done to prevent units in the parent

library from being overwritten by units from the sublibrary if the parent
units come from more recent external sourcefiles.

Whenyou specify an invalid directory specification with the ACS SET
LIBRARY command, the program library manager now setsthe library
to whatever you specified. This effect prevents you from incorrectly
modifying the wronglibrary.

The output from the ACS SHOW LIBRARY/FULL and SHOW
PROGRAM commandshas been enhanced.

An ACS LOAD commandhas been added. It processes units in the
specified source files, and puts them into the current program library as
obsolete units. This commandis useful for putting a set of units into a
library for the first time, especially if you do not know the compilation
order. It is also useful for adding units to an existing program.

The ACS CONVERT LIBRARY, REORGANIZE, and SHOW VERSION

commands have been added.

A /BATCH_LOG qualifier has been added to the ACS COMPILE,
RECOMPILE, and LINK commands. The new ACS LOAD command

also has a /BATCH_LOGqualifier.

The /BODY qualifier to the ACS COMPILE and RECOMPILE commands
has been deleted. In its place is a new /FORCE_BODYqualifier,
which provides the capability of the former combination of /BODY and
/NODATE_CHECKqualifiers.

The /BODYqualifier to the ACS DELETE UNIT command has been
renamed /BODY_ONLY. A similar /BODY_ONLYqualifier has been

added to the ACS COPY UNIT, DIRECTORY, ENTER UNIT, EXTRACT

SOURCE, MERGE, REENTER, and SHOW LIBRARY/UNITS

commands.

The behavior of the /COMMAND qualifier to the ACS COMPILE,
RECOMPILE, or LINK/NOMAIN commandhas been corrected and
changed. If you do not specify a file name with this qualifer, the
program library manager creates a name comprising upto thefirst 39
characters of the first unit specified in the command. Previously, the
program library manager created a name using the nameofthefirst
unit compiled.

If the first unit specified contains a wildcard character, then the default
namefor the commandfile is ACS_COMPILE, ACS_RECOMPILE,or

ACS_LINK, as appropriate

This new behavior also applies to the /COMMAND qualifier to the new
ACS LOAD command.

The /[NOJENTERED qualifier to the ACS DIRECTORY command
now allows you to optionally specify a program library. A similar
/LNOJENTERED qualifier has been added to the ACS COPY UNIT,
DELETE UNIT, ENTER UNIT, EXTRACT SOURCE, MERGE,and
SHOW LIBRARY/UNITS commands. A similar /ENTEREDqualifier has
been added to the ACS REENTER command.

The behavior of the /[NOJERROR_LIMIT qualifier to the DCL ADA and
ACS COMPILE and RECOMPILE commands has changed. When the
error limit is reached within a compilation unit, compilation of that unit
is terminated, but compilation of subsequent units continues. Previously,
the first unit that reached the error limit caused the entire compilation
to terminate.

This new behavior also applies to the /[NOJERROR_LIMIT qualifier to

the new ACS LOAD command.

A /LOAD qualifier has been added to the DCL ADA command.

A /[NOJLOCAL qualifier has been added to the ACS COPY UNIT,
DELETE UNIT, DIRECTORY, ENTER UNIT, EXTRACT SOURCE,
MERGE, and SHOW LIBRARY/UNITS commands. It controls whether

local units (those units that were added to the library by a compilation
or a COPY UNIT command) areselected for the given operation. Note
that when you specify the /LOCAL qualifier, entered units are selected
unless the /NOENTERqualifier is also in effect (the defaults for these
commands are /LOCAL and /ENTERED).

An /INCLUDEqualifier has been added to the ACS LINK command.

The behavior of the /OPTIMIZE qualifier for the compilation commands
has changed, and a new setof qualifier options has been added
(DEVELOPMENT, INLINE, SHARE,and so on). These options allow
you to control subprogram and generic inline expansion, as well as
generic code sharing, in the code generated for your program by the
compiler.

An /OBJECT qualifier has been added to the ACS ENTER FOREIGN

command.

A /PRELOAD qualifier has been added to the ACS COMPILE and
RECOMPILE commands.

xxiii

XXIV

The /SHOW=PORTABILITY option is the default when you specify
the /LIST qualifier with the DCL ADA and ACS COMPILE and
RECOMPILE commands.

A /SPECIFICATION_ONLY qualifier has been added to the ACS

COMPILE, COPY UNIT, DELETE UNIT, DIRECTORY, ENTER

UNIT, EXTRACT SOURCE, MERGE, RECOMPILE, and REENTER

commands.

The behavior of the /SYNTAX_ONLY qualifier to the DCL ADA command
has changed. It now updates the program library with successfully

syntax-checked units. Previously, it processed the specified files, but did

not update the library. You can prevent the /SYNTAX_ONLYqualifier
from updating the library by also specifying the new /NOLOAD qualifier.

A /USERLIBRARYqualifier has been added to the ACS LINK command.

When an ACS COMPILE/WAIT, RECOMPILE/WAIT, LOAD/WAIT,
LINK, or LINK/WAIT commandis entered, the subprocess generated to
execute the compiler or linker commandfile inherits all process logical
names.

Program libraries can be accessed across DECnet.

Error messages have been been revised and improved.

Messages about incomplete generic units are now status-level
messages. To see them during compilation, you need to use the
/WARNINGS=(STATUS:TERMINAL) qualifier on your compilation
command.

By default, the debugger obtains the displayed Ada source code from
either copied sourcefiles or external source files, depending on whether
or not the units were compiled with the /COPY_SOURCEqualifier
(the /COPY_SOURCEqualifier is the default for all of the VAX Ada
compilation commands).

The debugger uses Ada unit-namerather than file-name conventions
in symbol names and path names. However, specifications are still

distinguished from bodies by an appended underscore.

The debugger SHOW TASK/STATISTICS command nolonger reports
statistics on locks. |

Support for the VAX Source Code Analyzer (SCA) has been added. An
/ANALYSIS_DATA qualifier can be specified with any of the compilation
commands (DCL ADA and ACS COMPILE and RECOMPILE)to produce
data analysis files for SCA. A predefined library of data analysis files
is provided for the VAX Ada predefined units (the units in the library
ADA$PREDEFINED); this library has the logical name ADA$SCA_
PREDEFINED.

e The built-in predefined units (package STANDARD, package SYSTEM,
procedure UNCHECKED_DEALLOCATION,function UNCHECKED_

CONVERSION,and so on) are visible units in the library of predefined
units (ADA$PREDEFINED).

¢ VAXELNis a possible system choice for the /SYSTEM_NAME qualifiers
to the ACS CREATE LIBRARY, CREATE SUBLIBRARY, EXPORT,
LINK, and SET PRAGMA commands.

e The package VAXELN_SERVICESis part of the set of VAX Ada
predefined packages, andis a visible unit in the library of predefined
units (ADA$PREDEFINED).

XXV

Chapter 1

Introduction to the VAX Ada Program
Development Environment

The Ada programming language is a general-purpose, block-structured
language. Adais strongly typed, supports the abstraction of data and
algorithms, promotes modular programming, provides for exact or
approximate numerical calculations, and supports concurrency. Thus, Ada
is well-suited for writing and maintaining large, complex systems that may
include real-time or concurrent operations.

VAX Ada implements the American National Standards Institute (ANSI)
and International Standards Organization (ISO) standard Ada programming
language on the VMSoperating system. Where allowed by the standard,
VAX Ada also implements features designed to make programmingin the
VMS environment convenient andefficient.

The environment for developing VAX Ada programsconsists of the set of
tools and utilities provided by VAX Ada and the VMSoperating system, plus
any optional layered products you have installed on your system.

VAX Ada provides a program library manager, which is also the user
interface to the VAX Ada compiler and the VMSLinker(linker). The VMS
operating system provides the VMS Debugger (debugger) and a choice of
text editors. Someof the optional layered products that you can install for
use in developing VAX Ada programsare:

e The VAX Language-Sensitive Editor (LSE)

e The VAX DEC/Code Management System (CMS)

¢ The VAX DEC/Test Manager

e The VAX Performance and Coverage Analyzer (PCA)

¢ The VAX Source Code Analyzer (SCA)

e Various VAX Information Architecture products

Introduction to the VAX Ada Program Development Environment 1-1

VAX Ada is an integral part of the development environment for VAXELN
Ada, which allows Ada programs to be developed on a VMS system and run

on a VAXELNtarget. VAX Adais also related to XD Ada, a family of VMS
cross-compilers that produce Ada code for a number of non-VAX targets. See
the VAXELNAda User’s Manual for more information on VAXELN Ada. See
the XD Ada documentation for more information on XD Ada.

This chapter provides a step-by-step tutorial on developing Ada programs.
This chapter also provides an overview of the program library manager

and its command language, and explains the VAX Ada conventions and
terminology related to compiling, linking, and managing program libraries.

1.1 Getting Started with VAX Ada

When you develop a VAX Ada program, you perform the following steps:

1. Create a working directory for your Ada source files, and define a
current default directory for operations such as editing, debugging, and
SO on.

Create Ada sourcefiles for all of the compilation units in your program.

Create a program library.

A
w
o

Define a current program library for operations such as compilation,
recompilation, and so on.

Compile the program into the current program library.

Link the program.

Execute the program.

Debug the program,if necessary.

so
O
N
D

OK

Go back to step 5, and compile the program again if debugging has

resulted in modifications to any of the sourcefiles.

The following sections explain these steps using an example program. The
program, a hotel reservation system, consists of a main program named
HOTEL and a library package named RESERVATIONS. The program has
three compilation units:

¢ The specification of the library package RESERVATIONS

¢ The body of the library package RESERVATIONS

e The procedure body HOTEL, which namesthe library package
RESERVATIONSin a with clause

1-2 Introduction to the VAX Ada Program Development Environment

Figure 1-1 shows the dependences among these compilation units. The
dependencesaffect the order in which the compilation units can be compiled,
and determine how the units must be recompiled as units are modified,
compiled again, and so on. In Figure 1-1, arrows point from dependent
units to the units they dependon.

Figure 1-1: Dependences Amongthe Hotel Reservation Program
Compilation Units

package

RESERVATIONS

A , |

package body

RESERVATIONS

procedure

HOTEL

Figure 1—2 showsthe sourcefiles and the relevant fragments of the compila-
tion units for the example program. Note the following points:

ZK-6743-GE

e Each compilation unit is in a separate sourcefile.

e The nameof each sourcefile matches the name of the compilation unit it
- contains. Specifications and bodies share the same unit name. However,

the nameof the sourcefile for the package specification has a trailing
underscore character (RESERVATIONS_.ADA)to distinguish it from

the source file for the package body (RESERVATIONS.ADA). (These
file-name conventions are also used by the VAX Ada program library
manager and the VMS Debugger.)

Introduction to the VAX Ada Program Development Environment 1-3

e The working directory and current default directory are the VMS direc-
tory [JONES.HOTEL].

e The program library is the VMS directory [JONES.HOTEL.ADALIB]
(in this case a subdirectory of the working directory and current default
directory).

Figure 1-2: Source Files for the Hotel Reservation Program

USER: [JONES.HOTELJRESERVATIONS_.ADA

package RESERVATIONSis

end RESERVATIONS:

USER: [JONES.HOTELJRESERVATIONS.ADA

package body RESERVATIONSis

end RESERVATIONS:

USER: [JONES.HOTELJHOTEL.ADA

with RESERVATIONS;
procedure HOTELis

 end HOTEL;

ZK-3090-GE

1—4 Introduction to the VAX Ada Program Development Environment

1.1.1. Creating a Working Directory and Defining a Current Default
Directory

Thefirst steps in developing a VAX Ada program are to create a working
directory and define a current default directory. You create a working
directory by entering the DCL CREATE/DIRECTORY command. You define
a current default directory by entering the DCL SET DEFAULT command.
For example:

$ CREATE/DIRECTORY [JONES.HOTEL]
§ SET DEFAULT [JONES.HOTEL]

The working directory is the directory that contains your sourcefiles; the

current default directory is the target directory for DCL commands(such as
text-editing commands) and for someof the files produced during program
development. As shown in the preceding example, these directories are
usually the same.

1.1.2 Creating a Source File

You create an Ada source file in your working directory by using a text
editor. For example:

$ EDIT HOTEL.ADA

This command invokes VAX EDT, the VMS default editor. EDT is one of two
interactive text editors available with the VMS operating system. The other
VMSeditor is the Extensible VAX Editor (EVE), which is an interface to the
VAX Text Processing Utility (VAXTPU).

You can also use the VAX Language-Sensitive Editor (LSE) to create
Ada source files. LSE is an optional, multilanguage text editor designed
specifically for software development. LSE provides formatted language
templates to help you construct syntactically correct Ada source code, and
allows you to compile, review, and correct compilation errors from within
the editor. VAXTPUis part of and accessible from LSE. LSE is integrated
with the VAX Source Code Analyzer (SCA) and VAX DEC/Code Management
System (CMS). See Appendix C for Ada-specific information on LSE and for
an example of using LSE to develop an Ada program.

For further information on the available text editors, see the following
manuals:

¢ Guide to VMS Text Processing—provides tutorial information on the
EDT editor, EVE editor, and Digital Standard Runoff (DSR)

Introduction to the VAX Ada Program Development Environment 1—5

¢ VAXEDT Reference Manual—provides comprehensive reference informa-
tion on the EDT editor

¢ VAX Text Processing Utility Manual—provides comprehensive reference

information on VAXTPU and EVE

¢ Guide to VAX Language-Sensitive Editor and VAX Source Code
Analyzer—provides tutorial and reference information on LSE

1.1.3. Creating a Program Library

To compile or link an Ada program, you must have a program library. A
program library is a special VMSdirectory that you create with the ACS
CREATE LIBRARY command, specifying the nameof the directory as a
parameter. For example:

S ACS CREATE LIBRARY [JONES.HOTEL.ADALIB]

The program library holds the products of VAX Ada compilations (object files
and so on), and is used by the program library manager to keep track of
compilation units. You should not use it for any purpose other than the one
for which it was designed; for example, do not use it to store Ada sourcefiles
or other files that have not been created by the program library manager.

Figure 1—3 showsthe directory structure for the hotel reservation program.

In this case, the program library [JONES.HOTEL.ADALIB] is a subdirectory
of the working directory that contains the sourcefiles.

Figure 1-3: Directory Structure for the Hotel Reservation Program

[JONES] Main directory

[JONES.HOTEL] Working directory and
: current default directory

[JONES.HOTEL.ADALIB] Program library

ZK-3091-GE

1-6 Introduction to the VAX Ada Program Development Environment

VAX Adaalso allows you to create one or more program sublibraries. See
Chapters 2 and 5 for more information on using sublibraries.

1.1.4 Defining the Current Program Library

To use a program library for a compilation, you must first define it as the
current program library. You define a current program library by entering
the ACS SET LIBRARY command, specifying the name of the program
library as the parameter. For example:

S$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

The current program library is the library to which compiler and ACS
commandoperations apply. As such, the current program library is also the
context for any units that are compiled or linked. For example, when the
unit HOTEL is compiled, the compiler searches the current program library
for the specification of the unit RESERVATIONS, because HOTEL mentions
RESERVATIONSin a with clause.

The ACS SET LIBRARY commandallows you to change the definition of the
current program library from one library to another.

When working with several program libraries, you can determine which
library is the current program library with the ACS SHOW LIBRARY
command. For example:

S$ ACS SHOW LIBRARY

6I, Current program library is USER: [JONES.HOTEL.ADALIB]

1.1.5 Compiling the Program

To compile VAX Ada compilation units, enter either the DCL ADA com-
mand or the ACS LOAD and COMPILE commands. The ADA and LOAD
commands take one or more Ada source file names as parameters; the
COMPILE command takes one or more Ada compilation unit names as
parameters.

For example, the following ADA command compilesthefiles for the units
RESERVATIONS and HOTEL. Because the ADA command assumes a .ADA
file type by default, the file type is omitted.

S$ ADA RESERVATIONS_, RESERVATIONS, HOTEL

Introduction to the VAX Ada Program Development Environment 1-7

Similarly, the following ACS LOAD and COMPILE commands compile the
samesetoffiles (again, .ADA is the default file type):

° ACS LOAD RESERVATIONS*, HOTEL
S ACS COMPILE HOTEL

Each time a compilation is successful, the program library is updated with
information about the compilation units, as well as with files that are
products of the compilation (object files and so on). One difference between
the DCL ADA and ACS LOAD commandsis that the ADA commandfully
compiles the units it processes; the LOAD commandonly partially compiles
the units it processes. After entering an ACS LOAD command, you must
subsequently enter an ACS COMPILE or RECOMPILE commandto finish
the processing.

For the ADA or LOAD commandto execute successfully, you must have
satisfied the following prerequisites:

e Defined a current default directory for your Ada source files (see
Section 1.1.1)

¢ Created and set a current program library for the products of compila-
tion (see Section 1.1.3)

For the ADA commandto execute successfully, you must also have specified
the files so that the units contained in the files are compiled in the correct
order. The ACS LOAD commandprocesses the units contained in the source
files in any order, so it does not have this requirement.

You can determine the order of compilation by following the Ada rules for
dependences among compilation units. For example, the order of compilation
for the three compilation units of the hotel reservation program is as follows:

¢ The specification of RESERVATIONS must be compiled before the main
procedure HOTEL because HOTEL names RESERVATIONSin a with
clause.

e Thespecification of RESERVATIONS must be compiled before its body.

e The procedure HOTEL and the body of RESERVATIONS may be
compiled in either order once the specification of RESERVATIONS has
been compiled.

See Section 1.3.2 and the VAXAda Language Reference Manual for more
information on Ada order-of-compilation rules.

1-8 Introduction to the VAX Ada Program Development Environment

1.1.6 Displaying Unit Information

To display the contents of your program library, enter the ACS DIRECTORY
command, specifying zero or more unit names as parameters. For example:

S$ ACS DIRECTORY HOTEL, RESERVATIONS

HOTEL

procedure body 15-Apr-1989 14:53

RESERVATIONS |
package specification 15-Apr-1989 14:52
package body 15-Apr-1989 14:51

Total of 3 units.

The ACS DIRECTORY commandidentifies all compilation units that are
part of the program library. Compilation units are listed alphabetically by
unit name, and the date and time of the most recent compilation is given for
each unit.

You can obtain information on how portable your program is by using the
/PORTABILITY qualifier with the ACS SHOW PROGRAM command.

1.1.7 Linking the Program

Once you have compiledall of the units of a program into the current

program library, you link the program by entering the ACS LINK command
(not the DCL LINK command). You specify the unit name (not the file name)
of the main program unit as the parameter. For example:

S$ ACS LINK HOTEL

The ACS LINK command invokes the VAX Ada program library manager,
which serves as the interface to the VMS Linker and performsthe following
link-related operations:

e Checks that a complete set of units exists for the unit specified (the main
program), and thatall of the units are current

e Ifthe set of units is complete and current (see Sections 1.3.1.2 and
1.3.3), generates a temporary commandfile for the linker

e Invokes the linker

Introduction to the VAX Ada Program Development Environment 1-9

The linker uses the information in the commandfile to link the appro-
priate object modules and produces an executable imagefile (.EXE) with
the same name as the main program. This image file is stored in your

current default directory (not the current program library). Thus, in the
example hotel reservation program, the resulting executable imagefile,
HOTEL.EXE,is in the directory [JONES.HOTEL], not in the directory

(JONES.HOTEL.ADALIB].

1.1.8 Executing the Program

To execute a successfully linked program, enter the DCL RUN command,
specifying the name of the executable imagefile as the parameter. For
example:

$ RUN HOTEL

Because the DCL RUN command assumesa .EXE file type by default, you
can omit thefile type of the executable image when you enter the DCL RUN
command, as shownin this example.

1.1.9 Debugging the Program

If you expect to encounter run-time errors or need to check your Ada
program as it is running, you can compile and link the program so thatit
will run under the control of the VMS Debugger when you execute the DCL
RUN command. While you are executing your program under debugger
control, you can set breakpoints, watchpoints, tracepoints, examine the
contents of variables, control the operation of tasks, and so on (see
Chapters 6 and7).

The following commands show how the example hotel reservation program
is compiled and linked for execution under debugger control. Because the
/DEBUG qualifier is a default qualifier for the DCL ADA command,it is not
shown here.

s ADA HOTEL
$ ACS LINK/DEBUG HOTEL
¢ RUN HOTEL

VAX DEBUG Version 5.0-00

SDEBUG-I-INITIAL, language is ADA, module set to HOTEL
SDEBUG-I-NOTATAMAIN, type GO to get to start of main program

DBG>

1-10 Introduction to the VAX Ada Program Development Environment

Once you are in the debugger, you can obtain help on any of the debugger’s
features by typing the HELP commandat the debugger prompt (DBG>). You
can exit from the debugger at any time with the debugger EXIT command.

If you have compiled and linked a program with the /DEBUGqualifiers,
and want to execute it without debugger control, you can enter the DCL
RUN/NODEBUG command,asfollows:

S$ RUN/NODEBUG HOTEL

1.1.10 Compiling and Recompiling a Modified Program

If your program has been compiled once and then modified, you can compile
it again by entering the DCL ADA commandasdescribed in Section 1.1.5.
Alternatively, you can use the ACS COMPILE command. If the compilation
order of the units in the program has not changed, enter the ACS COMPILE
command,specifying the unit name of the main pfogram. For example:

S ACS COMPILE HOTEL

The ACS COMPILE commandfinds all of the compilation units that are
required for the execution of the unit specified, automatically compiles any
source files that have been modified, and recompiles any units that are made
obsolete or incomplete by the compilation. (See Section 1.3.1.2 for more
information on obsolete units, incomplete units, and recompilation.)

If you expect that the compilation order has changed, you can use the
/PRELOAD qualifier with the ACS COMPILE command. You can add new
units to an existing set of units by first compiling them into the library with
the ADA commandor loading them into the library with the ACS LOAD

command, and then entering the ACS COMPILE/PRELOAD command.

If you have a set of units that have not been modified but are obsolete
because a unit that they depend on has changed, you can recompile them
using the ADA command, or you can use either the ACS RECOMPILEor
COMPILE command. For example:

S ACS RECOMPILE HOTEL

The COMPILE or RECOMPILE commandfindsall of the compilation units
that are required for the execution of the unit specified, and recompiles any

obsolete or incomplete units.

By entering the COMPILE and RECOMPILE commandswith the
/NODATE_CHECK qualifier, you can use them to force the compilation
or recompilation of a set of units.

Introduction to the VAX Ada Program Development Environment 1-11

Like the DCL ADA command, the ACS COMPILE and RECOMPILE

commands assume the /DEBUG qualifier by default.

See Chapter 3 for more information on using the ACS COMPILE and
RECOMPILE commands.

1.2 Using the VAX Ada Program Library Manager

The VAX Ada program library manageris an interactive utility with DCL-
like commands—ACS commands—that you enter to perform a variety of
functions. The program library manager handlesall of the program library
operations associated with Ada compilation units and automates manyof
those functions for you. The program library manager also provides much of
the user interface to the VAX Ada compiler and VMSLinker.

This section gives an overview of the ACS commands, and discusses the
following topics:

e Entering ACS commands

e Exiting from the program library manager and interrupting ACS

commands

e Defining synonyms for ACS commands

¢ Using DCL commandswith program libraries

1.2.1 Overview of ACS Commands

ACS commands provide program library management, compilation, and
linking operations. These operations are summarized in this section as
follows:

e¢ Table 1-1 summarizes program library management commands. (See
Chapters 2 and 5 for more information on program library management.)

¢ Table 1-2 summarizes compilation and linking commands. (See
Chapter 3 for more information on compilation; see Chapter 4 for
more information on linking.)

e Table 1-3 summarizes additional ACS commandsthat are useful in the

VMSenvironment.

Appendix A of this manualis a dictionary of all of the ACS commands. It
provides details on the format, parameters, and qualifiers for each command.
The same information is provided on line when you type ACS HELPat the
DCL prompt ($).

1-12 Introduction to the VAX Ada Program Development Environment

NOTE

For completeness, the DCL ADA and DCL RUN commands are
included in these tables. These are the only non-ACS commands
presented.

Table 1-1: ACS Program Library Management Commands

Command Function

CHECK Forms the execution closure’ of one or more compiled
units, and checks the completeness and currency of the
units in the closure.

CONVERT LIBRARY Converts a VAX Ada Version 1.n program library to a VAX
Ada Version 2.0 program library.

COPY FOREIGN Copies a foreign (non-Ada) object file into the current
program library as a library unit body.

COPY UNIT Copies a compiled unit from one program library to the
current program library.

CREATE LIBRARY Creates a VAX Ada program library.

CREATE SUBLIBRARY Creates a VAX Ada program sublibrary, which allows you

DELETE LIBRARY

DELETE SUBLIBRARY

DELETE UNIT

DIRECTORY

ENTER FOREIGN

ENTER UNIT

to isolate the development of selected units.

Deletes a program library and its contents.

Deletes a program sublibrary andits contents.

Deletes one or more compiled units from the current
program library.

Lists the units in the current program library. Displays
information, such as the name and date-time of the

last compilation, about one or more units in the current
program library.

Enters a reference (pointer) from the current program
library to an external file as a foreign (non-Ada) library
body.

Enters a reference (pointer) from the current program
library to a unit that has been compiled into another
program library. “Entered” units can be used in the
current program library as if they were actually in it.

1In simple terms, execution closure is the complete set of units that a given unit depends on,
plus any other units needed for its execution. Currency and closure are discussed in Sections
1.3.1.2 and 1.3.3, respectively.

(continued on next page)

Introduction to the VAX Ada Program Development Environment 1-13

Table 1—1 (Cont.): ACS Program Library Management Commands

Command Function

EXPORT Creates an object file that contains the object code for one
or more units in the current program library.

EXTRACT SOURCE Obtains copies of source files contained in the current
program library.

MERGE Merges,into the parent library, new versions of one or
more units from the sublibrary where they were modified.
MERGEreplaces the older, obsolete versions in the parent
library.

REENTER Enters current references to units that were compiled after
they were last entered with the ENTER UNIT command.

REORGANIZE Optimizes the organization of a program library.

SET LIBRARY Defines a program library to be the current program
library—that is, the library that is to be the compilation
context, as well as the target library for compiler output
and ACS commandsin general.

SET PRAGMA Redefines specified values of the library characteristics
LONG_FLOAT, MEMORY_SIZE, and SYSTEM_NAME.

SHOW LIBRARY Displays the name and characteristics of one or more
program libraries. |

SHOW PROGRAM Displays information, such as dependenceon other units,

about the closure of one or more units in the current
program library. Also displays a portability summary.

SHOW VERSION Displays the version of the VAX Ada compiler and program
library manager being used.

VERIFY Performs a series of consistency checks on a program
library to determine whetherthe library structure and
library files are in valid form. Optionally corrects some of
the inconsistencies detected.

Introduction to the VAX Ada Program Development Environment

Table 1-2: Compilation, Linking, and Execution Commands

Command Function

DCL Commands

ADA

RUN

Invokes the VAX Ada compiler to compile the specified Ada
source files.

Executes the specified executable imagefile.

ACS Commands

COMPILE

LOAD

LINK

RECOMPILE

SET SOURCE

SHOW SOURCE

Forms the execution closure! of one or morespecified
units; checks the completeness and currency of the units in
the closure; identifies units that have revised sourcefiles;
compiles units that have revised source files; recompiles
units that are obsolete or will be made obsolete. Completes
incomplete generic instantiations.

Loads (partially compiles) the units in the specifed Ada
source files into the current program library as obsolete
units; updates the current program library with unit
dependence and source-file information.

Creates an executable imagefile for the specified units.

Forms the execution closure! of one or more specified
units; checks the completeness and currency of the units
in the closure; recompiles any obsolete units in the appro-
priate order to make them current. Completes incomplete
generic instantiations.

Defines a source file search list for the COMPILE

command.

Displays the source file search list used by the COMPILE
command.

1In simple terms, execution closure is the complete set of units that a given unit dependson,
plus any other units neededfor its execution. Currency and closure are discussed in Sections
1.3.1.2 and 1.3.3, respectively.

Introduction to the VAX Ada Program Development Environment 1-15

Table 1-3: Additional ACS Commands

Command Function

ATTACH Switches control of your terminal from the current process
running the VAX Ada program library manager (same as
the DCL ATTACH command).

EXIT Exits from the program library manager. You can also use
CTRL/Z.

HELP Invokes the VMS HELPfacility to obtain information
about ACS commands.

SPAWN Creates a subprocess of the current process (same as the
DCL SPAWN command).

1.2.2 Entering ACS Commands

You can enter ACS commandsin two ways:

e By invoking the program library managerinteractively

e In the form of one-line DCL commands

To use the program library managerinteractively, you must first invoke it
by typing ACS at the DCL prompt ($). The library manager responds with
the ACS prompt. For example:

S ACS

ACS>

Once you have invoked the program library manager, you can enter any
ACS command. For example:

ACS> SET LIBRARY [JONES.HOTEL.ADALIB]

To enter an ACS command as a one-line DCL command, type the ACS prefix
and then the ACS commandline. For example:

S ACS SET LIBRARY [JONES .HOTEL.ADALIB]

This form allowsyou to use DCL symbol substitution, parameter passing,
and lexical functions in ACS commands (these DCL features are described
in the VMS DCL Concepts Manual and Guide to UsingVMS Command
Procedures). For example:

1-16 Introduction to the VAX Ada Program Development Environment

S$! CLG.COM -- DCL procedure for compile-link-go processing.
S$! Parameter Pl is source file name and main program name.

S ADA ‘/P1’

$ ACS LINK ’/P1’
S RUN ‘P11’

Regardless of the ACS command format you choose, the program library
manager prompts you for any required parameters that are missing.

If your ACS commandis too long to fit on one line, you can continue the
command by typing a hyphen (—) as the last character of a line. For
example:

ACS> LINK/DEBUG/MAP/FULL/CROSS_REFERENCE -
_ACS> MY_MAINPROGRAM -
_ACS> DISK: [MATRIX.SHARE]MATHPACK.OLB/LIB

An ACS command can have a maximum of 1024 characters. Individual

commandlines can have a maximum of 256 characters. |

1.2.3 Exiting from the Program Library Managerand Interrupting ACS
Commands

If you are using the program library managerinteractively, you can exit
and return to DCL level by entering the ACS EXIT commandorby pressing
CTRL/Z at the ACS> prompt. For example:

ACS> EXIT
$

If you need to interrupt an ACS commandbefore its execution has com- |
pleted, press CTRL/C rather than CTRL/Y. CTRL/C interrupts the command
in an orderly fashion, while CTRL/Y may not. In particular, use CTRL/C
if the ACS commandis one that alters the contents of a program library,
for example, the ACS DELETE UNIT command. When you use CTRL/Y to
interrupt an ACS command,control passes directly to DCL, and the program
library maybeleft in an inconsistent state.

1.2.4 Defining Synonyms for ACS Commands

As with DCL commands, you can define synonyms (symbols) to abbreviate
commonly used combinations of ACS commands and qualifiers. You can
place these symbol definitions in your LOGIN.COM file so that they take
effect whenever you log in to your system.

Introduction to the VAX Ada Program Development Environment 1-17

A synonym for an ACS command must havethe prefix ACS$. Otherwise, the

conventions are identical to those for defining synonyms for DCL commands
(see the VMS DCL Concepts Manual). For example:

S ACSSDB =
S ACSSDF =

= "DIRECTORY/BRIEF"
= "DIRECTORY/FULL"

You can use these synonyms when working interactively with the program

library manager. For example:

ACS> DB
HOTEL
QUEUEMANAGER
RESERVATIONS
SCREENIO

Total of 7 units.

Note from this example that you use only the letters following the ACS$
prefix as the synonym.

1.2.5 Using DCL Commandswith Program Libraries

Program libraries are implemented in VAX Ada as VMSdirectories.
However,thefile relationships inside a program library are quite differ-
ent from those in a conventional VMSdirectory. Therefore, in general, you
should use only ACS commands to manipulate program libraries and their
contents.

You may need to use DCL commandsin certain situations. For example,
you may need to use the DCL SET PROTECTION commandto change the
protection of a library directory so that you can delete it (see Chapters 2

and 5). Similarly, you may need to use the DCL BACKUP commandto copy

or back up a program library (see Chapter5).

1.3 Concepts and Terminology

The following sections summarize the basic concepts and terminology that
apply to compilation and linking in the VAX Ada environment. These
concepts are related to modular program development, which is a primary
feature of the Ada language.

1-18 Introduction to the VAX Ada Program Development Environment

1.3.1 Program and Compilation Units

Program units are the functional building blocks of Ada programs. There
are four kinds of program units: subprograms (procedures and functions),
packages, tasks, and generic units. An Ada program generally consists of a
main program andits related program units. A main program is always a
subprogram.

To facilitate modular development, each program unit consists of a specifica-
tion and sometimes a body. The specification contains only the declarations
that need to be madevisible to other program units; the body contains the
implementation of the declarations in the specification.

The parts of Ada program units that can be compiled separately are called
compilation units. Compilation units consist of the following:

¢ Package specifications and bodies

e Subprogram specifications and bodies

e Generic unit (subprogram and package) specifications and bodies

¢ Generic instantiations (subprogram and package)of generic units

e Subunits

NOTE

A task specification or body must be contained within a package
or a subprogram before it can be compiled, except when the task
body is a subunit.

The Ada language distinguishes between twoclasses of compilation units:

e Library units are the compilation units that are essential for program
compilation. They consist of library unit specifications, or library
specifications (consisting of subprogram, package, and generic specifica-
tions), generic instantiations, and subprogram bodies that do not have
corresponding specifications.

¢ Secondary units are the compilation units that are not essential for
program compilation, but they are essential for program linking and
running. They consist of library unit bodies, or library bodies (consisting
of subprogram, package, and generic bodies), and subunits.

Thus, Ada allows you to begin program development by designing and
compiling a program consisting only of library units. Once you have a

consistent program structure that you can compile, you can implement any
corresponding secondary units (bodies and subunits), and then link and run
the program. See Chapter 5 for more information.

Introduction to the VAX Ada Program Development Environment 1-19

1.3.1.1. Compilation Unit Dependences

During and after compilation, the compiler and program library manager

maintain current data on the status of compilation units and the depen-
dences among units. In this way, the compiler can enforce certain order-of-

compilation rules (see Section 1.3.2), and the program library manager can
managethe program library to support those rules.

Compilation unit dependences are derived from Ada’s scope andvisibility
conventions:

¢ A library body depends on its library specification, if there is one.

e A subunit depends on its parent unit and therefore depends on its
parent’s associated library body andlibraryspecification.

e Each compilation unit depends on the library specifications of any units
that are namedin with clauses.

Compilation unit dependences can also be caused by the following:

e The value of the predefined constant SYSTEM.SYSTEM_NAMEif the
package SYSTEM is named in a with clause. (Chapter 5 describes this
constant and its effects in more detail.)

e Calls of subprograms that have been specified with the pragma INLINE.

e Instantiations of generics that have been specified with the pragma
INLINE_GENERIC.

1.3.1.2 Current and Obsolete Units

Whenevera unit is compiled, any dependent unit, as defined in Section 1.3.1.1,
is made obsolete and must eventually be compiled again before it can be in-
cluded in a set of units to be linked. For example, compiling a library
specification makes the associated library body and any subunits obsolete;
moreover, if the library specification is named in a with clause of a unit,

that unit is also made obsolete, as are its dependent units. Incomplete in-
stantiations (instantiations that were compiled before their corresponding
generic body was compiled or recompiled) are also counted as obsolete units.

The program library manager keeps track of current and obsolete units.
ACS commands such as SHOW PROGRAM and CHECKallow you to
determine the status of the units in the current program library. If you
try to link a set of units that contains any obsolete units, the program
library manager warns you about those units and terminates the operation.
Because obsolete units are a natural consequence of Ada’s compilation rules
(see Section 1.3.2), VAX Ada provides the ACS COMPILE and RECOMPILE

1-20 Introduction to the VAX Ada Program Development Environment

commands. These commands automatically find the set of units that need to
be compiled to make an obsolete unit current, and then compile that set in
the right order. This process makes the units current.

NOTE

The verb to recompile is used in a restricted sense in this manual;
it means to makea setof obsolete units current.

1.3.1.3 Unit and File-Name Conventions

While developing programs in the VAX Ada environment, you need to
recognize the distinction between source files and units. A sourcefile

(having a default file type of .ADA) can contain several compilation units.
However, after a file is compiled, the program library manager maintains
information about the individual units, and most of the ACS commands

operate on units (not on sourcefiles).

If you have one sourcefile for all of your compilation units, the name of
the file will be different from most, if not all, of the units. Because most

program library manager commandsaccept unit names andgive information
about units, having one source file with a different name from most units
can become confusing. To keep the distinction between source files and
compilation units clear, use a separate sourcefile for each compilation unit.

Use of a separate sourcefile for each compilation unit also promotesefficient
use of the compiler. For example, every time a unit is compiled, any depen-
dent unit in the program library is made obsolete and must be recompiled.
Thus, if you have two library specifications in the same source file, every
time you modify one specification, you must compile both in the same com-
pilation. Then, the units that depend on both specifications become obsolete
and must be recompiled. If the specifications were in separate sourcefiles,
only the modified specification would be compiled, and only the units that
depend on the modified specification would become obsolete and haveto be
recompiled.

When you use separate source files for individual compilation units, you

should follow file-name conventions that parallel the Ada languagerules for
naming compilation units. For example, although a library specification and
its library body are distinct compilation units, they share the same name,
called the unit name. All of the unit names in a program library must be
unique. Similarly, all of the subunit names associated with a given ancestor
unit must be unique. (Every subunit mentions the nameof its parent unit,

and the top-level parent in a hierarchy of subunits is the ancestor unit.)

Introduction to the VAX Ada Program Development Environment 1-21

To support these rules, the following file-name conventions are recom-
mended. These conventions are consistent with program library manager

and VMSfile-name conventions.

The nameof the sourcefile for a library specification should be the name
of the unit, followed by a trailing underscore character (_): for example,
SCREEN_IO_.ADA.

The nameofthe sourcefile for a library body should be the nameof the
unit (without a trailing underscore): for example, SCREEN_IO.ADA.

The nameof the sourcefile for a library generic instantiation should be
the nameof the instantiation: for example, INTEGER_TEXT_IO.ADA.

The nameof the source file for a subunit should be the nameof the

ancestor unit, followed by two underscore characters, followed by the

name of the subunit: for example, SCREEN_IO__INPUT.ADA(where
INPUTis a subunit of SCREEN_IO).

Table 1-4 shows the conventions for naming sourcefiles by comparing
unit names with source file names. The names in the table represent the
following arbitrary set of units:

Package specification and body SCREEN_IO

Generic package declaration and body MATH

Generic instantiation HOTEL_MATH

Subunit INPUT (of SCREEN_IO)

Subunit BUFFER (of INPUT)

Table 1-4: Conventions for Naming VAX Ada SourceFiles

Compilation Unit Ada Unit Name Ada Source File Name

package SCREEN_IO
specification SCREEN_IO SCREEN_IO_

body SCREEN_IO SCREEN_IO

generic package MATH |

declaration MATH MATH_
body MATH MATH

generic instantiation HOTEL_MATH HOTEL_MATH

(continued on next page)

1-22 Introduction to the VAX Ada Program Development Environment

Table 1-4 (Cont.): Conventions for Naming VAX Ada SourceFiles

Compilation Unit Ada Unit Name Ada Source File Name

subunits
INPUT SCREEN_IO.INPUT SCREEN_IO__INPUT

BUFFER SCREEN_IO.INPUT.BUFFER SCREEN_IO__BUFFER

1.3.2 Order-of-Compilation Rules

The VAX Ada compiler and program library manager enforce the rules

governing the order in which compilation units are compiled. These order-
of-compilation rules stem from Ada’s scope andvisibility conventions, which

create the dependences among units described in Section 1.3.1.1. The rules
are as follows:

e You can compile a given unit only after compiling all of the library
specifications namedin that unit’s context clause.

¢ You can compile a library body only after compiling its library specifi-
cation. However, the body of a nongeneric library subprogram can also
serve as its own library specification, and therefore doesnot necessarily
depend on a separately compiled specification.

e You can compile a subunit only after compiling its parent unit.

In summary, a unit must be compiled before any of its dependent units.

If you follow these rules, then the following additional rules are true:

e You can submit the compilation units of a program to the compiler in
one or more compilations (invocations of the compiler). Also, you can
submit one or more compilation units of a program at any one time. The
units of any one compilation are compiled in the given order, whether
submitted in one or morefiles. Thus, a pragma that applies to the whole
of a compilation must appear before the first unit of that compilation.

¢ Units can be compiled in an otherwise arbitrary order relative to each
other. For example, compiling a subunit affects only its subunits, if any;

compiling a library body generally does not affect any other units except
its own subunits, if any. However, compiling a library body does affect
other units in the following three cases:

— Ifa pragma INLINE or equivalent /OPTIMIZE qualifier option
applies to a subprogram, then compiling the library body containing
the subprogram body makes obsolete any unit in which a call of the
subprogram is expandedinline.

Introduction to the VAX Ada Program Development Environment 1-23

— Ifa pragma INLINE_GENERIC or equivalent /OPTIMIZE qualifier
option applies to a generic unit or to an instance of a generic unit,
then compiling the generic body makes obsolete any unit in which an
instantiation of the generic is expandedinline.

— If an inline pragma or equivalent /OPTIMIZE qualifier option does
not apply, then compiling a generic body makesall instantiations of
the generic incomplete. However, units that contain instantiations
of the generic do not become obsolete. (See Chapter 3 for more
information on completing incomplete generic instantiations.)

If you follow these rules when you compile a unit or set of units, and no
other errors are detected during the compilation, then the program library
is updated with information on all of the units in the compilation. If the
compilation is unsuccessful for any reason, no updatingis done.

Although the VAX Ada compiler always processes compilation units in a
manner that is consistent with Ada’s order-of-compilation rules, observance
of the compilation rules does not ensure that the set of units in a program
library is current. Nor does observance of the rules ensure that the set
of units is complete. For example, a library body or a subunit maystill
be missing from the program library, or may have been made obsolete
by a previous compilation. If you try to link an incomplete set of units, the
program library manager warns you about the missing units, and terminates
the operation.

Obsolete units are discussed in Section 1.3.1.2; what constitutes a complete
set of units is discussed in Section 1.3.3.

1.3.3 Closure

When you compile a given unit, the compiler identifies any unit that the
given unit depends on, as specified in Section 1.3.1.1, and determines

whether that unit is defined and current in the current program library. For
example, if the given unit is a library body, the compiler looks for the unit’s
specification.

Any unit that a given unit depends on mayitself depend on another unit,
which mustalso be defined in the current program library. Thetotal set of
library units that the given unit depends on, directly and indirectly, is called
the compilation closure of that unit. Thus, the compilation closure of a given
unit consists of all the units that must be defined and current in the current
program library before you can compile that unit.

1-24 Introduction to the VAX Ada Program Development Environment

To link a program into an executable image, the execution closure of the
main program must be formed. The execution closure consists of the
compilation closure plusall associated secondary units (library bodies and
subunits). A set of units is complete when no units in the execution closure
are missing. :

A number of ACS commandsoperate on the execution closure of a spec-
ified set of units—for example, the ACS CHECK, COMPILE, COPY

UNIT/CLOSURE, ENTER UNIT/CLOSURE, EXPORT, LINK, RECOMPILE,
and SHOW PROGRAM commands.

NOTE

In this manual, the term closure is used to signify execution
closure, unless otherwise specified.

The execution closure of a specified set of compilation units is defined
formally as the smallest set of units with the following properties:

e All the specified units are contained in the closure.

e For any given unit in the closure, the following are also contained in the
closure, as applicable:

— Its specification, if the given unit is a body

— Its body, if the given unit is a specification

— Its immediate subunits, if any

- Its immediate parent unit, if the given unit is a subunit

~- All units named bythe given unit in its with clause

A unit that namesa given unit in its with clause is not part of the execution
closure of the given unit.

Figure 1—4 showsonepossible configuration of an extended version of the
HOTELreservation program. The units involved are the library packages
RESERVATIONS, SCREEN_IO, and HOTEL_MATH,the library subpro-
grams HOTEL and CONFIRM,and the subunit RESERVATIONS.CANCEL.
Arrows point from dependent units to the units they depend on.

The units shown in Figure 1-4 form the following closures:

e The closure of the unit CONFIRM consists of the function CONFIRM.

e¢ The closure of the specification or body of the package SCREEN_IO
consists of the specification and body of the package SCREEN_IO.

Introduction to the VAX Ada Program Development Environment 1—25

Figure 1-4: Sample Compilation Units Used to Show Closure

| generic package
| MATH ot

t
SREene

mew dennenewee ! i

| package body
| MATH
a

package package

HOTEL_MATH SCREEN_IO

package body

SCREEN_IO

function

CONFIRM J

package
RESERVATIONS

’ , separate

procedure
RESERVATIONS CANCEL

procedure

HOTEL

ZK-6744-GE

1-26 Introduction to the VAX Ada Program Development Environment

e Theclosure of the specification, body, or subunit of the package
RESERVATIONSconsistsof all of the units shown, except for the
procedure HOTEL.

e The closure of the procedure HOTEL consistsof all of the units shown.

The following command recompiles any of the units shown that are obsolete,
except HOTEL(the closure of RESERVATIONSdoes not include HOTEL):

S$ ACS RECOMPILE RESERVATIONS

The following command recompiles any of the units shown that are obsolete
(the closure of HOTEL includesall of the units):

S$ ACS RECOMPILE HOTEL

Introduction to the VAX Ada Program Development Environment 1-27

Chapter 2

Working with VAX Ada Program Libraries and
Sublibraries

Ada compilations are performed in the context of a program library. The
program library manager and compiler use the program library to maintain
information about compilation units.

A VAX Ada program library is a dedicated VMSdirectory that contains
a set of files for each compilation unit successfully compiled. A VAX Ada
program sublibrary is a program library that has a parent library. Units
in a sublibrary are compiled in the context of both the sublibrary and the
parent library, but only the sublibrary is updated.

NOTE

Because program libraries and sublibraries are so similar,many
library and compilation unit operations have the sameeffect.
Thus, this chapter uses the term library to denote a sublibrary
as well as a program library. The terms program library and
sublibrary are used only where emphasis is needed or a distinction
must be made.

Whenyourlibrary context is a sublibrary, the units in the sublibrary and
parent libraries are visible in a fashion analogous to multiple panesof glass.
The units in the sublibrary appear on the top pane, units in the immediate
parent library appear on the next pane, units in the parent of the immediate
parent appear on a following pane, and so on. Then, units by the same
name hide each other such that a unit in a parent library is hidden (made
not visible) by a unit of the same namein a closer sublibrary. Thus, the
search for a unit begins with the closest pane of glass (the sublibrary) and
follows through the parent panes until the unit is found.

Working with VAX Ada Program Libraries and Sublibraries 2-1

You can organize program libraries and sublibraries to suit the needs
of your project. For example, you can store the compilation units of an
entire Ada program in a single program library, or you can distribute them
among a numberof program libraries. Sublibraries are designed to allow
you to isolate particular compilation units so that you can develop them
individually.

This chapter explains how you can work with program libraries and
sublibraries using ACS commands. Chapter 5 covers additional topics
related to program library management and maintenance.

NOTE

The information in this chapter is task oriented. For full
details on the format, parameters, and qualifiers of the various
ACS commands, see Appendix A. For information on the
implementation of VAX Ada program libraries and sublibraries,
see Appendix D.

2.1 Program Library and Sublibrary Operations

The following sections describe a number of program library and sublibrary
operations:

e Creating a program library or sublibrary

e Defining the current program library

¢ Identifying the current program library

¢ Obtaining library information

¢ Controlling library access

¢ Deleting a program library or sublibrary

In general, the effect of these operations on program libraries and subli-
braries is the same. Whentheeffect is different, information is provided, as

appropriate. See Section 2.3.1 for a summary of the commands where the
effect is different.

See Chapter 5 for information on how to configure, protect, and maintain
program libraries and sublibraries.

NOTE

Use only ACS commands (not DCL commands) to manipulate
program libraries and sublibraries. Exceptions to this rule are
noted where appropriate.

2-2 Working with VAX Ada Program Libraries and Sublibraries

2.1.1 Creating a Program Library or Sublibrary

To create a program library, enter the ACS CREATE LIBRARY command,
specifying a VMSdirectory as a parameter. For example:

S ACS CREATE LIBRARY [JONES .HOTEL.ADALIB]

To create a sublibrary, enter the ACS CREATE SUBLIBRARY command,
specifying a VMSdirectory as a parameter, and optionally specifying the
parent library with the /PARENT qualifier. For example:

S$ ACS CREATE SUBLIBRARY/PARENT=[JONES.HOTEL.ADALIB] -
_§ [JONES .HOTEL.SUBLIB]

Whencreating a sublibrary, you can specify any previously created program

library or sublibrary to be the parent library. If you omit the /PARENT
qualifier, the current program library is defined to be the parent library by

default. See Section 2.1.2 for information on defining and identifying the
current program library; see Section 2.1.4 for information on identifying the
parent of a sublibrary.

NOTE

By using concealed-device logical names and rooted directory
syntax for program library and sublibrary directories, you can
make the maintenance of program libraries and sublibraries
easier. In particular, you can change the parent of a sublibrary.
See Section 2.3.3 and Chapter 5 for more information.

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commandsare
the same in the following respects:

e They create the specified VMSdirectory (if it does not already exist).

e They cannot be used across DECnet unless the VMSdirectory for the
library already exists.

e They create the library, but do not automatically make it a target for
compilation and ACS commands. To use the library, you must enter the
ACS SET LIBRARY command(see Section 2.1.2).

¢ They cause the library directory to inherit the default system file
protection. Both commands have a /PROTECTION qualifier, which
allows you to change the default. See Chapter 5 for more information on
library protection.

~ Working with VAX Ada Program Libraries and Sublibraries 2-3

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands are

different in the following respects:

¢ The CREATE LIBRARY commandinitializes the program library to be
self-contained. The CREATE SUBLIBRARY command puts a reference

to the parent library in the sublibrary.

e The CREATE LIBRARY commandenters the Ada predefined units
into the newly created program library by default. The CREATE
SUBLIBRARY commanddoes not enter the Ada predefined units into
the newly created sublibrary.

¢ Whenyou create a program library, the following system characteristics
are in effect by default:

—- LONG_FLOAT = G_FLOAT

— MEMORY_SIZE = 2147483647

—- SYSTEM_NAME = VAX_VMS

When you create a sublibrary, the sublibrary inherits the defaults of
its parent library or sublibrary. The CREATE LIBRARY and CREATE
SUBLIBRARY commandshave qualifiers that allow you to override
these defaults. See Chapter 5 and the descriptions of these commands
in Appendix A for more information; see also the description of the
ACS SET PRAGMA command, which allows you to change the system
characteristics for existing libraries or sublibraries.

A program library orsublibrary is meant to hold only the files needed for
the program library manager. You should not use it for any other purpose.
For example, you should keepit distinct from any working directory (such
as the current default directory) where you store and edit your sourcefiles.

2.1.2 Defining the Current Program Library

The current program library is the target library for compilation and many
ACS commands. To define a library as the current program library, enter the
ACS SET LIBRARY command,specifying the VMSdirectory specification for
the library as the parameter. For example:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

The program library manager assigns the directory specification provided
in the SET LIBRARY commandto the process logical name ADA$LIB. Both
the program library manager and the compiler use that logical name to
maintain the current program library context when performing various
operations.

2-4 Working with VAX Ada Program Libraries and Sublibraries

Note that if you specify an invalid library directory specification, the

program library manager issues a diagnostic message and then sets the
library (and assigns ADA$LIB)to the invalid specification. This behavioris

designed to protect you from incorrectly modifying the wrong library with
subsequent ACS commands.

2.1.3 Identifying the Current Program Library

To identify the current program library, enter the ACS SHOW LIBRARY
command without a parameter. For example:

$ ACS SHOW LIBRARY

6I, Current program library is USER: [JONES.HOTEL.ADALIB]

2.1.4 Obtaining Library Information

To obtain information about the current program library, enter the ACS
SHOW LIBRARY commandwith one of a number of qualifiers. For ex-
ample, you can use the /FULL qualifier to determine a library’s system
characteristics:

$ ACS SHOW LIBRARY/FULL

6I, Current program library is USER: [JONES.HOTEL.ADALIB]

Program library USER: [JONES.HOTEL.ADALIB]

Created: 13-Apr-1989 15:51, by VAX Ada 2.0
Last reorganized: 16-Apr-1989 13:46

Pragmas that affect STANDARD and SYSTEM:

pragma LONGFLOAT (G_FLOAT)

pragma MEMORYSIZE (2147483647)

pragma SYSTEMNAME (VAX_VMS)

You can also use the /FULL qualifier to determine the parent of a sublibrary.

To obtain information about libraries that are not the current program
library, enter the ACS SHOW LIBRARY command,specifying the libraries
of interest as parameters. For example:

$ ACS SHOW LIBRARY/FULL [JONES.HOTEL.SUBLIB.SUBSUBLIB]

Program library USER: [JONES.HOTEL.SUBLIB.SUBSUBLIB]

Sublibrary
of USER: [JONES.HOTEL.SUBLIB]

of USER: [JONES.HOTEL.ADALIB]

Created: 13-Apr-1989 15:53, by VAX Ada 2.0
Last reorganized: <No reorganization date>

Working with VAX Ada Program Libraries and Sublibraries 2-5

Pragmas that affect STANDARD and SYSTEM:

pragma LONGFLOAT (GFLOAT)

pragma MEMORYSIZE(2147483647)

pragma SYSTEMNAME (VAXVMS)

To display the contents of a library, you can use the /UNITS qualifier on
the ACS SHOW LIBRARY command. To display the contents of the current
program library, you can use the ACS DIRECTORY command. Theresults
of the SHOW LIBRARY/UNITS command and the DIRECTORY command
are the same. However, you can apply the DIRECTORY commandonly to
the current program library; you can apply the SHOW LIBRARY/UNITS
commandto any library. See Section 2.2.2 for more information on the ACS
DIRECTORY command.

2.1.5 Controlling Library Access

The ACS SET LIBRARY commandhas two qualifiers that allow you to
temporarily control library access:

¢ The /READ_ONLY qualifier temporarily allows you to accesslibraries in
a read-only manner

¢ The /EXCLUSIVE qualifier temporarily limits library access to one

process

To use either qualifier, execute the ACS SET LIBRARY commandinterac-
tively from the program library manager. For example:

ACS> SET LIBRARY/READONLY DISK: [SMITH.SHARE.ADALIB]

ACS> SET LIBRARY/EXCLUSIVE [JONES.HOTEL.ADALIB]

When you use these qualifiers, they remain in effect until you exit from the
program library manager or until you execute another ACS SET LIBRARY

command.

The following sections describe the use of these qualifiers in more detail. See
Chapter 5 for information on permanently controlling library access using
file and directory protection mechanisms.

2-6 Working with VAX Ada Program Libraries and Sublibraries

2.1.5.1 Read-Only Access

The /READ_ONLY qualifier to the ACS SET LIBRARY commandis use-
ful when you wantto limit your access to a library for reading only. For
example, the /READ_ONLY qualifier is useful when you wantto protect
yourself from accidentally modifying a library to which you also have write
access. (Read access is also determined by the protection set for the library
directory; see Section 2.1.1 and Chapter 5.)

The /READ_ONLYqualifier has an effect only when you enter the ACS SET
LIBRARY commandinteractively. After executing the ACS SET LIBRARY
command with the /READ_ONLY qualifier, you have read-only access to
that library until you exit from the program library manageror until you
enter another SET LIBRARY command. Read-only access means that you

can enter only those ACS commandsthat do not require write access. For
example:

¢ CHECK

e DIRECTORY

¢ EXPORT

¢ EXTRACT SOURCE

e LINK

¢ SHOW LIBRARY
¢ SHOW PROGRAM
¢ SHOW VERSION
° VERIFY

In the following example, the /READ_ONLY qualifier limits the user to

read-only access of a general project library:

ACS> SET LIBRARY/READ_ONLY [PROJ .ADALIB]

6I, Current program library is DISK: [PROJ.ADALIB]

ACS> CHECK HOTEL

$I, All units current, no recompilations required
ACS> EXPORT HOTEL

ACS> EXIT

Working with VAX Ada Program Libraries and Sublibraries 2-7

2.1.5.2 Exclusive Access

When more than one process has both read and write accessto a library,
although the library will not be corrupted, there is some risk that it may
be updated in a way that gives unexpected results. For example, a unit
can become obsolete the momentit enters the library because a unit that
it depends on has been simultaneously updated. You can use the ACS SET
LIBRARY/EXCLUSIVE command to make sure that your processis the only
one updating a library at a particular time.

For example, on a multiperson project you can use this command to tem-
porarily protect the project program library while you enter, copy, or link
units from another library:

S ACS
ACS> CREATE LIBRARY [HOTEL.TEST]

$I, Library DISK: [HOTEL.TEST] created

ACS> SET LIBRARY/EXCLUSIVE [HOTEL.TEST]

$I, Current program library is DISK: [HOTEL.TEST]

. Enter, copy, or link units

ACS> EXIT

The /EXCLUSIVEqualifier is also useful when you are repairing (ACS
VERIFY/REPAIR) or reorganizing (ACS REORGANIZE)a library.

After executing an ACS SET LIBRARY command with the /EXCLUSIVE
qualifier, you have exclusive read and write access to that library until
you exit from the program library manager or until you enter another SET
LIBRARY command. If your process has exclusive access to a library, no
other process can accessthat library for either reading or writing.

Note that while the /EXCLUSIVE qualifier is in effect, batch jobs (subpro-
cess or your own) will not be able to access the library. In other words, this
qualifier will affect the behavior of any commands (ACS LOAD, COMPILE,

RECOMPILE,and so on) that process in batch modeby default.

You cannot execute the ACS SET LIBRARY commandwith the /EXCLUSIVE
qualifier while another process is accessing the specified library. You also
cannot use the /EXCLUSIVE qualifier across DECnet.

2.1.6 Deleting a Program Library or Sublibrary

To delete a program library or sublibrary, enter the ACS DELETE LIBRARY
or DELETE SUBLIBRARY command,specifying a VMSdirectory as a
parameter. The directory you specify must be a VAX Ada library that
was previously created with the ACS CREATE LIBRARY or CREATE
SUBLIBRARY command.

2-8 Working with VAX Ada Program Libraries and Sublibraries

For example:

$ ACS DELETE LIBRARY [JONES.TEMP.ADALIB]

You cannot use the ACS DELETE LIBRARY commandto delete a sublibrary;
similarly, you cannot use the ACS DELETE SUBLIBRARY commandto
delete a program library.

NOTE

Use the ACS DELETE LIBRARY and DELETE SUBLIBRARY
commands with caution when you have program sublibraries.

A parent library does not contain references to its sublibraries;
therefore, when you delete a program library or sublibrary, you
will not be warned of the existence of any sublibraries.

The effect of either commandis to delete the contents of the library. If
there are no morefiles in the library directory, and if the directory is not
delete protected against the owner, then the directory is also deleted (by
default, the VMSoperating system protects a directory against deletion by
its owner). If the directory still contains other files, or if the directory is
delete protected against the owner, then the directory is not deleted. You
must use theDCL DELETE commandtofirst empty and then delete the
directory. If the library directory is delete protected against the owner, you
must use the DCL SET PROTECTION commandto changethe protection
before you can delete the directory.

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands
cause a library directory to inherit the default system file protection. Both
commands have a /PROTECTIONqualifier that allows you to specify the
protection when you create the library or sublibrary (see Chapter 5 for more
information on library protection).

2.2 Unit Operations

The following sections describe a numberof unit operations:

¢ Obtaining information about the units in a library

e Checking units for currency and completeness

e Sharing units amongdifferent libraries

e Putting non-Ada “units” into a library

e Deleting units

Working with VAX Ada Program Libraries and Sublibraries 2-9

In general, the effect of these operations on program libraries and subli-
braries is the same. Whentheeffect is different, information is provided, as
appropriate. For a summary of the commands wheretheeffect is different,
see Section 2.3.1.

NOTE

Use only ACS commands (not DCL commands) to manipulate
units in program libraries and sublibraries.

2.2.1. Specifying Units in ACS Commands

ACS commandsthat operate on compilation units accept one or more unit
names, not file names, as parameters. When you enter ACS commands
involving compilation units, observe the following conventions:

¢ You can specify a single unit name,or a list of unit names separated by

commas(,). For example:

S ACS DIRECTORY SCREEN_IO, RESERVATIONS.CANCEL

e You can use the standard VMS wildcard characters in many ACS
commands. The wildcarding rules are similar to those for VMSfile
specifications (see the VMS DCL Dictionary). The percent sign (%)
matches any single character in the position that the percent sign
occupies in the unit name. The asterisk (*) matches zero or more
characters in the position that the asterisk occupies in the unit name.
Wildcard matching treats the unit nameasa string. In a unit name, the
period character (.) has no special standing as a punctuation character.
For example, the following command displays information about the unit
RESERVATIONSand anyof its subunits:

S$ ACS DIRECTORY RESERVATIONS*

By default, ACS commands usually operate on groups of related units,
such as the specification and the body (for example, ACS DIRECTORYor
DELETE UNIT)or the execution closure of the specified units (for example,
ACS CHECK). The exact behaviorreflects the typical use of the command.

Qualifiers are available to modify the default behavior. For example, the
ACS DELETE UNIT/BODY_ONLY commanddeletes the body without
affecting the specification; the ACS COPY UNIT/CLOSURE commandcopies
the closure of the specified units.

2-10 Working with VAX Ada Program Libraries and Sublibraries

Commands that operate on several units provide /LOG and /CONFIRM
qualifiers. The /LOG qualifier allows you to control whether or not infor-
mation about an operation is displayed when the operation is performed.
The /CONFIRM qualifier allows you to confirm that an operation should be
carried out for one or more units involved in the operation. For example, the
ACS MERGE/LOG commanddisplays a list of the units being merged. The
ACS DELETE UNIT/CONFIRM commandasksyou for confirmation before

deleting each of the units specified in the command.

2.2.2 Displaying General Unit Information

You enter the ACS DIRECTORY commandto list units in the current
program library and display general information about them. The ACS
DIRECTORY commandlists compilation units alphabetically by unit name.
Subunit names are expressed using selected component notation. For
example: |

$ ACS DIRECTORY *QUEUE, HOTEL, SCREEN_IO*
_ GUESTQUEUE

package instantiation 15-Apr-1989 15:25 <entered>

QUEUE
generic package 15-Apr-1989 15:25 <entered>
generic package body 15-Apr-1989 15:25 <entered>

HOTEL

procedure body 15-Apr-1989 15:26

_ SCREEN_IO
package specification 15-Apr-1989 15:25
package body 15-Apr-1989 15:25

SCREENI0O.INPUT

procedure body 15-Apr-1989 15:25

SCREENIO. INPUT.BUFFER

function body 15-Apr-1989 15:25

SCREENIO.OUTPUT

procedure body 15-Apr-1989 15:25

Total of 9 units.

As shown in this example, the ACS DIRECTORY commandidentifies units
by nameandby kind (packagespecification, procedure body, and so on). The
display also shows the date and time of the compilation of each unit, and
identifies entered units.

Working with VAX Ada Program Libraries and Sublibraries 2-11

By using an asterisk wildcard (*) or by omitting its parameter, you can use
the ACS DIRECTORY commandtolist all of the units that are defined in
the current programlibrary.

By using qualifiers (/BRIEF, /FULL, and /ENTERED), you can control the
level of information displayed.

If the current program library is a sublibrary, the ACS DIRECTORY
command showsonly the units in the sublibrary; it does not show units in
any of the parentlibraries.

2.2.3 Displaying Dependence and Portability Information

The ACS SHOW. PROGRAM commanddisplays information about the
execution closure of a set of compilation units in the current program

library. In particular, the ACS SHOW PROGRAM commanddisplays
information about unit dependences (the use of with clauses), potential
portability: constraints, unit currency, and so on.

Becauseit displays information about the execution closure of a set of units,

the ACS SHOW PROGRAM commanddisplays information aboutall of the
relevant units, even if the current program library is a sublibrary and some
of the units are in parent libraries.

The ACS SHOW PROGRAM commandlists compilation units alphabetically
by unit name. Subunit names are expressed using selected component
notation. The command has qualifiers (/BRIEF, /FULL, and /PORTABILITY)

that allow you to specify the level of information and the kind of information
to be displayed.

You can use the /BRIEF qualifier with the ACS SHOW PROGRAM command
to limit the display to the following information:

¢ The name of the program and the time the ACS SHOW PROGRAM
command was executed

¢ The nameof thelibrary

e The values of pragmas that affect the predefined packages STANDARD
and SYSTEM

e The name and kind of each unit contained in the closure

e The compilation date for each unit in the closure

¢ The directory containing the sourcefile for each unit or the hbraryfrom
which the unit was entered

2-12 Working with VAX Ada Program Libraries and Sublibraries

For example:

$ ACS SHOW PROGRAM/BRIEF SCREENIO

SCREENIO
15-Apr-1988 15:26

Program library USER: [JONES.HOTEL.ADALIB]

Created: 15-Apr-1989 14:47,

Last reorganized: 15-Apr-1989 15:35

by VAX Ada 2.0

Pragmas that affect STANDARD and SYSTEM:

pragma LONGFLOAT (G_FLOAT)

pragma MEMORYSIZE (2147483647)

pragma SYSTEM_NAME (VAX_VMS)

The closure of the specified units is:

IOEXCEPTIONS

Package specification

Compiled: 13-Apr-1989 23:35
Entered from: SYSSCOMMON: [SYSLIB.ADALIB]

SCREENIO
Package specification

Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER:

Package body

Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER:

SCREENIO.INPUT
Procedure body

Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER:

SCREENIO.INPUT.BUFFER

Function body
Compiled: 15-Apr-1989 15:25

Source file: 1-Sep-1988 10:39 USER:

SCREENIO.OUTPUT

Procedure body

Compiled: 15-Apr-1989 15:25

Source file: 1~-Sep-1988 10:39 USER:

SYSTEM

Builtin package

TEXTIO
Package specification

Compiled: 13-Apr-1989 23:37

[PROJ] SCREENIO_.ADA;1

[PROJ] SCREEN_IO.ADA;1

[PROJ]SCREENIOINPUT.ADA;1

[PROJ]SCREENIOBUFFER.ADA;1

[PROJ]SCREENIOOUTPUT.ADA;1

Entered from: SYSSCOMMON: [SYSLIB.ADALIB]

Working with VAX Ada Program Libraries and Sublibraries 2-13

Package body
Compiled: 13-Apr-1989 23:37
Entered from: SYSSCOMMON: [SYSLIB.ADALIB]

You enter the ACS SHOW PROGRAM command with no qualifiers to add
dependence information (with list information) to the display. For example:

S$ ACS SHOW PROGRAM SCREENIO

SCREENIO
Package specification

Compiled: 15-Apr-1989 15:25
Source file: 11-Sep-1988 10:39 USER: [PROJ]SCREENIO_.ADA;1

Package body

Compiled: 15-Apr-1989 15:25 |
Source file: 11-Sep-1988 10:39 USER: [PROJ] SCREENIO.ADA;1
With list: TEXTIO

You can use the /PORTABILITY qualifier to display a portability summary
(see Chapter 5 for details on the kinds of information that appear in the
portability summary). For example:

$ ACS SHOW PROGRAM/PORTABILITY SCREEN_IO

SCREENIO
Package specification

Compiled: 15-Apr-1989 15:25
Source file: 1-Sep-1988 10:39 USER: [PROJ]SCREENIO.ADA;1

Package body
Compiled: 15-Apr-1989 15:25

Source file: 1-Sep-1988 10:39 USER: [PROJ] SCREENIO.ADA;1

With list: TEXTIO

PORTABILITY SUMMARY

predefined SHORTINTEGER or SHORTSHORTINTEGER

SYSTEM spec

with SYSTEM TEXTIO body

predefined F_FLOAT, D_FLOAT, GFLOAT or HFLOAT*
TEXTIO body

enumeration representation clause

SYSTEM spec

TEXTIO spec

2-14 Working with VAX Ada Program Libraries and Sublibraries

length SIZE representation clause
SYSTEM spec

record representation clause
SYSTEM spec

pragma PACK SYSTEM spec

pragma IMPORTEXCEPTION*

IOEXCEPTIONS spec

pragma IMPORTFUNCTION* TEXTIO spec

pragma IMPORTPROCEDURE*

TEXTIO

pragma INTERFACE TEXTIO

where * indicates an implementation-defined feature

2.2.4 Checking Unit Currency and Completeness

The VAX Ada compiler processes compilation units in a mannerthatis
consistent with Ada’s rules. However, observance of the compilation rules
does not ensure that the execution closure of a set of units in a program
library is either complete or current (see Chapter 1 for definitions of closure,
completeness, and currency). For example, a library package body may
still be missing from the program library, or a library specification may
have been modified and compiled more recently than some dependent units,
making the dependent units obsolete and in need of recompilation.

If you try to link a program that has missing or obsolete units, these
errors will be automatically detected, and the operation will be terminated.
Alternatively, you can enter the ACS CHECK commandto check the
completeness and currency of the units in your program before you link it.

The ACS CHECK commandaccepts one or more unit names as parameters,
and then searches the execution closure of the set of units specified for miss-
ing or obsolete units. Because it searches for the execution closure of a set of
units, the ACS CHECK commandsearchesthe current program library and
any parent libraries, if the current program library is a sublibrary. Note,
however, that for units specified with wildcards, the ACS CHECK command
searches only the current program library for the specified units.

If the set of units in the closure is both complete and current, the following
message is displayed:

$I, All units current, no recompilations required

Working with VAX Ada Program Libraries and Sublibraries 2-15

If the ACS CHECK commandfinds that a unit, such as a subunit, is

missing, a message like the following is displayed:

SE, Separate procedure body SCREENIO.OUTPUT not found in library

For example, consider the following situation:

¢ The body of RESERVATIONS names SCREEN_IO in a with clause.

¢ The specification of SCREEN_IO has been compiled more recently than
the specification, body, and subunits of RESERVATIONS.

The following ACS CHECK commandidentifies the obsolete units that need
to be recompiled. Note that because SCREEN_IOis in the execution closure
of RESERVATIONS, the CHECK commandalso identifies the missing
subunit SCREEN_IO.OUTPUT.

S ACS CHECK RESERVATIONS

SE, Separate procedure body SCREENIO.OUTPUT not found in
library

SE, Obsolete library units are detected

6I, The following units need to be recompiled:

RESERVATIONS
package specification 15-Apr-1989 15:44
package body 15-Apr-1989 15:44

SCREEN_IO
package body 15-Apr-1989 15:44

SCREENIO.INPUT

procedure body 15-Apr-1989 15:44

SCREENIO.INPUT.BUFFER

function body 15-Apr-1989 15:44
RESERVATIONS .RESERVE

procedure body 15-Apr-1989 15:44
RESERVATIONS. RESERVE.BILL

procedure body 15-Apr-1989 15:44

RESERVATIONS. CANCEL

procedure body 15-Apr-1989 15:44

$I, The following units have missing subunits:

SCREENIO
package body | 15-Apr-1989 15:44

You can also use the ACS CHECK commandto identify units that depend
on generic bodies. A unit that depends on a generic body must be completed
with the ACS RECOMPILE or COMPILE command underthe following
conditions: |

e After the generic body is first compiled

¢ Wheneverthe generic body is compiled again

2-16 Working with VAX Ada Program Libraries and Sublibraries

For example, consider the following situation:

e The package GUEST_QUEUEis a library instantiation of the generic
package QUEUE.

e Thespecification of the package QUEUE_MANAGER names GUEST_
QUEUEin a with clause.

If the generic body of package QUEUEis compiled more recently than its
instantiation GUEST_QUEUE, then GUEST_QUEUEbecomesincomplete
and must be recompiled:

$ ADA QUEUE_, QUEUE, GUESTQUEUE, QUEUEMANAGER_, QUEUEMANAGER

S$ ADA QUEUE
S ACS CHECK QUEUE_MANAGER

SE, Obsolete library units are detected

$I, The following units need to be completed (use ACS COMPILE or

ACS RECOMPILE):

GUESTQUEUE
package instantiation 15-Apr-1989 15:43

Note that when GUEST_QUEUEis completed, QUEUE_MANAGER,the

unit that depends on GUEST_QUEUE,does not becomeobsolete. See
Chapter 3 for more information on generic completions and their effect on
dependent units.

2.2.5 Using Units from Other Program Libraries

The program library manager allows you to use units from other program
libraries either by direct copy or by reference.

The ACS COPY UNIT commandallows you to copy one or more units into
the current program library from another library. The ACS ENTER UNIT
commandallows you to create a reference from the current program library
to units in another library. The process of entering references to units with
the ACS ENTER UNIT commandis called entering units (into the current
program library from anotherlibrary).

The choice of whether to copy or enter units depends on the circumstances,

as described in the following sections. To use the ACS COPY UNIT or
ENTER UNIT command, you must have read access to the program library

Working with VAX Ada Program Libraries and Sublibraries 2-17

where the unit is stored (see Chapter 5 for more information on library
access and library protection).

2.2.5.1 Copying Units into the Current Program Library

The ACS COPY UNIT commandcopies one or more units into the current
program library from anotherlibrary.

The following example shows the use of the ACS COPY UNIT com-
mand to copy the unit QUEUE_MANAGERfrom the program library
DISK:[SMITH.SHARE.ADALIB] into the current program library:

S$ ACS COPY UNIT DISK: [SMITH.SHARE.ADALIB] QUEUEMANAGER

For each unit specified, the ACS COPY UNIT commandcopiesthe specifica-
tion and body. Units that have been loaded with the ACS LOAD command
or converted with the ACS CONVERT LIBRARY command,but not yet
recompiled, are not copied.

Whena unit is copied, information about the external sourcefile associated
with the unit is also copied. This information mayaffect the behavior of
any subsequent ACS COMPILE commands,if you change the location of the
external source file. Thus, you may need to manage the behavior of the ACS
COMPILE command by taking one of the following actions:

e Using the ACS SET SOURCE commandto direct the ACS COMPILE
commandto the correct location

e Using a concealed logical nameto refer to the directory containing the

source files and change the meaning of the logical name as necessary.
See Chapter 5 for more information on concealed logical names.

Copied units behave and can be handled as if they had been compiled

directly into the current program library. The ACS COPY UNIT command
has no effect on the program library from which a unit has been copied.

Once a unit has been copied, it is independent of the unit from which it
was copied. The sameis not true for a unit that has been entered (see

Section 2.2.5.2). Therefore, if the external unit you need is subject to fre-
quent unexpected changes, you may want to use the ACS COPY UNIT
command, rather than the ACS ENTER UNIT command, to create a stable

local copy and minimize the impact on dependent units. However, when
you use the ACS COPY UNIT command, you must keep track of when the
original unit you copied has been modified.

2-18 Working with VAX Ada Program Libraries and Sublibraries

If you find that the original unit has been revised and compiled again in
its original program library, you can use the ACS COPY UNIT/REPLACE
command to copy the modified version. If you use the ACS COPY UNIT
command without the /REPLACE qualifier in this situation, the program
library manager informs you that the unit already exists in the current
program library and does not replaceit.

If the unit you need to copy depends on other units, you can use the
/CLOSUREqualifier to automatically copy the entire execution closure
of the unit into the current program library. If the specified library is a
sublibrary, then all parent libraries are searched for units in theclosure.

For example, consider the following situation:

¢ The package QUEUE_MANAGER names the generic instantiation

GUEST_QUEUEin a with clause.

e The generic instantiation GUEST_QUEUE depends on the generic
package QUEUE.

¢ The units QUEUE_MANAGER, GUEST_QUEUE, and QUEUEhaveall
been compiled into the program library DISK:[SMITH.SHARE.ADALIB].

The closure of the unit QUEUE_MANAGERincludes the units QUEUE_

MANAGER, GUEST_QUEUE,and QUEUE.The following commandcopies

all of these units into the current program library:

$ ACS COPY UNIT/LOG/CLOSURE DISK: [SMITH.SHARE.ADALIB] QUEUE_MANAGER
sl, Generic instantiation GUESTQUEUE copied
I, Generic package QUEUE copied
I, Generic package body QUEUE copied

I,

I,

o
P

o
P

of
o
e Package specification QUEUEMANAGER copied

Package body QUEUEMANAGER copied

Note that the ACS COPY UNIT command makeslocal copies of units that
have been entered into a given library (see Section 2.2.5.2), as well as
units that have been compiled into a given library. Thus, the result of this
example would have been the same if the unit QUEUE had been entered
into DISK:[SMITH.SHARE.ADALIB] from yet another library, such as
USER:[PROJECT.ADALIB].

o
e

2.2.5.2 Entering Units into the Current Program Library

The ACS ENTER UNIT commandcreates a reference in the current program
library to a unit in another library. Units that have been loaded with the
ACS LOAD commandor converted with the ACS CONVERT LIBRARY

command, but not yet recompiled, are not entered.

Working with VAX Ada Program Libraries and Sublibraries 2-19

NOTE

The use of concealed-device logical names and rooted directory
syntax to specify program libraries helps in working with entered
units. See Chapter 5 for more information.

The following example showsthe use of the ACS ENTER UNIT commandto
enter the unit QUEUE_MANAGERinto the current program library from
DISK:[SMITH.SHARE.ADALIB]:

S$ ACS ENTER UNIT DISK: [SMITH.SHARE.ADALIB] QUEUE_MANAGER

For each unit specified, the ACS ENTER UNIT commandenters a reference
to the specification and a reference to the body. The ACS ENTER UNIT
command has noeffect on the library from which units have been entered.

You can determine which units are entered in the current program library
by using the ACS DIRECTORY command. For example:

$STANDARD |
package specification 17-Feb-1983 00:00 <entered>

AUX_IOEXCEPTIONS

package specification 13-Apr-1989 23:36 <entered>

CALENDAR

package specification 13-Apr-1989 23:51 <entered>

package body 13-Apr-1989 23:52 <entered>

CDD_TYPES
package specification 13-Apr-1989 23:52 <entered>

You can also identify entered units by using the ACS SHOW PROGRAM
command.

An example of entered units is the set of VAX Ada predefined units
(STANDARD, SYSTEM, TEXT_IO, STARLET, and so on) that are en-
tered into any newly created program library. The predefined units are
entered from the program library on your system denoted by the logical
name ADA$PREDEFINED.

If an entered unit is subsequently compiled in its original program library,
any reference to that unit from another library is made obsolete. You cannot
use the entered unit until you have reentered it using the ACS ENTER
UNIT/REPLACE or ACS REENTER command. In contrast, compiling a
unit that has been copied has no effect on the copies. Therefore, you may

2-20 Working with VAX Ada Program Libraries and Sublibraries

want to use the ACS COPY UNIT commandrather than the ACS ENTER
UNIT commandif the external unit is subject to frequent changes; see
Section 2.2.5.1.

The ACS ENTER UNIT commandis particularly useful for units that need
to be used by several program libraries. You may want to share units for
two reasons:

e Maintaining one master copy of a shared unit (or a set of shared units)
conserves disk space.

e If an entered unit is modified and compiled again in its original library,
all references to that unit from other libraries are made obsolete (the
program library manager issues appropriate messages when you try

to use the entered unit). Thus, you are assured that a revision to an

entered unit is automatically detected in all libraries that share that
unit.

The ACS CHECK, COMPILE, LINK, and RECOMPILE commands automat-

ically warn you of any obsolete references to units that have been entered
into the current program library. For example, consider the following
situation:

e The main program, HOTEL, depends on the package RESERVATIONS.

e The specification of RESERVATIONS depends on the package SCREEN_
IO, which has been entered from the library USER:[PROJECT.ADALIB].

e The body of RESERVATIONS depends on the package QUEUE_
MANAGER,which has been entered from the library
DISK:[SMITH.SHARE.ADALIB].

¢ Both SCREEN_IO and QUEUE_MANAGERhave been modified and

compiled more recently than HOTEL and RESERVATIONS.

Whenthe main program HOTELis linked, the program library manager
issues the following messages:

S$ ACS LINK HOTEL

cE, package specification SCREENIO has been recompiled in
USER: [PROJECT.ADALIB] and must be reentered

3B, package body SCREENIO has been recompiled in
USER: [PROJECT.ADALIB] and must be reentered

SE, package specification QUEUEMANAGER has been recompiled in

DISK: [SMITH.SHARE.ADALIB] and must be reentered

o&, package body QUEUEMANAGER has been recompiled in

DISK: [SMITH.SHARE.ADALIB] and must be reentered

Working with VAX Ada Program Libraries and Sublibraries 2-21

These messages identify the entered units that need to be reentered to
maketheir references current and usable. These units must be reentered
before the obsolete dependent units in the current program library can be
recompiled.

You can reenter units using either the ACS ENTER UNIT/REPLACE
command or the ACS REENTER command. Use the ACS ENTER
UNIT/REPLACE command when you need to reenter one or more units
from one library; use the ACS REENTER command when you needto

reenter a numberof units from a numberoflibraries.

For example, you can use the ACS REENTER command with the asterisk
wildcard character (*) to make current all obsolete references in your
current program library, regardless of whether or not the references are to
more than oneotherlibrary:

$ ACS REENTER/LOG *

$I, Package specification S$STANDARD entered

Package specification AUXIOEXCEPTIONS entered
Package specification CALENDAR entered
Package body CALENDAR entered

Package specification CDDTYPES entered
Package specification CLI entered
Package specification CONDITIONHANDLING entered
Package specification CONTROLC_INTERCEPTION entered
Generic package DIRECTIO entered
Generic package body DIRECTIO entered

Package specification DIRECTMIXEDIO entered
Package body DIRECTMIXEDIO entered

a
e

A
P

o
P

o
P

a
l

o
P

o
P

o
P

al
?

O
P

H
W

W
A

W
A

W
A
W
W

W
A

W
a

B
a

B
a

™
=

~
~

~
~

~
~

~
~

~
~

o
e

Package specification QUEUEMANAGER entered
Package body QUEUEMANAGER entered

Package specification SCREENIO entered
Package body SCREENIO entered

a
e

al
e

o
e

H
H
W
H

~
~

™
~

~
~

a\
°

The units reentered in this example are from the libraries ADA$PREDEFINED,
USER:[PROJECT.ADALIB], and DISK:[SMITH.SHARE.ADALIB].

After the obsolete entered units have been reentered, the remaining obsolete
units can be recompiled in the current program library, using the ACS
RECOMPILE command. By specifying HOTEL as the parameter to the
ACS RECOMPILE command,all obsolete units in the closure of HOTEL are

2-22 Working with VAX Ada Program Libraries and Sublibraries

recompiled. (See Chapter 3 for more information on recompilation and the
ACS RECOMPILE command.)

S$ ACS RECOMPILE HOTEL

The program HOTEL can now belinked.

2.2.6 Introducing Foreign (Non-Ada) Codeinto a Library

Whenyou are working with mixed-language programs, you can use the ACS
COPY FOREIGN and ENTER FOREIGN commandsto introduce linkable
non-Ada code into the current program library. You can then use ACS
commands to manipulate the resulting units as though they were VAX Ada
units.

The ACS COPY FOREIGN commandcopies a foreign object file into the
current program library. The ACS ENTER FOREIGN command enters
a reference to an external file into the current program library. An en-
tered foreign file may be an object file, object library, shareable image

library, shareable image, or linker optionsfile. The /LIBRARY, /OBJECT,

/OPTIONS, and /SHAREABLEqualifiers to the ACS ENTER FOREIGN
command specify the kind of file you are entering; the default is an object
file.

Before copying or entering a foreign file, you must create an Ada specifica-
tion for it and compile that specification into the library. You then copy or
enter the foreign file as a library body—thatis, the body of a library package
specification, library procedure specification, or library function specification.
Note that compiling the specification of a unit that has a foreign body does
not cause the body to become obsolete.

When you write a subprogram (procedure or function) specification that
will have a foreign body, you must use the pragma INTERFACE and
(optionally) a VAX Ada import pragma. See Chapter 4 for examples of
linking; see the VAX Ada Run-Time Reference Manual for examples of
writing mixed-language programs.

The ACS COPY FOREIGN and ENTER FOREIGN commandsprovide useful
mechanisms for importing package bodies. In the following example, the
body for IMPORTED_BODYis written in VAX Pascal. Note the use of the
INITIALIZE attribute with the declaration of the Pascal procedure; without
it the package body code is never “elaborated” and the variable Total never
receives the value it is assigned in Procedure Pas_Body.

Working with VAX Ada Program Libraries and Sublibraries 2-23

-- Ada package specification.

package IMPORTEDBODY is
TOTAL: FLOAT;

pragma IMPORTOBJECT (TOTAL);

end IMPORTEDBODY;

{ Pascal body. }

Module Pas_Body;
VAR

Total: [GLOBAL] REAL;

[INITIALIZE] Procedure PasBody;

CONST

Rate = 0.06;

VAR

Amt, Tax: REAL;

BEGIN

Amt := 5.0;

Tax := Amt * Rate;

Total := Tax + Amt;

END;

END.

-- Ada main program.

with IMPORTEDBODY; use IMPORTEDBODY;

with FLOATTEXTI0; use FLOATTEXTI0;
procedure PRINTTOTAL is
begin

PUT (Total);

end PRINTTOTAL;

You would compile the Ada and Pascal code in this example using the VAX
Ada and VAX Pascal compilers, and then youwould either copy or enter the
resulting Pascal object file into the current program library. For example:

S$ ACS ENTER FOREIGN PASBODY IMPORTEDBODY

Now, because the Pascal module Pas_Body is known to the current program
library as the body of the Ada package IMPORTED_BODY, the Ada pro-
cedure PRINT_TOTAL can be linked using the ACS LINK command. See

Chapter 4 for more information on linking mixed-language programs.

2-24 Working with VAX Ada Program Libraries and Sublibraries

2.2.7 Deleting Units from the Current Program Library

You enter the ACS DELETE UNIT commandto delete one or more units
from the current program library. For each unit namespecified, the ACS
DELETE UNIT commanddeletes the specification and body. For example:

$ ACS DELETE UNIT/LOG SCREEN_IO

sl, Package specification SCREENIO deleted
6I, Package body SCREENIO deleted

This commandis used in the same way regardless of whether a unit was
compiled, copied, or entered into the library. The ACS DELETE UNIT
command operates only on the current program library and has noeffect on
any otherlibrary.

If you want to delete only the body of a specified unit, you can use the
/BODY_ONLYqualifier with the ACS DELETE UNIT command. In this

case, the specification is not deleted. Thus, you can use the /BODY_ONLY
qualifier to delete a package body for a package that has been redefined so
that it no longer needs a body. For example:

$ ACS DELETE UNIT/BODYONLY/LOG SCREENIO

6I, Package body SCREEN IO deleted

$ ACS DIRECTORY SCREENIO
SCREENIO

package specification 15-Apr-1988 16:19

Total of 1 unit.

If you want to delete one or more entered units, you can use the /ENTERED

qualifier with the ACS DELETE UNIT command. For example, the
following commanddeletes all of the units entered from the library
[SMITH.SHARE.ADALIB]:

S$ ACS DELETE UNIT/LOG/NOLOCAL/ENTERED=[SMITH.SHARE.ADALIB] *

I, Package instantiation GUESTQUEUE deleted
I, Generic package QUEUE deleted

$I, Generic package body QUEUE deleted
I, Package specification QUEUEMANAGER deleted

I, Package body QUEUEMANAGER deleted

Note that in this case, the /NOLOCAL qualifier is also required to prevent
the local (nonentered) units from also being deleted (/LOCAL is the default).

Working with VAX Ada Program Libraries and Sublibraries 2-25

2.3 Using Program Sublibraries

Although a single program library is useful in many software project
situations, it may prove unwieldy when used for a system with many

components or many developers. For example, every time a compilation
unit is compiled, it is redefined in its program library, and the previous
versions are discarded. Any errors introduced during the modification
immediately affect dependent units. Moreover, if the modified unit is a
library specification, all dependent units must be recompiled. Program
sublibraries alleviate these problems by allowing you to isolate a collection

of units while they are being developed or maintained.

The following sections give more detail on how to use sublibraries. The

techniques discussed in these sections can be used with a project of anysize.
See Chapter 5 for information related to choosing a particular sublibrary
configuration.

2.3.1 Using ACS Commandswith Program Sublibraries

When using ACS commands with sublibraries, note the following points:

e The ACS CHECK, COMPILE, COPY FOREIGN, ENTER FOREIGN,
EXPORT, EXTRACT SOURCE, LINK, RECOMPILE, and SHOW
PROGRAM commandssearch the entire library hierarchy, starting with
the crurent program library and working up through its parents to the
root or ancestor parent library, for all units specified as parameters to
the command using names that do not involve wildcard characters.

For units selected with names that have wildcard characters, only the
current program library is searched. The ACS LINK/MAIN(the default)
and EXPORT/MAIN commandsdo not accept names with wildcard
characters. However, the ACS LINK/NOMAIN and EXPORT/NOMAIN

(the default) do accept names with wildcard characters.

¢ The ACS COPY UNIT, DELETE UNIT, DIRECTORY, ENTER UNIT,
MERGE, and REENTER commandssearch only the current program

library for the specified units, irrespective of wildcards.

e The ACS CHECK, COMPILE, COPY UNIT/CLOSURE, ENTER
UNIT/CLOSURE, EXPORT, LINK, RECOMPILE, and SHOW
PROGRAM commands, which operate on the execution closure of
the units specified, search the entire library hierarchy for all (other)
units in the closure, regardless of whether one of the other units was in
the closure of a unit specified with a name with wildcardsor not.

2-26 Working with VAX Ada Program Libraries and Sublibraries

e All commands that search the entire library hierarchy select units
according to the panes-of-glass visibility conventions described at the
beginning of this chapter.

For example, the following command will search only the current program
library for units whose names match the wildcard patterns B* and C% (for
example, B1, B2, and C3). It will search the entire library hierarchy for

units A and D, as well as all other units in the execution closure of A, B1,

B2, C3, and D.

S ACS CHECK A, B*, C%, D

The following commandwill search only the current program library for A,
D, and units whose names match the wildcard patterns B* and C%:

S ACS DIRECTORY A, B*, C%, D

2.3.2 Creating a Nested Sublibrary Structure

By specifying a sublibrary to be a parent library, you can use the ACS
CREATE SUBLIBRARY commandto create a nested sublibrary structure
(see Section 2.1.1). Nested sublibraries give you theflexibility of creating
additional controlled subenvironments for modifying units. The following
commandlines represent the structure shown in Figure 2-1:

S ACS CREATE SUBLIBRARY/PARENT=[HOTEL.ADALIB] [JONES.HOTEL.SUBLIB]

$ ACS CREATE SUBLIBRARY/PARENT=[(JONES.HOTEL.SUBLIB] -

_S [JONES.TEST.SUBLIB]

There is no specific limit on the depth of sublibrary nesting, but performance
decreases as more sublibrary levels are added.

The ACS SHOW LIBRARY/FULL commandidentifies the immediate parent
library of a sublibrary. For example:

S$ ACS SHOW LIBRARY/FULL [JONES.HOTEL.SUBLIB]

Program library USER: [JONES.HOTEL.SUBLIB]

Sublibrary

of USER: [HOTEL.ADALIB]

Working with VAX Ada Program Libraries and Sublibraries 2-27

Figure 2-1: Simple Nested Sublibrary Structure

[HOTEL.ADALIB]

HOTEL

Entered units
(ADA$PREDEFINED)

[JONES.HOTEL.SUBLIB] [SMITH.HOTEL.SUBLIB]

Finished copiesof Finished copiesof
RESERVATIONSandits SCREEN_IO andits
subunits subunits

A

(JONES.TEST.SUBLIB]

Working copiesof
RESERVATIONSandits
subunits

ZK-6747-GE

2.3.3 Changing the Parent of a Sublibrary

By using a concealed-device logical name and rooted directory syntax
for the VMSspecification of a parent library directory, you can later
change the parent library. For example, the following commanddefines

the root directory PROJECT_LIB to correspond to the device and directory
DUA7:[PROJECT.ADALIB]:

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED -
_$ PROJECT_LIB DUA?7: (PROJECT. ADALIB. }

2-28 Working with VAX Ada Program Libraries and Sublibraries

The next commandcreates the sublibrary USER:[JONES.SUBLIB] with the
parent PROJECT_LIB:[000000]. Note the use of [000000] to refer to the root

directory, which in this case is [PROJECT.ADALIB].

$ ACS CREATE SUBLIBRARY/PARENT=PROJECTLIB: [000000] -
_S USER: [JONES.HOTEL.SUBLIB]

To change the parent library, all you need to do is redefine the logical name
PROJECT_LIB. For example:

$ DEFINE/TRANSLATIONATTRIBUTES=CONCEALED PROJECT_LIB -
_$ DUA6: [NEWPROJECT.ADALIB.]

For more information on using concealed-device logical names and rooted
directory syntax with parent libraries and sublibraries, see Chapter 5.
For general information on concealed-device logical names and rooted
directory syntax, see the VMS DCL Concepts Manual and Guide to VMS File
Applications.

2.3.4 Merging Modified Units into the Parent Library

The ACS MERGE command moves new versionsof a set of units from a
sublibrary into its parent library. By default, any earlier versions of the
merged units are deleted from the parent library.

Units are not merged underthe following circumstances:

e Ifthey are older than the units in the parent library

e Ifa unit by the same namein the parent library has a more recent
external sourcefile

¢ If they have been loaded with the ACS LOAD commandor converted
with the ACS CONVERT LIBRARY command,but not yet recompiled

Whena unit is merged, information about the external source file associated
with the unit is also merged. This information may affect the behavior of
any subsequent ACS COMPILE commands, if you changethelocation of the
external source file. Thus, you may need to manage the behavior of the ACS
COMPILE commandby taking oneof the following actions:

e Using the ACS SET SOURCE commandto direct the ACS COMPILE
commandto the correct location.

e Using a concealed logical nameto refer to the directory containing the
source files and change the meaning of the logical name as necessary.
See Chapter 5 for more information on concealed logical names.

Working with VAX Ada Program Libraries and Sublibraries 2-29

The following command mergesall of the units that are in the current
program library (sublibrary) into the library’s parent library:

$ ACS MERGE *

2.3.5 Modifying and Testing Units in a Sublibrary Environment

You modify and test units in a sublibrary environmentbyfirst isolating the
units that need testing. Then, you generally follow these steps:

1. Create a sublibrary of the library where the units currently exist, and
define the sublibrary to be the current program library.

Edit the source text for the units being modified. (Note that the VAX
Ada program library manager does not provide a reservation system, so

if you need to reserve the source files for the units you are modifying,
you must use another tool such as the VAX DEC/Code Management
System (CMS). See Chapter 5 for more information about managing
modified sourcefiles.)

Compile the modified source text using the sublibrary as the current
program library. Units are compiled in the context of both the sublibrary
and its parent library, but only the sublibrary is updated with the
compiled units. Therefore, the parent library remains stable while the
units are being modified and tested independently in the sublibrary.

When you havefinished modifying and testing the units, check the
impact of any modifications with the ACS CHECK command. Then, use
the ACS MERGE commandto update the parent library with the latest
versions of the modified units.

If you have used a mechanism such as CMSto reserve the sourcefiles,
replace the sourcefiles.

For example, consider the sublibrary configuration for the HOTEL program

shown in Figure 2—2. Each of the sublibraries is to be used to modify and
test a different set of units.

Modification and testing of the generic unit MATH would involvethefollow-
ing series of ACS commands:

1. Create the sublibrary and defineit to be the current program library:

S ACS CREATE SUBLIBRARY [JONES.HOTEL.SUBLIB]

S$ ACS SET LIBRARY [JONES.HOTEL.SUBLIB]

2-30 Working with VAX Ada Program Libraries and Sublibraries

Figure 2-2: Sublibrary Configuration for the HOTEL Program

Project Program Library

HOTEL MATH
RESERVATIONS HOTEL_MATH
SCREEN_IO All subunits

and so forth

Entered units (ADAS$PREDEFINED)

Development Sublibrary Development Sublibrary Development Sublibrary

RESERVATIONS SCREEN_IO.OUTPUT MATH

packagespecification procedure body generic package

package body SCREEN_IO.INPUT generic package body
RESERVATIONS.CANCEL procedure body

procedure body
RESERVATIONS.RESERVE

procedure body
RESERVATIONS.RESERVE.BILL

procedure body

ZK-6748-GE

2. Modify the sourcefiles in a working directory.

3. Compile the files into the sublibrary:

S$ ADA MATH_, MATH

4. Enter the ACS CHECK commandto determine the impact of the modifi-
cations on any dependent units in the parent library:

S ACS CHECK HOTEL

SE, Obsolete library units are detected

6I, The following units need to be recompiled:
ACCOUNTING

package instantiation 15-Apr-1989 16:35
RESERVATIONS

package body 15-Apr-1989 16:35
RESERVATIONS . RESERVE

procedure body 15-Apr-1989 16:35
RESERVATIONS .RESERVE.BILL

procedure body 15-Apr-1989 16:35
RESERVATIONS. CANCEL

procedure body 15-Apr-1989 16:35

By specifying the main program, you can detect obsolete units in the

entire program.

Working with VAX Ada Program Libraries and Sublibraries 2-31

5. Recompile any obsolete units:

$ ACS RECOMPILE HOTEL

Note that only the sublibrary is updated when HOTELis recompiled.

6. Link the entire program and runit to test its behavior:

S$ ACS LINK HOTEL

S$ RUN HOTEL

7. Repeat the previous steps, as necessary.

8. When the modified units are behaving correctly, merge them into the
parent library:

$ ACS MERGE/LOG MATH

See Section 2.3.4 for more information on merging units.

Because the sublibrary configuration in Figure 2—2 is set up so that each
sublibrary contains a different set of units, you could execute the preced-
ing steps concurrently for each sublibrary. However, because some units
in one sublibrary may depend on units in another sublibrary, merging
into the project program library needs to be coordinated carefully among
project members. See Chapter 5 for additional information on configuring
sublibrary structures and managing program development.

2-32 Working with VAX Ada Program Libraries and Sublibraries

Chapter 3

Compiling and Recompiling VAX Ada Programs

In VAX Ada, compilation and recompilation are done in the context of
the current program library, which can be either a program library or a
sublibrary (see Chapter 2). Depending on the compilation command used,
the source text to be compiled can come from two kinds of Ada sourcefiles:

e Files external to the library—source files edited and managed by you.
Thesefiles are called external source files.

e Files internal to the library—files created by the /COPY_SOURCE
compilation qualifier and managed by the program library manager.
Thesefiles are called copied source files.

Each time a unit is compiled without error, the current program library
is updated with the new unit and any other products of compilation, such
as the object module and copied sourcefile. If the compilation of the unit
causes an error with a severity level greater than a warning (W), the
current program library is not updated.

Whenevera unit is compiled, any dependent units are made obsolete and
must be recompiled before the program can be linked. Linking also requires
that all units in the execution closure (bodies and subunits) be current.
Furthermore, any generic instantiations must be complete.

VAX Ada has four commandsthat you can usein different ways to compile,
recompile, and complete units: the DCL ADA command, the ACS LOAD
command, the ACS COMPILE command, and the ACS RECOMPILE

command. Table 3-1 summarizes and comparesthe characteristics and use
of each command.

See Chapter 1 for detailed definitions of obsolescence, currency, and

incompletion.

Compiling and Recompiling VAX Ada Programs 3-1

Table 3-1: Summary Comparison of the DCL ADA and ACS LOAD,
RECOMPILE, and COMPILE Commands

Command Usage

($) ADA Compiles the units in the specified Ada sourcefiles into the
current program library.

Useful for compiling units into a library for the first time
or to compile again a set of units whose compilation order
has changed. In both cases, you must know the compilation
order.

Available qualifiers provide a variety of options.

ACS LOAD Processes the units in the specified Ada sourcefiles, and

puts them into the current program library as obsolete
units. You must recompile the units to make them current.

Useful for putting a set of units into a library for thefirst
time, especially if you do not know the compilation order.
Also useful for adding units to an existing program.

Available qualifiers are similar to the DCL ADA and ACS
COMPILE and RECOMPILEqualifiers; has additional

qualifiers to help select the files to be processed.

ACS RECOMPILE Recompiles any obsolete unit or completes any incomplete
generic instantiations in the execution closure of the speci-
fied units. Uses the copied sourcefiles stored in the program
library. Ignores any source files external to the program
library.

Useful for making obsolete units current if the sourcefiles
have not changed, for completing an incomplete generic
instantiation, or for forcing the recompilation of an entire set
of units with different qualifiers (such as /NOCHECK).

For a unit to be recompiled or completed with this command,
it must have been originally compiled with the /COPY_
SOURCE qualifier.

Available qualifiers are a superset of the qualifiers for the
DCL ADA command,and are identical to the qualifiers for
the ACS COMPILE command(although some qualifiers,
like the (DIAGNOSTICS, /COPY_SOURCE,and /NOTE_
SOURCEqualifiers, have no effect).

(continued on next page)

3-2 Compiling and Recompiling VAX Ada Programs

Table 3—1 (Cont.): Summary Comparison of the DCL ADA and ACS LOAD,
RECOMPILE, and COMPILE Commands

Command Usage

ACS COMPILE Compiles any unit whose external source file has been mod-
ified, as well as recompiling obsolete units and completing
incomplete generic instantiations in the execution closure
of the specified units. To compile units whose sourcefiles
have been modified, uses external source files (source files
in the current default directory or source files in a location
determined by a search list). To recompile obsolete units or
complete incomplete generic instantiations, uses external
source files if they are available; if external sourcefiles
are not available, uses the copied source files stored in the
program library.

Useful for automatic compilation and recompilation of
modified units whose external source files have changed.

In cases where copied source files are used, units must have
been compiled with the /COPY_SOURCE qualifier. You

can use the ACS SET SOURCE commandto specify the
directories to be searched for the sourcefiles.

Available qualifiers are a superset of the qualifiers for the
DCL ADA command,andare identical to the qualifiers for
the ACS RECOMPILE command.

The use of these commandsis discussed in this chapter. The interpretation
of compiler listings and diagnostic messages that may result from
compilation are also discussed.

NOTE

The information in this chapter is task oriented. For full details
on the format, parameters, and qualifiers of the various ACS
commands, see Appendix A.

3.1 Compiling Units into a Program Library

To compile units into the current program library, you can use either the
DCL ADA command or the ACS LOAD command. These two commands
have different requirements and effects, as shown in Table 3-2.

Compiling and Recompiling VAX Ada Programs 3-3

Table 3-2: Comparison of the DCL ADA and ACS LOAD Commands

DCL ADA Command ACS LOAD Command

Compiles the units contained in the
files in the order given (or in the order
within thefile, if a file contains more

than one unit).

Must be executed at DCL level; runs in
interactive mode by default (unless ex-
ecuted in batch mode from a command
procedure).

Takes one or morefile specifications as
parameters.

Cannot use wildcards in thefile-
specification parameters.

Must specify each file to be compiled.

Can specify the program library to be
used for the duration of the compilation

(/LIBRARY qualifier).

When the commandhasfinished
executing, units compiled into the
library are current and can be linked
(assuming that their execution closure
is complete).

Best used in the following cases:

e When you know the compilation
order (for any numberof units)

e Whenfast compilation is important

Processes the units contained in the files;

processing includes syntax checking and
updating the library with unit dependence
and source-file information, but the units

are obsolete. The order in whichthefiles
are processed is not important.

Can be executed at DCL or ACSlevel;
runs in batch mode by default.

Takes one or morefile specifications as
parameters.

Can use wildcardsin thefile-specification
parameters.

Can use a numberof qualifiers to select
files based on backup andcreation dates,
user identification code, and so on.

Cannot choose another program library.

When the commandhasfinished exe-
cuting, units loaded into the library are
obsolete and must be recompiled with the
ACS COMPILE or RECOMPILE command
before they can belinked (see Section 3.2).

Best used in the following cases:

¢ When you do not know the compila-
tion order of the units contained in
the set of files; for example, after you
fetch a CMSclassofAda files from a
CMSlibrary to build a system

In the following example, the ADA command compiles the two sourcefiles
SCREEN_IO_.ADA and RESERVATIONS_.ADAin the order given. Because

the default input file type for the ADA commandis .ADA,thefile type has
been omitted in the commandline.

S$ ADA/LIST SCREEN_IO_,RESERVATIONS_

3-4 Compiling and Recompiling VAX Ada Programs

The /LIST qualifier causes a listing file (.LIS) to be created in the current
default directory. In this example, onelisting file is created for each of
the two input files. The listing-file names are, by default, the same as the
source-file names, but instead of a file type of .ADA, they havea file type
of .LIS.

In the following example, the ACS LOAD commandprocessesall of the units

contained in the sourcefiles in the current default directory, and updates
the current program library. Again, the default input file type is .ADA; the
/LOG qualifier causes the files processed (not the units) to be listed.

$ ACS LOAD/LOG *

6I, The following files will be loaded:

DISK: [JONES .HOTEL] SCREENIO.ADA

DISK: [JONES.HOTEL] SCREENIO.ADA

DISK: [JONES .HOTEL] RESERVATIONS .ADA

DISK: [JONES.HOTEL] RESERVATIONS.ADA

DISK: [JONES.HOTEL] HOTEL.ADA

$I, Job ACSLOAD (queue ALLBATCH, entry 659) started

on FASTBATCH

The units are loaded into the library as obsolete units. To make them
current and able to be linked, you must subsequently enter an ACS
COMPILE or RECOMPILE command, keeping in mind that these commands
operate on the execution closure of the units specified. For example:

S$ ACS COMPILE HOTEL

See Section 3.2 for more information on recompiling obsolete units.

Both the DCL ADA and ACS LOAD commandsaccept more than one unit in
a sourcefile, but this practice is not recommended (see Chapter1).

Both the DCL ADA and ACS LOAD commands assume the /COPY_SOURCE
and /NOTE_SOURCEqualifiers by default. The /[NOJCOPY_SOURCE
qualifier controls whether copied source files are created in the current
program library. Note the following points about this qualifier:

e Whenitis in effect, a copied sourcefile is created in the current program
library for each unit compiled withouterror.

¢ Copied source files are used by the ACS RECOMPILE and COMPILE
commands.

e Copied source files are used by the debugger (see Chapter6).

Compiling and Recompiling VAX Ada Programs 3-5

The /[NOJNOTE_SOURCEqualifier controls whether the compiler records

the file specification of a unit’s external source file in the program library.
The ACS COMPILE commandusesthis information to locate revised source
files. Whenit is in effect, the file specification of each unit’s sourcefile is
recorded in the current program library when the unit is compiled without
error.

Keep in mind that the default values of the /[NOJCOPY_SOURCE and
/[NOJNOTE_SOURCEqualifiers make the copied source files and the
location of the source files available to anyone who has read access to a
program library.

3.2 Recompiling Obsolete Units

Units can be obsolete for a numberof reasons:

e One or more units that they depend on have been compiled more
recently into the program library (see Chapter 1).

e The value of a global program library characteristic such as LONG_
FLOAT or SYSTEM_NAMEhasbeen changed (for example, after you

have used the ACS SET PRAGMA command). Note that the value
of SYSTEM_NAMEaffects only those units that name the package

SYSTEM in a with clause.

¢ The units were loaded into the current program library with the ACS
LOAD command(see Section 3.1).

To recompile a set of obsolete units, you can enter either the ACS
RECOMPILEor the ACS COMPILE command. In VAX Ada, the term

recompilation refers to the following series of steps:

1. Formation of the execution closure of a given set of units

2. Identification of the obsolete units in the closure

3. Recompilation of the obsolete units

Table 3—3 notes the differences between the ACS RECOMPILE and

COMPILE commandsin performing thesesteps.

3-6 Compiling and Recompiling VAX Ada Programs

Table 3-3: Differences Between ACS RECOMPILE and COMPILEin
Recompiling Obsolete Units

ACS RECOMPILE ACS COMPILE

Performs only the recompilation steps Performs the recompilation after compil-
ing any units whose external sourcefiles

have changed

Uses copied source files to do the Uses external source files to do the
recompilation recompilation; if external source files are

not available, uses copied sourcefiles

Note the use of copied source files for recompilation. If a copied sourcefile
needed for a recompilation is missing (because /NOCOPY_SOURCE was
specified in a previous compilation), the program library manager identifies

the missingfile, and the recompilation is not attempted. Thus, if you intend
to use the ACS RECOMPILE command, you should not compile units with
the /NOCOPY_SOURCEqualifier on any of the compilation commands.

The following example shows the use of the RECOMPILE commandto
recompile obsolete units. Consider the following set of units:

e The unit HOTEL, which is the main program and which namesthe unit
RESERVATIONSin a with clause.

e The unit RESERVATIONS, whose specification names the unit
SCREEN_IO in a with clause. The units RESERVATIONS and
SCREEN_IO each havea specification, body, and some subunits.

All of the units have been compiled into the program library with the
/COPY_SOURCEqualifier, so that a copied sourcefile exists in the library
for each unit.

If SCREEN_IO’s specification is compiled again, then its dependent units
become obsolete, as follows:

e Thespecification of RESERVATIONS becomes obsolete because it names
SCREEN_IO in a with clause.

e The body of RESERVATIONS becomesobsolete because it depends on
the specification of RESERVATIONS.

e The subunits of RESERVATIONS becomeobsolete because they depend
on the body of RESERVATIONS.

e The unit HOTEL becomes obsolete because it names the unit

RESERVATIONSin a with clause.

Compiling and Recompiling VAX Ada Programs 3-7

The following RECOMPILE command operates on the closure of
RESERVATIONS, and compiles the obsolete units using the copied source
files in the current program library:

$ ACS RECOMPILE/LOG RESERVATIONS

$I, The following units will be recompiled:
RESERVATIONS

package specification 15-Apr-1989 16:35
package body 15-Apr-1989 16:35

SCREENIO
package body 15-Apr-1989 16:35

SCREEN[O.INPUT

procedure body 15-Apr-1989 16:35

SCREENIO.INPUT.BUFFER

function body 15-Apr-1989 16:35

SCREENIO.OUTPUT
procedure body 15-Apr-1989 16:35

RESERVATIONS .RESERVE

procedure body 15-Apr-1989 16:35

RESERVATIONS. RESERVE.BILL

procedure body 15-Apr-1989 16:35

RESERVATIONS .CANCEL

procedure body 15-Apr-1989 16:35

$I, Job RESERVATIONS (queue ALLBATCH, entry 180) started

on FASTBATCH

As shownin this example, you can use the /LOG qualifier to display the
obsolete units in the order in which they will be submitted to the compiler.

The equivalent ACS COMPILE command would recompile the obsolete units
using the external source files (as well as compiling any units whose source
files had been modified); it would use copied source files only if the external
files were not available. If any of the source files have been modified and
the modifications change the order of compilation, the /PRELOAD qualifier
is needed (see Section 3.4).

Note that the execution closure of a given unit does not include any units

that name the given unit in a with clause. Therefore, in the preceding
example, the unit HOTEL is not recompiled (althoughit is also obsolete)
because HOTELis not part of the execution closure of RESERVATIONS.
If you were to specify HOTEL with the ACS RECOMPILE or COMPILE
command, you would recompile the execution closure of HOTEL, which

includes HOTEL, RESERVATIONS, and SCREEN_IO, and any subunits.

Thus, to recompile the obsolete units of an entire program, you must specify

the unit name of the main program with the RECOMPILE or COMPILE
command.

3-8 Compiling and Recompiling VAX Ada Programs

Also note that the RECOMPILE and COMPILE commandsdo not recompile
any entered units. However, because they check the execution closure of the

units specified, these commandsdo detect obsolete units. For example:

S ACS RECOMPILE HOTEL
SE, Package specification QUEUEMANAGER has been recompiled in

USER: [JONES.HOTEL.ADALIB] and must be reentered

SE, Package body QUEUEMANAGER has been recompiled in

USER: [JONES.HOTEL.ADALIB] and must be reentered

3.3 Completing Incomplete Generic Instantiations

An Ada program is considered to be incomplete if more processing needs
to be done before the program can be linked. For example, a program
with missing subunits is incomplete—you must compile the subunits into
the program library before you can link the program. A program with

incomplete generic instantiations is also incomplete—you must complete the
instantiations before you can link the program.

An incomplete generic instantiation can occur for a numberof reasons:

e Ifthe body or subunits of the body for the corresponding generic unit
are not available when the instantiation of the generic unit is compiled

(in this case, you must compile the body or subunits before you can

complete the instantiation). A special case of this situation occurs when
the generic body is the result of another instantiation that has not been
completed.

e Ifthe body for the corresponding generic unit is compiled or recompiled

after the instantiation of the generic unit is compiled.

You can use either the ACS RECOMPILEor the ACS COMPILE command
to complete generic instantiations. The ACS RECOMPILE command uses
copied source files to complete generic instantiations. The ACS COMPILE
command uses external source files if they are available; copied sourcefiles
if external source files are not available. In some cases, particularly when
a generic unit contains an instantiation of another generic unit, you may

need to use the ACS RECOMPILE or COMPILE command more than once
to complete all of the instantiations in a set of units.

Note that when completing a generic instantiation, the compiler uses the
values of the /CHECK, /DEBUG, and /OPTIMIZE qualifiers that were in
effect when the instantiation was created. The compiler uses the original
qualifier values even if you specify other values for the ACS RECOMPILEor
COMPILE commandthat will perform the completion.

Compiling and Recompiling VAX Ada Programs 3-9

By default, a unit that contains a generic instantiation does not depend on
the body for the corresponding generic unit. Thus, when the generic body
is compiled, the unit containing the instantiation does not become obsolete,

even though the instantiation has become incomplete. Consequently,
when the unit containing the instantiation is recompiled to complete the
instantiation, units that depend on the unit containing the instantiation do
not become obsolete and do not need to be recompiled.

However, an implicit or explicit inline pragma for the generic instantiation
may cause the unit containing the instantiation to depend on the body for
the corresponding generic unit. If this dependence exists (see Chapter 1), the
instantiation is expanded inline and the unit containing the instantiation
becomes obsolete when the generic body is recompiled. Consequently,
whenthe unit containing the instantiation is recompiled to complete the
instantiation, the unit containing the instantiation is also recompiled, and

all units that depend on the containing unit must also be recompiled.

See the VAX Ada Language Reference Manual and VAX Ada Run-Time
Reference Manual for more information on inline pragmas (pragma INLINE
and pragma INLINE_GENERIC). See Appendix A for information on the
/OPTIMIZE qualifier, which has options that have effects equivalent to the
inline pragmas. See Chapter 1 for more information on incomplete and
obsolete units.

Consider the following set of units:

e The unit MATHis a generic package, with a specification (MATH_) and
a body (MATH).

e ACCOUNTINGis a library package instantiation of the unit MATH.

¢ The unit RESERVATIONSis a nongeneric package; its body depends on
the package ACCOUNTING.

e The main program HOTEL depends on the unit RESERVATIONS.

The specifications and bodies of these units are compiled into the program
library in the following order. Note that the body of the generic unit MATH
is compiled after the instantiation ACCOUNTING.

MATH_
ACCOUNTING
RESERVATIONS_
RESERVATIONS
HOTEL
MATH

3-10 Compiling and Recompiling VAX Ada Programs

As the following commands show, the main program HOTEL cannot be
linked until the body of the unit MATHis in the program library and
ACCOUNTINGhas been completed:

ADA MATH_
ADA ACCOUNTING

ADA RESERVATIONS_, RESERVATIONS

ADA HOTEL

ACS LINK HOTEL

SE, Body for MATH not found in library
SE, Obsolete library units are detected

M
w
i
w
s
n
w
n

$I, The following units need to be completed (use ACS COMPILE

or ACS RECOMPILE) :

ACCOUNTING

package instantiation 15-Apr-1989 16:35

S ADA MATH

S ACS LINK HOTEL

SE, Obsolete library units are detected

$I, The following units need to be completed (use ACS COMPILE

or ACS RECOMPILE):
ACCOUNTING

package instantiation 15-Apr-1989 16:35

S ACS RECOMPILE/LOG ACCOUNTING

$I, The following units will be completed:

ACCOUNTING

package instantiation 15-Apr-1989 16:35

sl, Job ACCOUNTING (queue ALLBATCH, entry 383) started on
FASTBATCH

S$ ACS LINK HOTEL
S$ RUN HOTEL

Consider also the following example:

generic
package GENERICPACKAGE is

procedure INNERPROCEDURE;

end GENERICPACKAGE;

with GENERICPACKAGE;
package CONTAINSINST is

package NEW_GENERIC_PACKAGE is new GENERICPACKAGE;

end CONTAINSINST;

Compiling and Recompiling VAX Ada Programs 3-11

with CONTAINSINST;

procedure MAIN is

begin

end MAIN;

package body GENERICPACKAGE is
procedure INNERPROCEDURE is
begin

end INNERPROCEDURE;

end GENERICPACKAGE;

Assumethat the units are compiled in the order shown andthatall compile
without errors. Because the package body for GENERIC_PACKAGEis
compiled after the package CONTAINS_INST,the instantiation of NEW_
GENERIC_PACKAGEis incomplete. By entering an ACS COMPILE or
RECOMPILE command, you would complete the instantiation.

You can detect incomplete generic instantiations during a com-
pilation by checking the compiler listing file, or by using the
/WARNINGS=(STATUS:TERMINAL) qualifier on your compilation com-
mand. For example:

$ ADA/WARNINGS= (STATUS: TERMINAL) GENERIC_PACKAGE

SI, Generic package GENERICPACKAGE added to library

USER: [JONES .HOTEL.ADALIB]

Replaces older version compiled 8-Mar-1989 21:15
SI, Package specification CONTAINSINST added to library

USER: [JONES .HOTEL.ADALIB]

10 package NEWGENERICPACKAGE is new GENERICPACKAGE;

$I, (1) Instantiation incomplete because the generic body
for generic package GENERICPACKAGE in GENERICPACKAGE
at line 1 is not available

$I, Procedure body MAIN added to library

USER: [JONES.HOTEL.ADALIB]

sl, Generic package body GENERICPACKAGE added to library

USER: [JONES.HOTEL.ADALIB]

Replaces older version compiled 8-Mar-1989 21:15
Corresponds to generic package GENERICPACKAGE compiled

8-Mar-1989 21:16

~The ACS CHECK and SHOW PROGRAM commandsalso detect incomplete
instantiations (see Chapter 2).

3-12 Compiling and Recompiling VAX Ada Programs

3.4 Compiling a Modified Program

To compile a modified program, you can use the ACS COMPILE command
with one or more qualifiers and the unit name of the program. The
COMPILE commandlocates modified source files, compiles them, and then
recompiles any obsolete units using information stored in the program
library from previous compilations. It also forms any generic completions

involved in the compilation. For example:

¢ To locate the modified source files, the COMPILE command uses

information obtained with the /NOTE_SOURCE compilation qualifier.

e To carry out recompilations and generic completions, it uses information
obtained with the /NOTE_SOURCE qualifier; if it cannot find that
information, it uses information obtained with the /COPY_SOURCE

qualifier.

When the COMPILE commandsearches for modified sourcefiles, it searches

source-file directories as indicated in Section 3.6. If the COMPILE command

finds that no files have been modified and all units are current and complete,
the program library manager issues a success message. For example:

$ ACS COMPILE QUEUVUE_MANAGER, ACCOUNTING

$I, All units and files current, no compilations required

If the COMPILE commandcannotfindthe files it needs for compilation,
recompilation, or to complete a generic instantiation, an error message is
issued, and no compilation occurs. See Section 3.2 for more information on
how the COMPILE command recompiles obsolete units. See Section 3.3 for
more information on generic completions.

The following example showsthe functions of the COMPILE command when
it finds revised source files. The COMPILE commandin this example was
issued after the specification and body of RESERVATIONSwererevised, but
before they were compiled into the current program library. The command
operates on the closure of RESERVATIONS,the specified unit. The /LOG
qualifier displays the units to be compiled from external sourcefiles, and
those to be recompiled either from external or copied sourcefiles.

$ ACS COMPILE/LOG RESERVATIONS

$I, The following units will be compiled from source files
RESERVATIONS

package specification 15-Apr-1989 17:27
USER: [JONES .HOTEL] RESERVATIONS.ADA

package body 15-Apr-1989 17:27

USER: [JONES .HOTEL] RESERVATIONS .ADA

Compiling and Recompiling VAX Ada Programs 3-13

$I, The following units will be recompiled
RESERVATIONS .RESERVE

procedure body 15-Apr-1989 17:21
RESERVATIONS .RESERVE. BILL

procedure body 15-Apr-1989 17:21
RESERVATIONS .CANCEL

procedure body 15-Apr-1989 17:21

$I, Job RESERVATIONS (queue ALLBATCH, entry 218) started

on FASTBATCH

By default, the ACS COMPILE command does not look within a sourcefile
to determine the use of with clauses, subunit stubs, and so on whenit does

a compilation. Instead, it assumes that unit dependences have not changed.

However, the /PRELOAD qualifier does allow you to use the COMPILE
command to compile a modified set of units whose compilation order has
changed (or to which new units have been added). For example,if the
compilation order of the units comprising the hotel reservation system has
changed, then the following command will detect such changes and put the
units in the correct order before submitting them to the compiler:

$ ACS COMPILE/PRELOAD HOTEL

Note that the /PRELOAD qualifier operation is done immediately, before the
total set of compilations and recompilations is submitted to the batch queue.

3.5 Forcing the Compilation or Recompilation of
a Set of Units

In some cases, you may wantto force the compilation or recompilation
of a set of units. For example, you may want to compile or recompile
a set of units with different qualifier values, such as /NOOPTIMIZE or
/NOCHECK.Because the ACS COMPILE and RECOMPILE commandsuse
date-checking to determine which units to compile or recompile, you can use
the /NODATE_CHECKqualifier to accomplish this task.

For example, the following commandforces the recompilation of the spec-
ification, body, and subunits of RESERVATIONSwith the /NOOPTIMIZE
qualifier:

$ ACS RECOMPILE/NODATECHECK/NOOPTIMIZE RESERVATIONS

You can force the compilation or recompilation of an entire closure (except
for entered units) by combining the /NODATE_CHECKqualifier with the
/CLOSURE qualifier. For example, the following command compiles any
modified units and forces the compilation of all other units in the HOTEL
program with the /NOCHECKqualifier:

3-14 Compiling and Recompiling VAX Ada Programs

$ ACS COMPILE/NODATE_CHECK/CLOSURE/NOCHECK HOTEL

Because they contain most of the executable code, bodies and subunits
are apt to be modified and compiled more often than specifications. You
can use the /FORCE_BODYqualifier if a unit is current, but you want to
force the compilation or recompilation of only its body (and, because they
depend on the body, its subunits). In this way, any unit that depends on the
specification by way of a with clause is not made obsolete. In the following
example, the RECOMPILE commandforces the recompilation of the body
(and any subunits) of SCREEN_IO:

$ ACS RECOMPILE SCREEN_IO/FORCEBODY, RESERVATIONS

The /NODATE_CHECK and /FORCE_BODYqualifiers are positional, and
affect only the parameter for which they are specified. Therefore, the
following commandlines are not equivalent:

$ ACS RECOMPILE/NODATE_CHECK/NOOPTIMIZE SCREENIO, RESERVATIONS
$ ACS RECOMPILE/NOOPTIMIZE SCREEN_IO, RESERVATIONS/NODATE_CHECK

In the first commandline, the specifications, bodies, and subunits of
RESERVATIONS and SCREEN_IO are recompiled with the /NOOPTIMIZE
qualifier. In the second commandline, the specification, body, and subunits

of RESERVATIONSare recompiled with the /NOOPTIMIZE qualifier, but
only those units in the execution closure of SCREEN_IO that are obsolete
are recompiled with the /NOOPTIMIZE qualifier.

3.6 Using Search Lists for External Source Files

The ACS SET SOURCE commandallows you to define a searchlist for the
ACS COMPILE command. Then, when it searches for an external source

file, the COMPILE commandfirst tries to use the source-file-directory
search list defined with the most recent SET SOURCE command. If no SET
SOURCE commandhas been entered for the current process, the default
source-file-directory search orderis as follows:

1. SYS$DISK:[] (the current default directory)

2. 30 (the directory that contained the file when it was last compiled), or
node::;0 (if the file specification of the source file being compiled contains
a node name)

The search order takes precedence over the version numberor revision
date-time if different versions of a file exist in two or more directories.
Within any one directory, the version of a particular file that has the highest
numberis considered for compilation.

Compiling and Recompiling VAX Ada Programs 3-15

One possible use of the ACS SET SOURCE commandis to define a
search list that includes a VAX DEC/CMSlibrary; see Chapter 5 for more
information on the interaction between CMS and the VAX Ada program
library manager.

The following example showsthe use of the ACS SET SOURCE command:

S$ ACS SET SOURCE SYSSDISK: [],USER: [JONES.HOTEL], ;0

After this commandis executed, a subsequent ACS COMPILE command
will search for sourcefiles first in the current default directory, then in
USER:[JONES.HOTEL], then in the directory where a particular sourcefile
was last compiled. :

The ACS SET SOURCE commandassignsthe specified search list to the
process logical name ADA$SOURCE.The search list defined by the SET
SOURCE commandstays in effect until you either enter another SET
SOURCE commandorlogout.

You can use the ACS SHOW SOURCE commandto display the current
search list selected by the last ACS SET SOURCE command. For example:

S ACS SHOW SOURCE
$I, Current source search list (ADASSOURCE) is

SYSSDISK: []

USER: [JONES .HOTEL]

70

3./ Choosing Optimization Options

The /OPTIMIZE qualifier to the DCL ADA and ACS COMPILE and

RECOMPILE commandsgives you a numberof options for controlling the
level of optimization applied to your program by the compiler. You can also
use this qualifier and its options to override the behavior of the pragmas
OPTIMIZE, INLINE, INLINE_GENERIC, and SHARE_GENERIC.

There are four primary options: TIME, SPACE, DEVELOPMENT, and
NONE.There are two secondary options, INLINE and SHARE, which
have a number of values and which can be used in combination with the
four primary options, or can be used themselves as primary options. The
compiler issues informational messages when the options you have chosen
affect pragmas in your program. See Appendix A for a detailed description
of each option andits values.

In general, you should use the DEVELOPMENToption during active
development, and you should use the secondary options to tune the
performance of production programs.

3-16 Compiling and Recompiling VAX Ada Programs

The following optimization options generally give the best overall results:

/OPTIMIZE=DEVELOPMENT Programs under active development

/OPTIMIZE=INLINE:MAXIMAL Production programs that do not make extensive
use of generics, or that do make extensive use
of generics, but explicitly specify a pragma
SHARE_GENERIC for larger generics that are
instantiated many times

Maximalinline expansion often results in programs that execute faster.
However, you should not use maximal subprogram or generic inline
expansion during active development because changes to subprogram or
generic bodies that are expanded inline can cause manyother units to need
to be recompiled.

The following options are also of interest:

/OPTIMIZE=INLINE:SUBPROGRAMS Generally provides the fastest running code
on VMS systems and usually results in
decreased codesize as well.

/OPTIMIZE=INLINE:GENERICS Results in maximal generic inline expansion
and generally optimizes execution time.
All generic instantiations (except for those
to which an explicit pragma SHARE_
GENERIC applies) are expandedinline at
the point of instantiation if the generic body
is available.

/OPTIMIZE=SHARE:MAXIMAL Maximizes generic code sharing. This
option optimizes space at the expense
of execution time. Note, however, that

sharing will not occur unless the code that
is generated for one instance is similar to
the code for another.

You should not use the SHARE:MAXIMAL
options when you are compiling all of the
files in your program. You will obtain better
results if you use the pragma SHARE_
GENERIC or compile a portion of your
program with this option.

See the VAXAda Run-Time Reference Manual for more information on inline

expansion (subprogram and generic) and generic code sharing. See the
VAXAda Language Reference Manual for more information on the pragmas
OPTIMIZE, INLINE, INLINE_GENERIC, and SHARE_GENERIC.

Compiling and Recompiling VAX Ada Programs 3-17

3.8 Processing and Output Options

When you load, compile, and recompile Ada compilation units, you have
a variety of processing and output options available to you. This section
describes the following options:

¢ Batch processing. Batch mode, using a dedicated batch queue, is
recommended with the DCL ADA and ACS LOAD, COMPILE, and

RECOMPILE commands.

¢ Retaining, for future use, a DCL commandfile generated by the ACS
LOAD, COMPILE, and RECOMPILE commands.

e Executing the ACS LOAD, COMPILE, or RECOMPILE compilations in
a subprocess.

e Using certain defaults, symbols, and logical names for the ACS LOAD,
COMPILE, and RECOMPILE commands.

e Directing ACS LOAD, COMPILE, and RECOMPILE commandoutput to
the terminal andtofiles.

See Appendix A for complete details on the qualifiers and defaults that
control these options.

3.8.1. Executing Compilations in Batch Mode

In a multiuser environment, you can improve the use of machine time by

executing the DCL ADA and ACS LOAD, COMPILE, and RECOMPILE
commands in batch mode, using a dedicated batch queue.

The suggested batch-queue and SYSGEN parameters for best use of system
resources during compilation are specified in Appendix E and in the VAX

Ada Installation Guide. These parameters should be set by your system
manager. The batch-queue parameters limit the numberof concurrent batch
jobs (and, therefore, compilations), and define an expanded value for the
working set size.

You can submit DCL ADA compilations in batch mode using command
procedures and the DCL SUBMIT command. The DCL SUBMIT command
makesall of the DCL batch options available with the DCL ADA command.
See the VMS DCL Dictionary for more information on these options.

3-18 Compiling and Recompiling VAX Ada Programs

Because the ACS LOAD, COMPILE, and RECOMPILE commandstypically

cause several units to be processed, the compilations for these commands
are executed in batch mode by default. (This default mode is equivalent to
using the /SUBMIT qualifier with these commands.) The LOAD, COMPILE,
and RECOMPILE commands submit compilations to the batch queue named
by the logical name ADA$BATCHbydefault. If ADA$BATCHis not defined,
the system batch queue SYS$BATCHis used.

To use a dedicated queue for VAX Ada compilations, define ADA$BATCH
as a logical name whosetranslation is the name of the appropriate queue.
Consult your system managerfor additional information.

3.8.2 Saving the Load or Compiler Command File

When you use the ACS LOAD, COMPILE, or RECOMPILE command, the

program library manager creates a DCL commandfile. The file contains
commands to load or compile units in appropriate order.

By default, the program library manager deletes the commandfile when
the ACS LOAD, COMPILE, or RECOMPILE commandis completed or

terminated.

You can use the /COMMAND([=filespec] qualifier to retain the commandfile
and optionally provide a file specification. When you use the /COMMAND
qualifier, the program library manager does not perform the load operation
or invoke the compiler. For example, the following commandline creates the
command file HOTEL.COM, which contains commands to compile every unit
in the closure of HOTEL from sourcefiles: ,

$ ACS COMPILE/CLOSURE/NODATECHECK/COMMAND HOTEL

By default, the commandfile is created in the current default directory, and
the file name is the nameofthe first unit specified (the default file type
is .COM).

You can then edit the commandfile and later submit it as a batch job, using
the DCL SUBMIT command. Onepossible use of this technique is to use
certain batch qualifiers that are supported by DCL but not by the program
library manager.

Compiling and Recompiling VAX Ada Programs 3-19

3.8.3. Loading Units and Executing Compilations in a Subprocess

You can cause the ACS LOAD, COMPILE, or RECOMPILE compilations to
be executed in a subprocess by specifying the /WAIT qualifier. For example,
the following commandline creates a subprocess and invokes the compiler
commandfile created by the program library manager to recompile the
closure of unit RESERVATIONS:

S ACS RECOMPILE/WAIT RESERVATIONS

The current process is suspended while the program library manager
executes the command, and you must wait until the commandis terminated

before you can enter another command. Theneteffect is like executing the
command interactively.

In a multiuser environment, you should execute the compilations for the
ACS LOAD, COMPILE, and RECOMPILE commandsin batch mode rather

than in a subprocess (see Section 3.8.1).

3.8.4 Conventions for Defaults, Symbols, and Logical Names

When executing the ACS LOAD, COMPILE, or RECOMPILE command,

the program library manager transmits the current definitions of certain

defaults, symbols, and logical namesto the batch or subprocess environment.
Specifically:

¢ The current default directory is preserved. By default, any files created
outside the current program library (for example, a commandfile or a
listing file) are created in the current default directory.

¢ The current definition of the symbol ADAis used. For example, you
could define ADAasfollows:

$ ADA == "ADA/LIST"

Then the following commands would have the sameeffect:

S$ ACS COMPILE/NODATE_CHECK/NOOPTIMIZE SCREEN_IO
$ ACS COMPILE/NODATE_CHECK/LIST/NOOPTIMIZE SCREENIO

¢ The current value of the logical name ADA$LIBis used to maintain the
current program library context.

The DCL commandfile that you can obtain with the /COMMAND qualifier
contains the current definitions of the default directory, the symbol ADA,
andthe logical name ADA$LIB.

3-20 Compiling and Recompiling VAX Ada Programs

3.8.5 Directing Program Library Manager and Compiler Output

When you use the ACS LOAD, COMPILE, or RECOMPILE command, any

program library manager output and diagnostic messages generated before
the compiler is invoked are directed to SYS$OUTPUT,by default. Examples

of such ACS output and diagnostics include the following:

e A list of the units to be processed, as displayed by the /LOG qualifier

¢ A diagnostic message indicating that some units are obsolete or missing

You can use the /OUTPUT=file-spec qualifier to direct program library
manager output and diagnostic messagesto a file (in that case, program
library manager diagnostic messages are directed to both the file and
SYS$OUTPUT).

Diagnostic messages issued by the compiler are directed as follows:

e To a batch log file in the case of a batch job

¢ To your terminal in the case of a subprocess

The batch log file is created in your current default directory by default.
You can use the /BATCH_LOG=file-spec qualifier with the ACS LOAD,

COMPILE, and RECOMPILE commandsto specify the target directory
(and/or file name) for the batch log file.

3.9 Compiler Diagnostic Messages

When you compile an Ada program or compilation unit, you may receive

a variety of diagnostic messages from the compiler. These messages are
discussed in the following sections. All diagnostic messages issued by the
VAX Ada compiler are listed and categorized in Appendix F-.

NOTE

The DCL ADA and ACS command examples in this manual that

involve diagnostic messages show only the severity part of the
message code. They do not show thefacility or the IDENT parts
of the message code. To obtain this effect, use the following DCL
SET MESSAGE command:

$ SET MESSAGE/NOFACILITY/NOIDENTIFICATION/SEVERITY/TEXT

Compiling and Recompiling VAX Ada Programs 3-21

To display or suppress various parts of diagnostic messages

(including parts of the code) at the terminal or in a listing, enter
other variants of the DCL SET MESSAGE command(see the
VMS DCL Dictionary or VMS General User’s Manual).

Diagnostic messages are also issued by the VAX Ada program library
manager and run-time library; those messages are described, listed, and
categorized in Appendixes G and H,respectively.

3.9.1 Diagnostic Messages and Their Severity

A VAX Ada compiler diagnostic message contains one of the following four
codes, which indicate the severity level:

al
e

ol
e

H
S
w
y , message-text

, message-text

, message-text

, message-text

o
e

a
e

e F indicates a fatal error. The program library is not updated for
the compilation unit in which the fatal error occurred. An F-level

message indicates that the compiler is unable to perform the intended
compilation. For example, the file to be compiled does not exist, or the
library cannot be accessed. If an error is so serious that the compiler
cannot continue, the entire compilation (not limited to the current
compilation unit) is terminated with an F-level message that indicates
the last line analyzed in the attempted compilation.

¢ E indicates a user error that makes the program illegal. The program
library is not updated for the compilation unit in which the error
occurred. E-level messages are often supplemented with informational
(I-level) messages that give additional information aboutthe error.

When the VAX Ada compiler finds a syntax error, it attempts to correct
it so that it can continue analyzing the rest of the program,if possible.
A syntax error makes the program illegal, even if the temporary repair
results in no further problems being uncovered.

The compiler performs several kinds of local repairs. For example,
it may addor delete a delimiter or reserved keyword. If local repair
is considered inappropriate, the compiler may ignore the innermost
declaration or statement. When a syntactically correct program results
from these actions, processing continues with semantic analysis to

provide as much useful diagnostic information as possible.

3-22 Compiling and Recompiling VAX Ada Programs

W indicates a definite problem in a legal program—for example, an
unknown pragma. The program library is updated for the compilation
unit in which the warning occurred. A W-level error will not prevent the
unit from linking and executing, but the behavior of the program may
not be what you expect.

I indicates an informational message. Section 3.9.2 describes the
different kinds of informational messages and how you can control their
display. An I-level message does not report an illegal construct as such.
Frequently, however, the message contains supplementary information
about a preceding or otherwise related E-level error. In addition, I-level
messages are used to note places where some kind of exception (such as
CONSTRAINT_ERROR)is likely to occur during execution, or to report
that the compilation was successful and the program library has been
updated.

When the compiler finishes or terminates a compilation, it exits with a
status value that indicates the severity of the most severe error during
execution. The status values and their severity are as follows:

Value Severity

0 Warning

1 Success

2 Error

3 Informational

4 Fatal error

In VAX Ada, weak warnings fall under the category of informational, so keep
the following points in mind:

If the most severe error during execution of the image was a weak
warning, then the compiler exits with a status that has a severity of
informational (value 3).

If no errors, warnings, or weak warnings are detected, the compiler exits

with a status that has a severity of success (status value 1).

If you are running the compiler from a commandprocedure (batch), and need
to check for weak warnings, such as one indicating that CONSTRAINT_
ERRORwill be raised at run time, you can include the following statement
in your procedure:

S IF S$SEVERITY .EQ. 3 THEN

Compiling and Recompiling VAX Ada Programs 3-23

3.9.2 Informational Messages and the /[NO]WARNINGS Qualifier

There are four kinds of informational (I-level) messages:

¢ WEAK_WARNINGSindicate potential problems in a legal program—for
example, a possible run-time error. Weak warnings are the only kind
of informational diagnostics that are counted in the summary statistics
given at the end of a compilation. The following is an example of a
WEAK_WARNINGSmessage:

$I, CONSTRAINTERROR will be raised here if executed

e SUPPLEMENTAL messages are associated with a W-level or E-level
diagnostic. Such messages provide additional information about a
diagnostic or indicate that some checks were not performed due to prior
errors. For example:

$I, Result type of expression is unknown due to prior error

¢ COMPILATION_NOTESprovide information about how the compiler
translated a program. They do not warn you of a possible problem, nor

are they related to a W-level or E-level diagnostic. For example:

o
o I, Component allocated at ...

ol
e I, Selected passing mechanism is ...

o
e I, Parent type chosen is ...

o
e I, Call of function X at line 2 is expanded inline ...

¢ STATUSdiagnostics include some end-of-compilation statistics and other
status messages. For example:

$I, Procedure body HOTEL added to program library

You can use the /WARNINGS=option qualifier on any of the VAX Ada
compilation commandsto control the display of I-level and W-level messages.
The option specified with the /WARNINGSqualifier consists of a destination
code for each kind of message. The possible code values are ALL, NONE,or
any combination of TERMINAL (terminal device), LISTING (listing file), or
DIAGNOSTICS(diagnostics file). See the compilation command descriptions
(DCL ADA and ACS LOAD, COMPILE, and RECOMPILE) in Appendix A
for the exact syntax. The defaults are as follows:

/WARNINGS= (NOCOMPILATIONNOTES, STATUS=LIST, SUPPLEMENTAL=ALL,

WARNINGS=ALL, WEAKWARNINGS=ALL)

3-24 Compiling and Recompiling VAX Ada Programs

For example, the following commandspecifies that weak warning and
supplemental messages be sent to the terminal and tothe listing file, and
that other diagnostics be directed to their default destination:

S$ ADA/LIST/WARN= (WEAK: (TERM, LIST) , SUPP: (TERM, LIST)) SCREEN_IO.ADA

3.9.3 Setting Compiler Error Limits

You can use the /ERROR_LIMIT qualifier to control whether execution of
the DCL ADA or ACS LOAD, COMPILE, or RECOMPILE commandfor a

given compilation unit is terminated upon the occurrence of the nth E-level
error within that unit.

Error counts are not accumulated across a sequence of compilation units.

For example, if /ERROR_LIMIT=5is specified, each compilation unit
submitted may have up to four errors without terminating the compilation.
Whentheerror limit is reached within a compilation unit, compilation of
that unit is terminated, but compilation of subsequent units continues.

The default value of the qualifier is /ERROR_LIMIT=30.

3.10 Compiler Listing Format

Example 3-1 shows various aspects of the listings generated by the VAX
Ada compiler.

Example 3-1 is a listing from the compilation of a procedure (SHOW_
LISTING) containing several kinds of diagnostic messages. Thelisting
showsthe kinds of error reporting provided by the VAX Ada compiler. The
listing was the result of the following DCL ADA command:

$ ADA/LIST/SHOW=ALL/WARNINGS=COMPILATION_NOTES:LIST LISTING

A VAX Ada compiler listing generated by the /LIST qualifier has, as a
minimum,the following major sections:

e A source-code listing, showing any diagnostic messages at the appropri-
ate locations, and an end-of-compilation status message

e Acompilation-statistics section

Whenyou use the /SHOW=PORTABILITY qualifier (the default), the listing
includes a portability summary before the compilation statistics section.

When you use the /(MACHINE_CODE qualifier, the listing includes a
machine-code listing and a PSECT mapafter the source-codelisting.

Compiling and Recompiling VAX Ada Programs 3-25

The following list notes various parts of a VAX Ada compiler listing. The
numbers match identifying numbers in Example 3-1.

Each page of a compiler listing begins with title line, which hasfive parts:

oO

e
o
o

od
6
0
0
9

oO
The name of the compilation unit.

The title text provided in a pragma TITLE,if any. If no title text applies,

the compilation unit name may extend into this part. Whentitle text
does apply, the unit nameis truncated to 15 characters, if necessary.

The date and time of compilation.

The VAX Ada compiler name and version number.

The page numberofthelisting.

On each page of thelisting, a line underthetitle line provides the
following information about the sourcefile:

The module identifier, which was not used in the compilation for
Example 3-1, and is specified by the default value 01.

The subtitle text provided in a pragma TITLE,if any.

The date and timeof sourcefile creation.

The VMSfile specification of the sourcefile.

The page numberof the sourcefile.

The source code is printed in the source-codelisting as follows:

The compiler assigns a unique line numberto each line of source code in
a VAX Ada compilation unit. The symbolic traceback that is displayed
if your program encounters an error at run timerefers to these line
numbers; in addition, the VMS Debugger uses these line numbers in
various contexts (see Chapter6).

The source-code listing includes diagnostic messages(errors, warnings,
and informational messages) produced by the compiler. These messages
appear directly after the line on which the condition is detected. In
some cases, several lines may be devoted to one condition. Diagnostic
messages include the following information:

@ A digit that points to the position on the line where theerroror
~ condition was detected.

® code that indicates the facility that issued the message, the severity
of the diagnostic, and the IDENT (identification) of the diagnostic (for
example, ZADAC-E-CL_UNINOTFOU). Note that only the severity part
of the code (for example, E) is shown in Example 3-1.

A digit in parentheses, which correspondsto the digit that identifies the
position where the error or condition was detected.

3-26 Compiling and Recompiling VAX Ada Programs

® The text that corresponds to the particular condition detected.

Note that one source code error often causes other errors to be detected

at the same position. Refer to Section 3.9 for more information on this
subject.

The portability summary @,provided by the (default) /SHOW=PORTABILI
qualifier, identifies potentially nonportable features of the compilation
unit.

The compilation-statistics section of the listing @ includes the following
information:

The exact commandline passed to the VAX Ada compiler by the DCL
ADA or ACS COMPILE or RECOMPILE command.

A list of the qualifier options in effect during the compilation.

Statistics regarding the internal timing of the compiler.

8
®
6
e
e

86
9

Diagnostic totals, by category, and page fault counts and timingtotals.

Example 3-1: Sample VAX Ada Compiler Listing

LISTING @ Project DEMO @ 15-Apr-1989 17:53:14 @ vax ada x2.0-0 @ page 1 ©
01 e Listing @ 15-Nov-1988 17:52:46 @ LisTiINnc.apa;2 © (1) @

1 pragma TITLE("Project DEMO", "Listing") ;

5 -- LISTING.ADA

5 _- A simple program to show the listing format and error
6 -- reporting facilities of the VAX Ada compiler.

5 “with NOSUCHUNIT; use NOSUCHUNIT;
Lecce ee eeeees Livseeceeceeceeee-2 @

SE, (1) Unit NOSUCHUNIT not found in library
E, (2) NOSUCHUNIT is not declared [LRM 8.3]

(continued on next page)

Compiling and Recompiling VAX Ada Programs 3-27

Example 3-1 (Cont.): Sample VAX Ada Compiler Listing

9 with SYSTEM;

10 with TEXTIO; use TEXTIO;
11 procedure LISTING is

13 OBJ1 : NOSUCHTYPE := 1;

SE, (1) NO SUCH TYPE is not declared [LRM 8.3]

I , (2) Type checking is not complete; the type required from context is

unknown due to a prior error

14
15 type E is (El, E2, E3);

16 OBJE : E;
rrr1
$I, (1) The representation of type E at line 15 is forced here

17 for E use (-1, 5, 18);

wee eee eens 1
SE, (1) The representation of type E at line 15 has already been forced at

line 16 [LRM 13.1(6)]

19 pragma PACK (T);

SW, (1) T is not declared in this declarative part; pragma PACK ignored
[LRM 6.3.2(3), 12.la, 12.1b, 13.1(5), 13.9(3)]

20 pragma UNKNOWNPRAGMA(T, T+1, OPTION => MAGICNUMBER-2) ;

SW, (1) Pragma UNKNOWNPRAGMA is not known to this implementation; pragma

ignored [LRM B]

21

22 begin
23

24 OBJ1 := -1

ce cw tee ew we ee wee wees 1

SE, (1) Inserted ";" at end of line

25 OBJE := E’ SUCC(F);

Ce wwe ewe ww ew ew ee ew eee eee 1

SE, (1) F is not declared [LRM 8.3]

26

27 LOOPNAME1:

28 loop

(continued on next page)

3-28 Compiling and Recompiling VAX Ada Programs

Example 3-1 (Cont.): Sample VAX Ada Compiler Listing

LISTING Project ADADEMO 15-Apr-1989 17:53:14 VAX Ada 2.0-0 Page 2
O1 Show Listing 15-Nov-1989 17:52:46 LISTING.ADA;2 (1)

29 goto LOOPNAME2;

eee ee wee eee eee eee 1
SE, (1) Block or loop identifier LOOPNAME2 at line 32 is not a label

30 end loop;
See eee wee we eee 1
SE, (1) Name LOOPNAME1 not specified at end of loop starting at line 27

[LRM 5.5(3), 5.6(3)]

31
32 LOOPNAME2 :
33 for I in -1 .. 10 loop

SE, (1) Type {universalinteger} is not allowed for the discrete range of a

constrained array definition, an iteration rule, or an index of an

entry family [LRM 3.6.1(2)]

$I, (1) Default resolution to type INTEGER does not apply because one or both

expressions is not a literal, named number, or attribute; however,

type INTEGER is assumed [LRM 3.6.1(2)]

34 null;
35 end loop LOOP2;

SE, (1) Name LOOP2 does not match LOOPNAME2 at line 32 [LRM 5.5(3), 5.6(3),

6.3(4), 7.1(3), 9.5(7)]

37 end;

PORTABILITY SUMMARY @

with SYSTEM 9

enumeration representation clause
17

pragma PACK 19
unknown pragma (s) 20

(continued on next page)

Compiling and Recompiling VAX Ada Programs 3-29

Example 3-1 (Cont.): Sample VAX Ada Compiler Listing

LISTING Project DEMO 15-Apr-1989 17:53:14 VAX Ada 2.0-0 Page 3

O1 Ada Compilation Statistics @ 15-Nov-1989 17:52:46 LISTING.ADA;2 (1)

COMMAND QUALIFIERS ®

ADA/LIST/SHOW=ALL/WARN=COMP : LIST LISTING

QUALIFIERS USED ®
/NOANALYSISDATA/CHECK/COPYSOURCE/DEBUG=ALL/ERROR_LIMIT=30/LIST

/NOMACHINE_CODE
/NODESIGN
/NODIAGNOSTICS/LIBRARY=ADASLIB
/LOAD=REPLACE/NOTESOURCE/OPTIMIZE= (TIME, INLINE=NORMAL, SHARE=NORMAL)

/ SHOW=PORTABILITY/NOSYNTAXONLY
/WARNINGS= (COMPILATIONNOTES=LIST, STATUS=LIST, SUPPLEMENTAL=ALL, WARNINGS=ALL,

WEAKWARNINGS=ALL)

COMPILER INTERNAL TIMING @®

Phase CPU Elapsed Page T/O

seconds seconds faults count
Initialization 0.32 2.67 394 16

Access ADALIB 0.09 0.60 42 9
Parser 0.27 0.68 459 22

Static semantics 0.36 1.56 258 41
Listing generation 0.03 0.04 30 0

Compilation library 0.13 2.83 90 16
Collect analysis data 0.00 0.00 0 0
Compiler totals 1.26 8.40 1308 97

COMPILATION STATISTICS @

Weak warnings: 0
Warnings: 2

Errors: 10
NYIs: 0

Peak working set: 3512
Virtual pages used: 11084
Virtual pages free: 163916
CPU Time: 00:00:01.26 (1761 Lines/Minute)

Elapsed Time: 00:00:08.40

Compilation Complete

3-30 Compiling and Recompiling VAX Ada Programs

Chapter 4

Linking Programs

After you have compiled all of the units of your VAX Ada program, you must
link the resulting object modules to form an executable image before you can
run the program.

On the VMSoperating system, linking is performed by the VMS Linker.
To link VAX Ada object modules, you invoke the VMS Linker through the
program library manager using the ACS LINK command(you do not invoke
the VMSLinkerdirectly). The ACS LINK commandoperates in the context
of the current program library and performsthe following steps:

1. Forms the execution closure of the main program.

2. Verifies that all units are defined in the current program library and are
current. If any units are obsolete, incomplete, or missing, the command
is terminated before the linker is invoked.

3. Creates an object file in the current default directory to elaborate any
library packagesin the closure at run time.

4. Creates a DCL commandfile that contains commands to invoke the

VMS Linkerto link all of the units.

5. By default, spawns a subprocess of your current process and invokes the
linker commandfile just created (Section 4.3 describes the processing
and output options available with the ACS LINK command). When the
linker is invoked, it performs the following functions:

— Combines object modules into one executable image

— Resolves local and global symbolic references in the object code

— Assigns values to global symbolic references

— Generates an error message for any unresolved symbolic references

6. After the link operation is completed, deletes both the linker command
file and the object file that was created to elaborate library packages.

Linking Programs 4—1

Note that, as the VAX Adainterface to the linker, the program library
manager performs several necessary operations before invoking the linker.
Also, the ACS LINK commandallows you to select several processing and
output options through appropriate qualifiers.

The result of a successful link operation is an executable image. The default
file specification for the imageis as follows:

SYSSDISK: []main-program-name.EXE

SYS$DISKis a system and/or process logical name that generally represents
your default disk, and [] represents your current default directory, not your
program library.

This chapter explains how to accomplish linking in the VAX Ada
environment.

See Appendix A for more information on the ACS LINK commandandits
qualifiers.

4.1 Linking Programs Having Only VAX Ada Units

If your program consists only of VAX Ada units that are defined in the
current program libraryor its parent library, enter the ACS LINK command
with a single parameter: the name of the main program. For example:

$ ACS LINK HOTEL

This command causes the execution closure of HOTEL to be formed, and

obsolete or incomplete units to be identified. If there are no obsolete or
incomplete units, an object file and DCL commandfile are created, and the
commandfile is executed to link all of the units in the closure. Finally, the
image file HOTEL.EXE is created in the current default directory.

If the ACS LINK commanddoes detect obsolete or incomplete units, you
must recompile before the link operation will succeed. See Chapter 3
for more information on recompiling obsolete units and completing units
containing incomplete generic instantiations.

4.2 Linking Mixed-Language Programs

The VAX Ada program library manager provides a numberof link-related
features that allow you to link Ada unit object modules with non-Ada object
modules, as well as with object libraries and shareable imagelibraries.
You can also use linker options files. These features are supported by the
following ACS commands:

4-2 Linking Programs

¢ The ACS LINK commandsyntax and qualifiers allow you to link Ada
units directly against non-Adaobject files, object libraries, shareable
imagelibraries, or linker optionsfiles.

e The ACS COPY FOREIGN command allows you to copy a non-Ada
object file into your current program library. You can then use the ACS
LINK commandto link the object file as the body for a library package

or subprogram specification.

¢ The ACS ENTER FOREIGN commandallows you to enter a reference to

a non-Adaobject file, object library, shareable imagelibrary, shareable
image, or linker options file into your current program library. When
you execute the ACS ENTER FOREIGN command, you associate the
reference with a library package or subprogram specification. You can
then use the ACS LINK commandto link the reference as the body for
the associated library package or subprogram specification.

¢ The ACS EXPORT commandcreates a concatenated object file for the
closure of one or more VAX Ada units in your current program library,
and placesthe file in your current default directory by default. You can
then use the DCL LINK commandto link the concatenated objectfile
with non-Ada objectfiles.

The following sections discuss the use of these features in more detail. See
Appendix A for complete descriptions of the syntax and qualifiers for the
ACS COPY FOREIGN, ENTER FOREIGN, and EXPORT commands.

4.2.1 Using the ACS COPY FOREIGN and ENTER FOREIGN Commands

The ACS COPY FOREIGN and ENTER FOREIGN commandsallow you to

introduce linkable non-Adafiles into your program library. Foreign files that
have been copied or entered into your program library in this manner are

then handled by the ACS LINK commandas Ada units.

When you use the ACS COPY FOREIGN or ENTER FOREIGN command,
you copy or enter a foreign file as a library body—thatis, the body of a
library package specification, library procedure specification, or library
function specification. Before you can copy or enter a foreign file, you must
have compiled an Ada specification for it into the program library. The
specification must contain the pragma INTERFACEand(if appropriate)
a pragma IMPORT_FUNCTION, IMPORT_PROCEDURE,or IMPORT_
VALUED_PROCEDUREfor any procedure or function that the specification
requires.

Linking Programs 4-3

For example, consider the following situation:

¢ You have a VAX Ada procedure named ADA_CALLERthatcalls a
squaring function named SQR.

e The body of SQR is written in VAX Pascal.

Before you can copy or enter the body of SQR into your program library, you
must write a specification for SQR and compile it into the program library.
For example, you could specify SQR as a library function whose bodyis to be
imported:

-- Ada function specification for SQR

function SOR (Y : INTEGER) return INTEGER;

pragma INTERFACE (PASCAL, SQR);

pragma IMPORTFUNCTION (INTERNAL => SOR,

EXTERNAL => SQUARE,

PARAMETERTYPES => (INTEGER),

RESULTTYPE => INTEGER);

In this example, the EXTERNAL parameter in the pragma IMPORT_
FUNCTIONindicates that SQUAREis the name of the Pascal routine that

will serve as the body for the Ada function SQR. (See the VAXAda Run-Time
Reference Manual and VAX Ada Language Reference Manualfor detailed
information on the syntax for and use of the VAX Ada import pragmas.)

Assumethat the Pascal routine SQUAREis coded asfollows (note the use of

the GLOBAL attribute):

{ Foreign (Pascal) function SQUARE }

MODULE SQUARE;

[GLOBAL] FUNCTION Square (X : Integer) : Integer;

BEGIN

END;

END.

Also assume that the Ada procedure ADA_CALLER mentions SQR in a

with clause:

with SOR;

procedure ADACALLER is

end ADACALLER;

Then, you would use the following series of commandsto create a library
body from the foreign file (the default file types are includedfor clarity):

4—4 Linking Programs

1. Compile the foreign function (SQUARE.PAS)to create its object file; the
object file will be located in the current default directory (not the current
program library):

$ PASCAL SQUARE.PAS

2. Compile the associated Ada specification (SQR_.ADA) and thecalling
subprogram (ADA_CALLER.ADA); the resulting object files will be
located in the current program library (not the current default directory).
Note that compiling the specification of a unit that has a foreign body
does not cause the body to become obsolete.

$ ADA SQR_.ADA, ADA_CALLER.ADA

3. Copy (or enter) the foreign object file (SQUARE.OBJ) into the current
program library as the body of function specification SQR:

S$ ACS COPY FOREIGN SQUARE.OBJ SQR

After you execute these commands, you can use the ACS LINK commandto
link ADA_CALLER and SQR,as follows:

S ACS LINK ADACALLER

If you have a number of non-Ada routines that need to be called (imported)
by an Ada main program, you can simplify the linking operation by writing
a package that specifies the imported routines and has an imported linker
optionsfile as its body. For example, assume you havethe following package
specification:

package MANYROUTINES is
subtype STRINGTYPE is STRING(1..25);

function READSTRING (X: STRINGTYPE) return STRINGTYPE;
pragma INTERFACE (PASCAL, READSTRING);

procedure SORTSTRING (X: STRINGTYPE);

pragma INTERFACE (PLI, SORTSTRING) ;

procedure PRINTLIST;
pragma INTERFACE (FORTRAN, PRINTLIST);

end MANYROUTINES;

Also assume that you havea linkeroptions file named MANY_ROUTINES_

BODY.OPTthat contains references to the following .OBJ files:

READSTRING, SORTSTRING, PRINTLIST

Linking Programs 4—5

After the specification MANY_ROUTINESis compiled, you can enter the
linker options file into the current program library as the body of package
MANY_ROUTINES,using the ACS ENTER FOREIGN command,asfollows:

S ACS ENTER FOREIGN/OPTIONS MANYROUTINESBODY.OPT MANYROUTINES

Then, assuming that package MANY_ROUTINESis named by a main
program in a with clause, you can link the main program (and the routines
in this package) by entering the ACS LINK command. Thelinker options
file is appended to the commandfile generated by the ACS LINK command
to perform the linking operation.

4.2.2 Using the ACS LINK Command

The ACS LINK command has two forms that allow you to link Ada units
directly with foreign files, in cases where you do not wantto copy or enter

the foreign files into your program library. The first form allows you to link
foreign files with a VAX Ada main program:

ACS LINK/MAIN VAX-Ada-main-program-name [file-spec[,...]]

In VAX Ada, a main program is a procedure or function with no parameters;
if it is a function, it must return a value of a discrete type. A main program
can also be a procedure declared with the pragma EXPORT_VALUED_
PROCEDUREthat has one formal out parameter that is of a discrete type.
The ACS LINK command assumesthe /MAIN qualifier by default.

The second form allows you to specify that the image transfer addressis in
one of the foreign files (a foreign file is the main program):

ACS LINK/NOMAIN unit-name[,...] file-spec[,...]

With this form, one or more VAX Ada units may be specified and may be
listed in arbitrary order. At least one foreign file containing the image
transfer address must also be specified. The file containing the image
transfer address must be specified according to the requirements of the
particular language.

With either form of the ACS LINK command, you can specify the following

kinds of VMS (foreign)files:

¢ Object files—By default, the ACS LINK command assumesthat the
specified file is an object file, with a default file type of .OBJ.

e Object libraries or shareable image libraries—Whenspecifying an object
library file or a shareable image library file, you must append the
/LIBRARY qualifier to the file specification. The default file type
is .OLB.

4-6 Linking Programs

You can also append the /INCLUDEqualifier to an object library file
or shareable image library file specification to link particular library
modules against your VAX Ada units. If you use the INCLUDE
qualifier, you do not also have to use the /LIBRARY qualifier. The
default file type for the library file specification is .OLB.

e Linker options files—When specifying a linker options file, you must
append the /OPTIONSqualifier to the file specification. The default file
type is .OPT.

e Shareable image files—When specifying a shareable imagefile, you must
append the /SHAREABLEqualifier to the file specification. The default
file type is .EXE.

You can use the /USERLIBRARY qualifier to tell the linker to also search
user-defined default libraries after it has searched any specified libraries.

By default, VAX Ada units are linked against the default system libraries:
the linker first searches the system default shareable image library
(SYS$LIBRARY:IMAGELIB.OLB) and then the system default object library
(SYS$LIBRARY:STARLET.OLB)to resolve references to routines and sym-
bols not defined in the specified units orfiles. If you specify the /NOSYSLIB
command qualifier, neither of these libraries is searched. If you specify
the /NOSYSSHR commandqualifier, only SYS$LIBRARY:STARLET.OLBis
searched.

The following examples show the use of the ACS LINK commandwith
foreign files. In the first example, the linker is instructed to link the main
program HOTELagainst the user library NETWORK.OLBandto use the
linker options file NET.OPT:

SACS LINK HOTEL NETWORK.OLB/LIBRARY, NET.OPT/OPTIONS

In the next example, the linkeris instructed to link two Ada units (FLUID_
VOLUMEand COUNTER) with a foreign main program (MONITOR.OBJ):

SACS LINK/NOMAIN FLUIDVOLUME, COUNTER MONITOR. OBJ

4.2.3. Using the ACS EXPORT and DCL LINK Commands

The ACS EXPORT commandallows you to export Ada object files from your
current program library to another directory, so that you can subsequently
link them with foreign programs using the DCL LINK command.

The ACS EXPORT commandcreates an object file that contains the code
for all units in a closure of VAX Ada units. Thefile also contains code to
elaborate any library packages in the closure.

Linking Programs 4-7

By default, the exported object file does not include an image transfer
address (in other words, the ACS EXPORT command assumes the /NOMAIN
qualifier by default). To include an image transfer address and thusidentify
an exported Ada unit as a main program, use the /MAIN qualifier with the
EXPORT command. The image transfer address applies to thefirst Ada unit
specified with the command.

The object file created with the ACS EXPORT commandhasthefollowing
default file specification:

SYSSDISK: [] first-unit-name.OBJ

SYS$DISK is a system and/or process logical name that generally represents
your default disk, and [] represents your current default directory, not your
program library.

You can use the /OBJECT=file-spec qualifier to provide another file specifica-
tion for the objectfile.

Any exported units that are to be called from a foreign module must contain
the appropriate export pragmain the source code: EXPORT_FUNCTION,
EXPORT_PROCEDURE, EXPORT_VALUED_PROCEDURE, EXPORT_
OBJECT, PSECT_OBJECT, or EXPORT_EXCEPTION.For example, to
export the Ada procedure SWAP, you must include the pragma EXPORT_
PROCEDURE(see the VAXAda Language Reference Manual and VAXAda
Run-Time Reference Manual for exact details):

procedure SWAP (A,B: in out INTEGER) is

begin

end;

pragma EXPORTPROCEDURE (SWAP) ;

The following examples show the use of the ACS EXPORT command. In the
first example, the EXPORT commandcreates the object file QUEUE.OBJ.

The file contains the code for all units in the closure of QUEUE and
QUEUE_MANAGER,including any package elaboration code. Thefile does
not contain an image transfer address.

S$ ACS EXPORT QUEUE, QUEUE_MANAGER

Note that object files created by different invocations of the ACS EXPORT
command may include some code that is common—for example, if each
closure includes the predefined unit TEXT_IO. In such cases, you cannot
link thosefiles into the same image. Wheneverthe closures could include
units in common, you should specify all the units in a single EXPORT
commandline, as in the preceding example.

4-8 Linking Programs

The next example creates the object file EXP_HOTEL.OBJ that contains
the code for all units in the closure of HOTEL, including any package
elaboration code and the image transfer address:

$ ACS EXPORT/MAIN HOTEL/OBJECT=EXP_HOTEL

The ACS EXPORT commandis affected by and can affect the value of
SYSTEM.SYSTEM_NAME.In particular, the /SYSTEM_NAMEqualifier

to this command allows you to target the resulting concatenated object
file to a particular value of SYSTEM.SYSTEM_NAME.See Chapter 5 and
Appendix A for more information.

4.3. Processing and Output Options

The ACS LINK commandhas a numberof qualifiers that allow you to
control how the link operation is processed and what kind of output you will
receive. For example:

¢ You can use the /WAIT or /SUBMIT qualifiers to control whether the
link operation is executed in a subprocess or as a batch job.

* You can use the /COMMANDqualifier to save the linker DCL command >

file (which invokes the linker) and the package-elaboration object file
generated by the program library manager.

e You can use the /[NOJMAP qualifier to create a linker map file. When
using the /[NO]JMAP qualifier, you can specify the /BRIEF, /FULL, and
/TNOJCROSS_REFERENCE qualifiers to vary the type and amount of
information. | |

e You can use the /OUTPUT=file-spec qualifier to direct ACS output to a
file. The options for directing ACS and linker messages to the terminal
or to an output file with the ACS LINK commandare the same as
those for directing compiler messages with the ACS COMPILE and
RECOMPILE commands(see Chapter 3).

e You can use the /[NO]DEBUG and /[NO]JTRACEBACKqualifiers to
control the presence of debug symbol records and traceback information
in the executable image.

You cannot create a shareable image with the ACS LINK command.

The following sections discuss some of these options. For detailed informa-
tion on all of them, see Appendix A. For more information on the linker
mapfile, see the VMS Linker Utility Manual; for more information on the
/[LNO]DEBUG qualifier, see Chapter6.

Linking Programs 4-9

4.3.1 Conventions for Defaults, Symbols, and Logical Names

When the program library manager executes the ACS LINK command,
it uses the commandfile it creates to transmit the current definitions of
certain defaults, symbols, and logical namesto the processing environment
(batch or subprocess). Specifically:

e It preserves the current default directory. Then, by default, any new
files are created in that directory.

e¢ It transmits the current definition of the symbol LINK. For example,

consider the following symbol definition:

$ LINK == "LINK/DEBUG"

Then, the following commandshave the sameeffect:

$ ACS LINK/MAP HOTEL
$ ACS LINK/DEBUG/MAP HOTEL

4.3.2 Executing the Link Operation in a Subprecess or in Batch Mode

By default, the link operation for the ACS LINK commandis executed
in a subprocess. (The default mode is equivalent to specifying the /WAIT
qualifier with the ACS LINK command.) The program library manager
creates a spawned subprocess and invokes the DCL commandfile that
invokes the linker. Your current process is suspended while the program
library manager executes the command, and you must wait until the
commandterminates before you can enter another command. Theneteffect
is like executing the commandinteractively.

By specifying the /SUBMIT qualifier, you can execute the link operation
for the ACS LINK commandin batch mode. In the following example, the
program library manager submits the linker commandfile for the program
HOTELasa batchjob:

$ ACS LINK/SUBMIT HOTEL

All batch options available with the ACS COMPILE and RECOMPILE
commandsare also available with the ACS LINK command(see Chapter3).

4-10 Linking Programs

4.3.3 Saving the Linker Command File and Package Elaboration File

When you use the ACS LINK command, the program library manager
creates a DCL commandfile for the linker and an object file that elaborates
all library packages in the closure of the units specified. By default, the
program library manager deletes both the commandfile and the objectfile

when the ACS LINK command terminates.

You can use the /COMMAND[=file_spec] qualifier to save the commandfile
and optionally provide a file specification. The default file specification for
the commandfile is as follows:

SYSSDISK: [] first-unit-name.COM

SYS$DISKis a system and/or process logical name that generally represents
your default disk, and [] represents your current default directory, not your
program library.

When you use the /COMMANDqualifier, the program library manager does
not invoke the linker. You can edit the commandfile and later submit it as
a batch job, using the DCL SUBMIT command. Use of the DCL SUBMIT
commandallows you to use certain batch qualifiers that are supported by
DCL but not by the program library manager.

When you use the /COMMANDqualifier, the program library manager also
saves the package-elaboration object file. The default file specification for
the object file is as follows:

SYSSDISK: [] first-unit-—name.OBJ

You can use the /OBJECT=file-spec qualifier to choose an alternativefile
specification.

Linking Programs 4—11

Chapter 5

Managing Program Development

Ada program development often involves more than creating, compiling,
linking, executing, and debugging Ada programs. In particular, large
projects, involving many programmers and large numbers of Ada
compilation units, need to be managedefficiently.

This chapter addresses some of the problems involved in managing program
development, and presents information that you can use to solve those
problems when working with VAX Ada.

9.1 Decomposing Your Program for Efficient Development

Efficient development involves saving compilation and recompilation time.
Separate compilation is a feature of the Ada language that allows you
to decompose your application into parts, so that you can compile and
recompile the parts that change frequently without having to compile and

recompile the entire application.

As discussed in Chapter 1, the following parts, or compilation units, of an
Ada program can be compiled separately:

e Package specifications and bodies

e Subprogram specifications and bodies

¢ Generic unit (subprogram and package) specifications and bodies

e Generic instantiations (subprogram and package) of generic units

¢ Subunits

Managing Program Development 5-1

An efficiently decomposed program consists of three groups of compilation
units:

e The specifications of each functionally coherent part of the program.
A functionally coherent part comprises one or more operations (and
any related type definitions, object declarations, and so on) needed
to perform a certain task or group of related tasks. For example,
the package SCREEN_IOis a functionally coherent part of the hotel
reservation program because it defines the operations needed to perform
the task of screen input-output; a general package of all possible
input-output operations would not be a functionally coherent part.

¢ The bodies that implement the specifications.

e Subunits that further decompose the bodies. Each subunit mayitself be
divided into smaller subunits.

In general, changes occur most often in the compilation units comprising
the implementation, rather than in the specifications. Because this
decomposition method suggests concentrating the implementation in
subunits, and subunits usually do not have dependent units, you can change
and recompile the units that implement each functionally coherent part
of the program without having to recompile most or all of the rest of the
program. (A compilation unit depends on a body or subunit only when a
pragma INLINE or INLINE_GENERICis involved.)

By using generic units to consolidate common kinds of packages and
subprogramsacross different areas of your implementation, you can also
save development, compilation, and recompilation time.

NOTE

Use the ACS LOAD, COMPILE, and RECOMPILE commands

to efficiently compile and recompile units without having to
determine the order of compilation or which units have become
obsolete. See Chapter 3 and Appendix A for more information on
these commands.

You can reduce the compilation load on your system by putting
each compilation unit (specification, body, subunit, and so on) into
a separate source file. Be sure to use the file-name conventions
described in Chapter1.

See the VAXAda Language Reference Manual for more information on
packages, generic units, and subunits. See Chapter 1 for more information

on unit dependences.

5-2 Managing Program Development

Example 5-1 is a simple application that is decomposed into a main
program and a generic package. The packageis further decomposed into a

specification, body, and subunits.

Example 5-1: Decomposed Stack Application

generic

type ELEMENTTYPE is private;
SIZE: INTEGER := 3;

package STACKS is

type STACKTYPE is array (INTEGER range <>) of ELEMENTTYPE;
type STACK is

record

TOP: INTEGER;

ELEMENTS: STACKTYPE(1..SIZE);

end record;

-- CREATE sets up a new stack.

procedure CREATE (X: in out STACK);

-- PUSH adds ELEMENT to the stack, sets OK to TRUE

-- if successful and to FALSE otherwise.

procedure PUSH (X: in out STACK;
ELEMENT: in ELEMENTTYPE;

OK: out BOOLEAN) ;

-- POP sets ELEMENT to whatever is popped, sets OK to TRUE
-- if successful and to FALSE otherwise.

procedure POP (X: in out STACK;

ELEMENT: out ELEMENTTYPE;

OK: out BOOLEAN);

-- EMPTY returns TRUE if the stack is empty and FALSE otherwise.

function EMPTY (X: in STACK) return BOOLEAN;

-~- FULL returns TRUE if the stack is full and FALSE otherwise.

function FULL (X: in STACK) return BOOLEAN;

end STACKS;

(continued on next page)

Managing Program Development 5-3

Example 5-1 (Cont.): Decomposed Stack Application

package body STACKS is

procedure CREATE (X: in out STACK) is separate;

procedure PUSH (X: in out STACK;
ELEMENT: in ELEMENTTYPE;

OK: out BOOLEAN) is separate;

procedure POP (X: in out STACK;
ELEMENT: out ELEMENTTYPE;

OK: out BOOLEAN) is separate;

function EMPTY (X: in STACK) return BOOLEAN is separate;

function FULL (X: in STACK) return BOOLEAN is separate;

end STACKS;

separate (STACKS)

procedure CREATE (X: in out STACK) is

begin

end CREATE;

separate (STACKS)
procedure PUSH (X: in out STACK;

ELEMENT: in ELEMENTTYPE;

OK: out BOOLEAN) is

begin

end PUSH;

separate (STACKS)

procedure POP (X: in out STACK;
ELEMENT: out ELEMENTTYPE;

OK: out BOOLEAN) is

begin

end POP;

(continued on next page)

5—4 Managing Program Development

Example 5—1 (Cont.): Decomposed Stack Application

separate (STACKS)
function EMPTY (X: in STACK) return BOOLEAN is

begin

end EMPTY;

separate (STACKS)
function FULL (X: in STACK) return BOOLEAN is

begin

end FULL;

with TEXTIO; use TEXTIO;

with STACKS;
procedure TESTSTACKS is

-- Main program that instantiates and uses the stack operations.

subtype STRINGTYPE is STRING(1..5);

package INTEGERSTACK is new STACKS (INTEGER, 3) ;
use INTEGERSTACK;

package STRINGSTACK is new STACKS (STRING_TYPE, 3);
use STRINGSTACK;

begin

-- Do some work with the stacks and stack operations.

end TESTSTACKS;

Figure 5-1 diagrams the application in Example 5—1 to show the unit
dependences. Note that because the procedure TEST_STACKS instantiates
the generic package STACKS,the procedureitself is still current (unless
an inline pragma or equivalent applies), but the instantiations must be
completed if the package body or subunits of the package STACKS are
compiled again or recompiled. See Chapter 1 and Chapter 3 for more
information on incomplete units, obsolete units, and generic completions.

Managing Program Development 5-5

Figure 5-1: Diagram of Decomposed Stack Application

i
| generic package

1 STACKS ___3
t I pcccc =~

Lageecccnscned[|
package body STACKS

procedure meee

procedurea,

procedure POP Y

function EMPTYY

function FULL Y

procedure

TEST_STACKS

9.2 Setting up an Efficient Program Library Structure

ZK-7860-GE

Ideally, you should consider the following factors when setting up a program
library and sublibrary structure:

e The structure of the application

e The numberof programmers developing the application

¢ Whether or not the application is going to be run on more than one
target

5-6 Managing Program Development

e Whetheror notall of the software is being written from scratch

¢ Whether you will need to produce different versions of the application as
it changes over time (for example, Versions 1.0, 1.1, and 1.2)

Figure 5—2 showsa library structure for the decomposed stack application
from Example 5-1. Note the following points about Figure 5-2:

e The top-level program library contains the generic package specification
STACKS.

e The immediate sublibraries contain the body of STACKS and the
main program TEST_STACKS;two sublibraries are used because this
application is being developed for two targets: VMS and VAXELN.
Off-the-shelf or other prewritten source code could also go in these
sublibraries.

¢ Programmers work in lower-level sublibraries to develop the subunits
of STACKS. Although four sublibraries are shown, any number of
sublibraries could be used to develop STACKSandits subunits.

Figure 5-2 does not show multiple versions of the application, but additional
sublibraries could be used to create and develop different versions or other
development streams.

A structure like the one in Figure 5-2 allows testing from the bottom up.
See Chapter 2 for additional information on developing and testing units in
sublibraries.

After programmers have developed and tested new, stable versions of the
units in the application, they return the units to the appropriate project
source code directory. For simplicity, Figure 5-2 shows one source code
directory to the right of the program library structure. See Section 5.3.1 for
more information on setting up and managing source code directories.

You can makethe new,stable units available to the other programmers in a
number of ways:

e You can merge or copy units from the sublibraries into the more global
parent libraries.

e You can compile the units from the source code directory into the appro-
priate parent libraries.

Managing Program Development 5-7

Figure 5-2: Efficient Program Library and Sublibrary Structure

[PROJ.MAIN_LIB]

STACKS

VAX Ada predefined units

generic package
I

[PROJ.VAXELN_SUBLIB]

|

[PROJ.VMS_SUBLIB}

Source code directories

Commonsource files:
STACKS_. ADA

VMSsource files
STACKS. ADA
Subunits

And so on

VAXELN source files

STACKS. ADA
Subunits
And so on

STACKS
generic package body

TEST_STACKS
procedure body

Finished subunits

[JONES.SUBLIB] {[SMITH.SUBLIB]

STACKS.CREATE STACKS.POP
procedure body procedure body

STACKS.PUSH STACKS.EMPTY
procedure body function body

STACKS.FULL
function body

STACKS —
generic package body

TEST_STACKS
procedure body

Finished subunits

[WHITE.SUBLIB] [MCCOY.SUBLIB]

STACKS.CREATE STACKS.PUSH
procedure body procedure body

STACKS.EMPTY STACKS.POP
function body procedure body

STACKS.FULL
function body

ZK-7862-GE

When you use the ACS MERGE command, be careful to enter it at the
right level. For example, if you use a low-level sublibrary to modify and
test a new specification, and you merge thespecification into its immediate
parent library, the specification may end up in the sublibrary containing the
package bodies rather than in the library containing the specifications. In
this case, you may want to do one ofthe following operations:

5-8 Managing Program Development

Copy (rather than merge) the new specification to its appropriate
location

Create a temporary sublibrary at the correct level, copy the specification
to that sublibrary, and merge from there

¢ Change the parent of the sublibrary you are working in before doing the
merge

See Chapter 2 for more information on merging units and changing the
parent of a sublibrary.

Merging or copying units from the sublibraries to the more global parent
libraries has the advantage that the new units are immediately available
to other programmers on the project. However, the replacement of these
units may cause other units in upper- as well as lower-level libraries to
become obsolete. The obsolete units must then be recompiled to become
current again. If recompilations are required too often, they may disrupt the
work being done by individual programmerson the project. Also, the source
code directories must be carefully maintained in parallel with the program
libraries.

To minimize the impact of the replacements, you can update upper-level

libraries by compiling the new sourcefiles from the project source directories
at known times using the ACS LOAD and ACS COMPILE or RECOMPILE
commands. Again, individual project members may need to recompile
obsolete units in their sublibraries. However because the updating of parent
libraries is done at known times, the impact on project membersis controlled
and less disruptive. An advantage of this method is that maintenance
of the source code directories is synchronized with managementof the
program libraries. A disadvantage of this method is that new units are not
immediately available to all membersof the project.

Depending on the scope and complexity of your application, you may need
to protect your library structure from regressions caused by updates. To
achieve this protection, you can set up a separate library structure that
parallels your upper-level working libraries. Then, you can build the com-
plete application and perform regression tests on it in the separate library
structure. After the tests are successful, you update the working libraries as
previously discussed:

¢ By copying the units from the separate libraries into your upper-level
working libraries, while also updating the source code directories.

e By updating the source code directories first, and then compiling the
units from the source code directories into the workinglibraries.

Managing Program Development 5-9

5.3 Integration with Other VAX Tools

Like other VAX languages and layered products, VAX Ada is designed to be

used with a variety of Digital software development tools (see Chapter 1).
This section discusses how you can use the following tools with VAX Ada to
manage program development:

e VAX Language-Sensitive Editor (LSE)

e VAX DEC/Code Management System (CMS)

General-purpose (as opposed to management) development tools are
discussed elsewhere in this manual:

e For general and Ada-specific information on using LSE and the VAX
Source Code Analyzer (SCA), see Appendix C.

¢ For general and Ada-specific information on using the VMS Debugger,
see Chapter6.

For general information on creating a software environment, see A
Methodology for Software Development Using VMS Tools. This manual
describes how to create a development environment using the VAX Software
Engineering Tools (VAXset). VAXset includes LSE, SCA, CMS,as well as
the VAX DEC/Module Management System (MMS), VAX DEC/Test Manager,
and VAX Performance and Coverage Analyzer (PCA).

5.3.1 Setting up Source Code Directories

An effective way to set up and manage source code directories is to use CMS.
The Guide to VAX DEC/Code Management System and A Methodology for
Software Development Using VMS Tools give detailed information on how to
use CMS.

You can use CMSlibraries in conjunction with VAX Ada program libraries
and sublibraries. You can have a single CMSlibrary for all of your source
code, and use that library in conjunction with a number of VAX Ada
program libraries. Or, you can divide up your source code amongseveral
CMSlibraries that are associated with one or more VAX Ada program
libraries.

Beginning with Version 3.0, CMS allows you to use search lists to manage
multiple libraries. So, you can construct trees of CMSlibraries that parallel
your VAX Ada program libraries and sublibraries. Figure 5-3 shows one
such configuration.

5-10 Managing Program Development

Figure 5-3: Ada Program Library and Sublibrary Structure with CMS

Libraries

[PROJ.MAIN_LIB] [PROJ.COMMON_CMSLIB]

VAX Ada predefined units STACKS_.ADA

STACKS
generic package

|

[PROJ.VMS_SUBLIB]

[PROJ.VMS_CMSLIB]

STACKS
generic package body

TEST_STACKS

procedure body

Finished subunits

STACKS.ADA
TEST_STACKS.ADA
STACKS__CREATE.ADA
STACKS__PUSH.ADA
STACKS__POP.ADA
STACKS__EMPTY.ADA
STACKS__FULL.ADA

[SMITH.SUBLIB] [JONES.SUBLIB}]

STACKS.POP STACKS.CREATE

procedure body procedure body

STACKS.EMPTY STACKS.PUSH

function body procedure body

STACKS.FULL

function body
ZK-7861-GE

The following search list applies to the library structure in Figure 5-3:

$ CMS SET LIBRARY [PROJ.VMSCMSLIB], [PROJ.COMMONCMSLIB]

Whensearchingfor library elements, CMS starts with the first library on the
list and stops whenit findsthefirst unit that meets whatever requirements

you have specified (RESERVE element-name, FETCH/GENERATION=2
element-name, and so on). Thus, a search list like the one in this example
causes source code modules in a lower-level CMS library to hide source code
modules with the same name higher-level libraries. This effect is similar
to the panes-of-glass effect you get when you use VAX Adasublibraries for
compilations, and you can useit for retrieving and modifying source code in
the same way that you use VAX Ada sublibraries to test Ada compilations
(see Chapter 2).

Managing Program Development 5—11

9.3.2 Managing Source Code Modifications

LSE, CMS, and the VAX Ada program library manager offer a numberof
features that allow you to manage source code modifications. For example,
LSE allows you to retrieve Ada source code from a CMSlibrary, modify it,
and then compile it from within the editor (see the Guide to VAX Language-

Sensitive Editor and VAX Source Code Analyzer for more information on how
LSE is integrated with CMS). |

Once you have moved an Ada source code element from a CMSlibrary into
an LSE editing buffer, you can use the LSE COMPILE/REVIEW command
to compile it into your current Ada program library or sublibrary. The LSE
COMPILE/REVIEW command causes the compilation to take place in a
subprocess.

Note that when you use the /REVIEW qualifier for this operation, your

process will wait until the subprocess completes. By not using the /REVIEW
qualifier, you can keep working in the editor, and later use the LSE REVIEW
commandto read the diagnostics files after the compilation completes.

An alternative method of compiling from within LSE is to use a command
procedure that causes the compilation to take place in a batch queue. For
example, the commandprocedure in Example 5—2 sends all Ada compilations
to whatever queue is represented by the logical name ADA$BATCH.

Example 5-2: Command Procedure for Doing LSE Ada Compilations in
Batch Mode

S$! Command procedure for compiling Ada source code in an LSE buffer
S$! using the ADASBATCH queue. For this command procedure to succeed,
S$! you must have a current program library (use the ACS SET LIBRARY

S$! command), and you must have defined the logical name ADASBATCH.

$!
$! Parameters passed by LSE:

$! Pl = Source file specification
$! P2 = Additional qualifiers (/DIAGNOSTICS, for example)

Ss!
S NAME = FSPARSE(P1,,,"NAME")

$ SET NOON
S DELETE ’NAMB’ .COM;*

S PURGE ’’NAME’ .LOG"

$ PURGE/NOLOG ’NAME’ .DIA
$ SET ON

(continued on next page)

5-12 Managing Program Development

Example 5-2 (Cont.): Command Procedure for Doing LSE Ada
Compilations in Batch Mode

OPEN/WRITE COMFILE ‘NAME’ .COM

IF FSTYPE (ada) .EQS. "" THEN ada = "ada"

DEFDIR = FSTRNLNM ("SYSSDISK") +FSDIR ()

WRITE COMFILE "S SET DEFAULT ‘’DEFDIR’"

WRITE COMFILE "S$ ‘’’ADA’ /LIBRARY=’’FSTRNLNM("ADASLIB") ‘’P1’ ’'P2’

CLOSE COMFILE

SUBMIT/NOPRINT/QUEUE=ADASBATCH/LOGFILE=’ DEFDIR’ ’NAME’ .LOG -

‘NAME’ .COM

M
N
M
W

N
M
F
M
M

To use this commandprocedure from within LSE, enter (or define a key for)
the LSE COMPILE command, giving the batch-job commandprocedure as

an argument. For example:

LSE Command> COMPILE @ADA_BATCH.COM

Alternatively, you can compile your Ada source code outside of the editor
(preferably as a batch job), appendall of the diagnostics files, and review
them all at once during an editing session.

The LSE COMPILE command uses the DCL ADA commandto perform its
Ada compilations, which makesit useful for compiling single units, but not
for compiling or recompiling a set of units (execution closure).

An alternative to compiling using LSE is to compile using the ACS LOAD
or COMPILE commands. In both cases, you can obtain diagnostics files for
review within LSE by using the /DIAGNOSTICSqualifier (see Appendix A
for more information on the behaviorof this qualifier with these commands).

You can also use the ACS LOAD or COMPILE commands to compile Ada

units from a CMSlibrary.

In the following example, the first commandsets up a search list of CMS
libraries. The second command fetches from those libraries the gener-
ations of Ada source code elements that are associated with the class

BASELEVEL_4. The third command loads the Ada source code elements

into the current Ada program library.

$ CMS SET LIBRARY DISK: [PROJ.CMSUBLIB1], [PROJ.CMSLIB]
$ CMS FETCH *.ADA/GENERATION=BASELEVEL4
$ ACS LOAD *.ADA

Managing Program Development 5-13

Once a set of Ada units exists in your current program library, you can

use the ACS SET SOURCE and COMPILE commandsto causethelatest
generation of modified units existing in a CMSlibrary to be compiled again.
In the following example, the first command sets the CMSlibrary. The
second command establishes a source file search list for the ACS COMPILE
command. The third command causesthe closure of the unit TEST_STACKS

to be compiled from the sourcefiles stored in the CMS library denoted by
CMS$LIB.

$ CMS SET LIBRARY DISK: [PROJ.CMSUBLIB1], [PROJ.CMSLIB]

$ ACS SET SOURCE CMSSLIB
$ ACS COMPILE/LOG/NODATECHECK/CLOSURE TEST_STACKS

If the execution closure of the units has changed since the external source
files were last compiled, then use the /PRELOAD qualifier with the ACS
COMPILE command. If you have added new units to the execution closure,
you must put them in the library before entering the ACS COMPILE
command. You can put new units in the current program library either
by compiling them with the DCL ADA commandor by loading them with
the ACS LOAD command,

If you need to work with a different generation, class, or group for your ACS
LOAD or COMPILE compilation, use the following procedure:

1. Use CMSto fetch or reserve the generation, class, or group you want to

compile from.

Put the resulting Ada files in a temporary VMSdirectory.

3. Ifyou are using the ACS COMPILE command, use the ACS SET
SOURCE commandto include the temporary directory in the search
list for the ACS COMPILE command. If you are using the ACS LOAD
command, give the temporary VMSdirectory specification directly on the
commandline.

4. Ifyou are compiling the Ada files for the first time, enter the ACS LOAD
command and then enter the ACS COMPILE command. If you are
updating a library with modified units, enter only the ACS COMPILE
command.

5. Clean up the temporary directory.

5-14 Managing Program Development

5.4 System Considerations

Whenconfiguring a system to handle Ada compilations, you need to consider
all of the activities that will be performed. For example, you need to
consider the amount of parallel compilation that the system can take,as
well as considering the amount of memory you will need.

In general, you should allow 2 megabytes of physical memory for each

concurrent Ada compilation. Given the 2-megabyte requirement, you
can allow as many concurrent compilations as you have VAX units of
performance (VUPs). One VUPis equal to the performance of a VAX-11/780.
Appendix E gives detailed information on the memory requirements for VAX

Ada, as well as information on tailoring the use of system resources.

In addition, consider the following suggestions:

¢ Plan to minimize the size of your compilations by decomposing your
applications and structuring your libraries and sublibraries as shown in
Section 5.1.

e Use a dedicated batch queue to serialize compilations. By using a
batch queue, you can have a large working set size (as well as other
parameters) for the batch queue, while minimizing the workingset size
of each individual account on the system. See Appendix E for additional
information.

¢ Use VAXclusters if at all possible. VAX Ada operations across DECnet
can be slow because process andfile access links can accumulate (a
consequence of doing any operation across DECnet, not just VAX
Ada operations). See Section 5.5 for more information on configuring
and using VAX Ada program libraries across DECnet. See the VMS
VAXcluster Manual for more information on configuring and managing
VAXclusters.

9.5 Distributed Programming Considerations

Program libraries can be accessed across DECnet, making possible dis-
tributed program development among program libraries that are notall
local to a single VMS system. For example, you can have a sublibrary on a
different node from its parent library, and you can enter or copy units from

program libraries that reside on different nodes. This ability allows you
to do compilation on a VAXstation, while still using program libraries on
another system.

Managing Program Development 5-15

The following sections give some guidelines for specifying program libraries
across DECnet. In particular, Section 5.5.5 lists any restrictions that may
apply.

5.5.1. Configuring a Library Structure Across DECnet

If you plan to configure a system across DECnet, be careful about causing
access links to accumulate. Instead, consider caching those units that are
constant or finished (such as the units in ADA$PREDEFINED)in a local

library to minimize access across DECnet. Figure 5-4 suggests one such
configuration:

The central program library—DISK:[PROJ.ADALIB]—is on
node CENTRL. This library contains the units entered from the
ADA$PREDEFINEDlibrary on that node, somefinished units, and
some units under development.

A cache sublibrary—USER:[CACHE.SUBLIB]—is on node LOCAL. The
central program library is the parent of this sublibrary. This cache
sublibrary contains units from the ADA$PREDEFINEDlibrary on node
LOCAL andanyfinished units copied from the central program library.

Units that are too large to copy over the network or that need to be
monitored as they change remain in the central program library.

A working sublibrary—USER:[JONES.SUBLIB]—is also on node
LOCAL. The cache sublibrary is the parent of this sublibrary. This
sublibrary contains units that are being developed by a programmeron
node LOCAL.

Note that in this situation, to make the local sublibrary’s units available to
all of the users of this system, you must merge twice: once from the working
sublibrary to the cache sublibrary, and once from the cache sublibrary to the

central library.

There are other library caching schemes that may be more appropriate to
your application. For example, you might set up a cached library on the
local node that is a snapshot of an independentlibrary on another node. You
can then enter units from the cached library into your working library. Note
that you cannot recompile entered units.

5-16 Managing Program Development

Figure 5-4: DECnet Program Library Configuration

CENTRL::DISK:[PROJ.ADALIB]

VAX Ada predefined units

(entered from ADA$PREDEFINED)

Stable units

Units under development
ee eee eeeeeeDECnet

LOCAL::USER:[CACHE.SUBLIB]

VAX Ada predefined units

(entered from ADA$PREDEFINED
on node LOCAL)

Copied stable units from CENTRL

library

LOCAL::USER:(JONES.SUBLIB]

Working sublibrary for parts

of application

ZK~7863-—GE

When working with libraries across DECnet, be sure to consider system
security. For maximum security, use proxy accounts (see the Guide to
DECnet-VAX Networking and the VMS Networking Manualfor moreinfor-
mation). For example, the node CENTRL would allow proxy access to the
user JONES from node LOCAL. Proxy access also improves performance
because it causes the system to reuse access links, which can otherwise
accumulate as you perform parentlibrary operations across DECnet.

Managing Program Development 5-17

9.5.2 Accessing a Program Library Across DECnet

When you access a program library on a single VMS system, you must be
aware of user-identification-code (UIC) protection mechanisms such as UIC-
based system, user, or group protection (see Section 5.6). When you access a
program library across DECnet, you must also be aware of UIC-based world
protection, as well as protocols such as proxy accounts.

There are three ways to open, read, and write a program library or subli-
brary on another node:

e You can give the files world read protection. Read protection is sufficient

if only read access is desired and it does not matter that every user in
the network can readthefiles.

e You can create proxy accounts. Proxy accounts are useful if both read
and write access is desired.

e You can changetheprotection ofall files accessed across the network to
world read and write. However, for security reasons, this is usually not

a good idea.

All operations that involve accessing a unit across the network must
have read access from the node accessing the program library to the node
specified in the files associated with the unit. Proxy accounts provide one
way of making this access available in a more controlled manner. Note that
write access is required for the parent of a sublibrary when you use the
ACS MERGE command. See Section 5.6.1 for information on the kinds of
program library access required for the various ACS commands.

For example:

ACS> SET LIBRARY USER: [TEST.ADALIB]
61, Current program library is USER: [TEST.ADALIB]
ACS> ENTER UNIT CENTRL: :DISK: [PROJ.ADALIB] STACKS, TESTSTACKS/LOG
6I, STACKS entered

6I, TESTSTACKS entered

ACS> DIR STACKS,TESTSTACKS/FULL
STACKS

generic package 16-Aug-1988 14:33

@ CENTRL: :DISK: [PROJ.ADALIB] STACKS .ACU;1
@ CENTRL: :DISK: [PROJ.ADALIB] STACKS.ADC;1

@ CENTRL: :DISK: [PROJ] STACKS .ADA; 2

TESTSTACKS
procedure body 16-Aug-1988 14:33

@ CENTRL: :DISK: [PROJ.ADALIB] TESTSTACKS.ACU;1
@ CENTRL: :DISK: [PROJU.ADALIB] TESTSTACKS.ADC;1

@ CENTRL: :DISK: [PROJ] TESTSTACKS .ADA;3

5-18 Managing Program Development

After STACKS and TEST_STACKShave been entered from the library

CENTRL::DISK:[PROJ.ADALIB] into the library USER:[TEST.ADALIB],
any operations that access STACKS and TEST_STACKS in
USER:[TEST.ADALIB] must have read access to the program library files
for those units.

See the Guide to Maintaining a VMS System for more information on how to
create proxy accounts.

5.5.3 Achieving Efficient DECnet Access to Program Libraries

Pay careful attention to SYSGEN (System Generation Utility) and DECnet
parameters (on both the local and remote nodes) that may affect the
availability of compilation units or files accessed across DECnet. Your
system manager can help you with this.

For example, every time a file is opened on a remote node, a temporary

connection, called a logical link, is made from the local node to the remote

node. The total numberof logical links allowed at one timeis controlled by
DECnet and maybe set by the Network Control Program (NCP) Utility with
the following command:

NCP> SET EXECUTOR MAX LINKS N

The N in this command is the maximum numberof logical links. This
number represents the system (not process) quota; each connection between
two nodes deducts one from the quota total. When setting this value, note
that both the Ada compiler and the program library manageruse the per-
process FILLM (file and logical link limit) quota, not the system quota, to

limit the total numberof openfiles at one time. Thus, limiting the total
numberof files open at one time will also reduce the potential number of
logical links created to the remote node: a logical link is only required for
files that are not accessed locally.

The creation of a logical link may also involve the creation of a process on
the remote node. Thus, you may needto increase (or at least monitor) the
values of the SYSGEN parameters MAXPROCESSCNT and BALSETCNTto
allow more processes to be created for network servers (FALs).

If you are expecting to access a numberoffiles or compilation units across

DECnet, you may want to increase the value of the UAF buffered input-
output byte count limit (BYTLM) parameter on your system. The value of
this parameter affects the efficiency of program library operations performed
across DECnet. Other parameters may also have an effect. DECnet
parameters are documented in the Guide to DECnet-VAX Networking.

Managing Program Development 5-19

After you have set or reset system parameters to accommodate the use
of remote nodes, you may wantto run the Digital-supplied AUTOGEN
command procedure (SYS$UPDATE:AUTOGEN.COM)to recompute optimal
values for related parameters. See the Guide to Maintaining a VMS System
for more information on SYSGEN and AUTOGEN.

5.5.4 Effect of Network Failures

A network failure during a compilation can have several effects. If the
failure occurs while the compiler is in operation, the compilation can
terminate, leaving your program library in whatever state it was in before
the beginning of the compilation. If the failure occurs during a phase in
which the program library is being updated, your program library may be
in an inconsistent state. You would then have to repair any inconsistencies
using the ACS VERIFY command(see Section 5.7.5 and Appendix A).

In other words, a network failure during a compilation is like a system
failure during a compilation, except that the network failure does not stop
your process from running, and you could receive numerousfile-access and |
Ada diagnostic messagesas a result.

9.5.5 Restrictions on Using Program Libraries Across DECnet

5—20

Observe the following restrictions when distributing program libraries across
DECnet:

¢ In the absence of the VAX Distributed File System (DFS), CMS
(Version 3.0 and lower) does not support access across DECnet. Thus,
the program library manager mayissue an error if an operation requires
accessing a CMSlibrary across DECnet.

¢ VMSdirectories cannot be created across DECnet. Thus, the ACS

CREATE LIBRARY and CREATE SUBLIBRARY commands can be used
to create program libraries or sublibraries across DECnet only if the
corresponding VMSdirectories already exist for those libraries on the
remote node.

e¢ Exclusive access to a compilation library on another nodeis not permit-
ted and results in an error. Therefore, ACS SET LIBRARY/EXCLUSIVE

for a program library on a remote nodefails with an error.

Managing Program Development

Because the ACS VERIFY/REPAIR and REORGANIZE com-
mands can depend on the use of ACS SET LIBRARY/EXCLUSIVE,
VERIFY/REPAIR and REORGANIZEare also not permitted for a com-
pilation library on another node when they are used in conjunction with
SET LIBRARY/EXCLUSIVE.

A program library on another node must not be opened with an access
control string. An error results if such an attempt is made.

5.6 Protecting Program Libraries

The ACS commands require various kinds of access to program libraries.
For example, to copy units from a library, you need only read access to the
library; but to copy or compile units into a library, you need read and write
accesstoit.

The techniques for controlling access to program libraries are based on those
for controlling access to VMS directories. The following topics are discussed
in the following sections:

The kind of library access needed for each ACS command

The user-identification-code (UIC) based protection for the program
library files required for each kind of library access

The use of VMSaccess control lists (ACLs) on program libraries for each
kind of library access

For complete details on VMSfile and directory protection, see the Guide to
VMS System Security, VMS DCL Dictionary, and VMS Access Control List
Editor Manual.

5.6.1 Program-Library Access Requirements for ACS Commands

The program library manager recognizes three kinds of program library
access (not to be confused with VMS UIC-based protection categories):

Read (R)—meansthat the library and units in the library can be opened
for reading

Write (W)}—meansthat units in the library can be deleted as well as
written

Delete (D)—meansthat the library can be deleted (including any units
in the library, the library index file, and the VMS directory associated
with the library)

Managing Program Development 5-21

Table 5-1 lists the kinds of access required by each of the ACS commands.

Table 5-1: Program Library Access Needed to Use ACS Commands

Library
ACS Command Access Comments

CHECK R

COMPILE RW

CONVERT LIBRARY RW

COPY FOREIGN RW Read access is needed to the directory
from which the foreign file is copied.

COPY UNIT RW Read access is needed to the program
library from which the unit is copied.

CREATE LIBRARY RW

CREATE SUBLIBRARY RW

DELETE LIBRARY RWD

DELETE SUBLIBRARY RWD

DELETE UNIT RW

DIRECTORY R

ENTER FOREIGN RW Read access is needed to the directory
from which the foreign file is entered.

ENTER UNIT RW Read access is needed to the program

library from which the unit is entered.

EXPORT R

EXTRACT SOURCE R

LINK R

LOAD RW

MERGE RW Read-write access is needed to the parent
library.

RECOMPILE RW

REENTER RW Read access is needed to the program
library from which the unit is reentered.

REORGANIZE RW Exclusive access is also needed.

SET LIBRARY R

(continued on next page)

5-22 Managing Program Development

Table 5—1 (Cont.): Program Library Access Needed to Use ACS Commands

Library
ACS Command Access Comments

SET LIBRARY/EXCLUSIVE RW Exclusive accessis also needed.

SET LIBRARY/READ_ONLY R

SET PRAGMA RW

SHOW LIBRARY R

SHOW PROGRAM R

SHOW VERSION R

VERIFY R

VERIFY/REPAIR RW Exclusive access is also needed.

5.6.2 Standard User-identification-Code (UIC) Based Program
Library Protection

Because they exist in the VMS environment, the files associated with
program libraries and the units contained in them inherit a default,
standard UIC-based protection when they are created—that is, a protection
that is coded for each of four hierarchical protection categories:

System (S)

Owner (O)
Group (G)
World (W)

Each category can be granted any of the following access codes, in any
combination:

Read (R)

Write (W)

Execute (E)

Delete (D)

Note that when a UIC delete access code is associated with a file, it means

that that individualfile can be deleted (as opposed to the program library
delete access discussed in Section 5.6.1, which meansthat an entire program
library and its contents can be deleted).

Managing Program Development 5-23

5-24

In the context of the VMS environment of directories and files, a program

library is a VMSdirectory that contains a library index file (ADALIB.ALB),
a library version control file (ADA$LIB.DAT), and all of the files associated

with the compilation units in the library. See Appendix D for a complete
description of thesefiles.

When you create a program library or sublibrary by entering an ACS
CREATE LIBRARY or CREATE SUBLIBRARY command,the followingfiles
are created with the following UIC-based protection:

¢ The VMSdirectory associated with the library (ifit does not already
exist). This directory file inherits whatever protection is in effect for the
next-higher-level directory, less any delete access for each unspecified
protection category. This inherited protection schemeis consistent with
the scheme used by the DCL CREATE/DIRECTORY command.

e The library index file (ADALIB.ALB) and library version controlfile
(ADA$LIB.DAT). Thesefiles are created with whateverfile protection
was most recently specified with the DCL SET PROTECTION/DEFAULT
command.

Each time a compilation unit is added to the library, if any files are created
in the library (VMSdirectory) for that unit, those files inherit the same
UIC-based protection as the library index file (not the VMSdirectory file).
In addition, if the library index file allows write access for a given protection

category, delete access is also given for that category.

Table 5—2 shows how the UIC-based protection for each file in a program
library is related to the program library access discussed in Section 5.6.1.
Table 5-2 shows the minimum UIC-based protection needed for each kind of
program library access. If the minimum UIC-based protection requirements
are not met for program library access, then normal library operations may
not complete properly. For example, the ACS DELETE UNIT command
requires read-write (RW) program library access. Because program library
write access also requires UIC delete access, if a file associated with that
unit does not allow delete access, the program library managerwill not
delete thefile.

Managing Program Development

Table 5—2: Minimum UIC Protection for Each Kind of Library Access

Library
Index File

Program and Library
Library Version Other Library
Access (see Control File Files (UIC VMS Directory File
Section 5.6.1) (UIC Access) Access) (UIC Access)

R R R R

RW RW RWD RW

RWD RWD RWD RWD!

1If the VMSdirectory file does not have UIC delete access, it will be left empty (the contents
but not the directory file will be deleted).

As shown in Table 5-2, library index file UIC protection must be the
same as the VMSdirectoryfile protection. To ensure this, you can use the
/PROTECTIONqualifier when you create the library. However, if the VMS
directory file already exists when you enter the ACS CREATE LIBRARY
command,its protection will not changed by this qualifier.

For example:

S ACS CREATE LIBRARY -
_§$ /PROTECTION=(SYSTEM:RWE, OWNER:RWED, GROUP:R, WORLD) -

_$ [JONES.HOTEL.ADALIB]

After this commandis executed, the specified protection applies to

the directory file [(JONES.HOTELJADALIB.DIR, the library index file
[LJONES.HOTEL.ADALIBJADALIB.ALB,and the library version controlfile
[JONES.HOTEL.ADALIBJADA$LIB.DAT. Otherlibrary files later created

in the program library [JONES.HOTEL.ADALIB] will have protections as
specified in Table 5-2 for each user category.

Sometimes you need to ensure that a program library is never modified
during a program library managersession. You can dothis byfirst invoking
the program library managerinteractively, and then entering an ACS SET
LIBRARY/READ_ONLY command. After you enter this command, any ACS

commandthat requires write or delete library access will fail. For more
information about the /READ_ONLYqualifier to the ACS SET LIBRARY
command, see Chapter 2 or Appendix A.

Managing Program Development 5-25

5.6.3 Program Library Protection Through Access Control Lists

5-26

VMSaccess control lists (ACLs) offer an alternative methodoffile protection.
You can use this method in conjunction with the standard UIC-based
protection described in Section 5.6.2 to tune access control whereit is
needed.

The central mechanism behind ACLsis a rights database that specifies
identifiers and holders of those identifiers, as well as ACLs that relate the

identifiers with the access to be granted or denied to the holders of the
identifiers. By using ACLs, you can match specific users to the specific
access you want to grant or deny.

Each ACL consists of one or more access control list entries (ACEs) that

grant or deny access to a particular user or group of users. There are three
kinds of ACEs:

¢ Identifier ACE—Controls the kinds of access to be allowed to a particular

user or group of users. An identifier ACE can be a UIC, a general

identifier established by the system manager, or a system-defined
identifier (for example, BATCH, NETWORK, DIALUP, INTERACTIVE,

and so on).

e Default protection ACE—Defines the default protection for a directory,
so that the protection can be propagated to the files and subdirectories
created in that directory.

. Security alarm ACE—Provides a security alarm when an object is
accessed in a particular way.

For a complete description of ACLs see the Guide to VMS System Security.

To allow you to tune access to a program library, the program library man-
ager checks for any identifier ACEs on the library index file (ADALIB.ALB)
in the VMSdirectory containing the program library. If there are identi-
fier ACEs defined on the library index file, the program library manager
will grant or deny access depending on the kind of program library access
required by the ACS operation (see Table 5-1).

As Table 5-2 shows, program library access is always the same as minimum
UIC access required for the library index file. Thus, by controlling access to
the library index file, you can control access to the program library.

For example, by applying an ACEto thelibrary index file that deniesall
ACS operations requiring write or delete program library access (such as
COMPILE, DELETE UNIT, ENTER UNIT, and so on), you can "freeze"

the program library for a particular set of users. The following command
restricts all members of the group PROJ to read-only ACS operations:

Managing Program Development

$ SET ACL DISK: [ADALIB] ADALIB.ALB/ACL=(ident=[PROJ,*], access=READ)

See the Guide to VMS System Security for a complete description of how
access requests are evaluated in the presence of ACLs.

Although putting an ACL on the library index file provides the desired
access control from the program library manager, it is not sufficient to
protect against users using another VMSutility (like DCL) to access the files
in the program library. To protect against those users, you need to apply the
ACLtoall files in the VMS directory associated with the program library,

according to the information given in Table 5-2. Normally, you should not
need to do this; keep in mind that putting ACLs onall files in the program
library will result in performance penalties for both users of the VAX Ada
program library manager and the entire VMS system in which those users

are working.

Also, do not assume that specifying ACCESS=NONEfor an identifier
will completely prohibit the holders of the identifier from accessing the
library. Users who are in either the SYSTEM or OWNERcategoryarestill
entitled to whatever access the UIC-based protection affords that category.
Furthermore, if the users hold privileges, they will be granted the access
requested through the privilege. See the Guide to VMS System Security for
more information on access request evaluation.

5./ Maintaining Program Libraries

Program library maintenance involves the following tasks:

¢ Making references to program libraries independent of specific devices
and directories

¢ Copying program libraries

e Backing up program libraries

e Reorganizing program libraries

e Verifying and repairing program libraries

¢ Recompiling after new releases of VAX Ada

The following sections discuss these tasks in detail and present information
on how to make someof the maintenance activities (copying, backing up,
and so on) efficient.

Managing Program Development 5-27

5.7.1. Making References to Program Libraries Independent of Specific
Devices and Directories

A program library often references units in other program libraries. A
sublibrary, in addition, references its parent library. By making unit
references and parent library references device and directory independent,
you can enter units, change the parent of a sublibrary, back up, and
restore program libraries independent of the device and directory references
associated with the units in those libraries. You can also change the parent
of a sublibrary (see Chapter 2).

You can achieve device independence by using concealed-device logical
names. Section 5.7.1.1 discusses concealed-device logical names.

You can achieve device and directory independence, and thus program

library reference independence, by using rooted directory syntax when
specifying parent libraries with the ACS CREATE SUBLIBRARY command
or when specifying units in the ACS ENTER command. Section 5.7.1.2
discusses rooted directories.

You can make logical name assignments at the system, group, or job level,
as appropriate. The VAX Ada Installation Guide instructs your system
manager to perform some standard system-wide logical name assignments
to public devices.

For more information on concealed-device logical names, rooted directories,

and logical names, see the VMS DCL Dictionary and the Guide to VMS File
Applications.

5.7.1.1. Using Concealed-Device Logical Names

A concealed-device logical name has the following properties:

e Its equivalence name contains a physical device name.

e It prevents the equivalence namefrom being displayed in the file specifi-
cation that results when the logical nameis translated; the logical name
is displayed in place of the equivalence name.

To define a logical name as a concealed-device logical name, you must use
the /TRANSLATION_ATTRIBUTES=CONCEALED qualifier with the DCL
DEFINE or ASSIGN commands. You must also use a physical device name,
not a logical device name. For example, the following command assigns the
concealed-device logical name DISK to the physical device DBA3:.

$ DEFINE/TRANSLATIONATTRIBUTES=CONCEALED DISK DBA3:

5-28 Managing Program Development

After this assignment, the logical name DISK (not the physical device name
DBA3:) is displayed in system messages. Also, utilities like the VAX Ada
program library manager will use DISK and not DBA3: when referencing
file and directory specifications.

For example, a library index file will reference DISK: rather than DBAS: for

entered units. Then if DBA3: is swapped with another device, reassigning
the logical name DISK to the new device will make the entered references

correct.

5.7.1.2 Using Rooted Directory Syntax

Rooted directory syntax allows programs andutilities to refer to a device

and a directory tree as a logical device and a top-level directory. A rooted
directory is a concealed-device logical name that defines both a hidden device
name and a hidden root directory. Once a rooted directory has been defined,
all subsequent directory references will refer to the root directory or any of
the directories in the directory tree below the root directory.

To define a rooted directory, you must use the DCL DEFINE or ASSIGN
commands with the /TRANSLATION_ATTRIBUTES=CONCEALED qual-
ifier. In the following example, the rooted directory BASE is defined as
the directory DBA3:[PROJ.HOTEL.]. Note the trailing period (.) in the
directory specification.

S$ DEFINE/TRANSLATIONATTRIBUTES=CONCEALED BASE DBA3: [PROJ.HOTEL.]

You can then refer to subdirectory DBA3:[PROJ.HOTEL.ADALIB] using
the rooted directory syntax BASE:[ADALIB]. The device (DBA3:) and the
directory structure ([PROJ.HOTEL]) are hidden when you use that syntax.
In other words, the root directory, BASE, behaves as a top-level directory.
For example:

S ACS SET LIBRARY BASE: [ADALIB]

5.7.2 Copying Program Libraries

NOTE

Whencopying program libraries, rememberthat other libraries
may reference them for entered units. To reference the new
locations of copied libraries, you need to use the ACS ENTER
UNIT/REPLACE command,specifying the new library location. If

you did not originally use rooted directories to refer to the entered
units, the ACS REENTER commandreenters the units from their

original libraries.

Managing Program Development 5—29

The best method for copying a program library from one device or directory
to anotheris to use the VMS Backup Utility; see Section 5.7.3.

Another methodis to create the new directory and then use the DCL COPY
command. However, note the following restrictions:

Ae

e You cannot use this method across DECnet; if you are copying libraries
across DECnet, use the Backup Utility.

e The directory to which you are copying the library must be empty.

¢ Whencopying a tree of sublibraries, you can use the DCL COPY

command only to copy the top program library. If you use the DCL

COPY commandto copy a sublibrary, the copied sublibrary points to its
original parent library, unless you have used a rooted directory.

e You may run into problems with the file creation dates that the DCL
COPY commandassignstothe files it copies.

A third way to copy a program library is to create a new program library

using the ACS CREATE LIBRARY or CREATE SUBLIBRARY command,
and then to use the ACS COPY UNIT and ENTER UNIT commandsto copy
and enter units into the new program library. If units have been entered
from several program libraries, this method requires more individual
operations than the backup or DCL COPY command methods. For example:

ACS> CREATE LIBRARY USER: [JONES.NEW.ADALIB]
ACS> SET LIBRARY USER: [JONES .NEW.ADALIB]

ACS> COPY UNIT DISK: {[SMITH.LISTS.ADALIB] unit-name[,...]

ACS> ENTER UNIT program-libraryl unit-name[,...]
ACS> ENTER UNIT program-library2 unit-name[,...]

5./.3 Backing Up and Restoring Program Libraries

5-30

To back up program libraries, use the VMS Backup Utility. For example,
the following command copies a library tree from oneset of directories to
another set of directories on the same disk and node:

$ BACKUP USER: [JONES.HOTEL...] USER: [JONES.NEWHOTEL...]

Managing Program Development

The following command backs up a library from a set of directories on the

local node and transfers the save-set across DECnet to the node CENTRL:

$ BACKUP USER: [JONES.HOTEL.ADALIB] -
$ CENTRL"PROJ PASSWORD": :DISK: [PROJ.JONES]HOTEL_ADALIB.BCK -
$ /SAVE_SET

The following commandrestores the save-set on node CENTRL:

$ BACKUP [PROJ.JONES]HOTEL_ADALIB.BCK/SAVE_SET -

_$ (PROJ.JONES .ADALIB}

See the Guide to Maintaining a VMS System and the VMS Backup Utility
Manual for information on using the Backup Utility.

You can make your backupsof library trees easier if you use concealed-
device logical names androoted directory syntax to make unit and parent
library references directory independent. See Sections 5.7.1.1 and 5.7.1.2
for more information on concealed-device logical names and rooted directory
syntax.

For example, consider the following sublibrary tree:

¢ The logical name TOPis assigned to the directory DBA3:[HOTEL.]:

$ DEFINE/TRANSLATIONATTRIBUTES=CONCEALED TOP DBA3: [HOTEL.]

¢ The sublibrary [JONES.HOTEL.SUBLIB] is created as a sublibrary of
TOP:[ADALIB]:

$ ACS CREATE SUBLIBRARY/PARENT=TOP: [ADALIB] [JONES.HOTEL.ADALIB]

If TOP is backed up and restored to another device or directory, reassign-

ment of the logical name TOP will make the sublibrary point to the correct
location:

$ DEFINE/TRANSLATIONATTRIBUTES=CONCEALED TOP new-dev-or-dir-spec

You can also use rooted directory syntax to obtain device or directory
independence for entered units. Then, if the new device or directory has
been reassigned properly, you do not have to enter or reenter the units after
a backupor restore operation to a different device or directory.

Managing Program Development 5-31

5.7.4 Reorganizing Program Libraries

Each time you compile or recompile one or more units, your program
library is updated. If your program library is updated frequently, ACS com-
mand performance may degrade. To improve and optimize ACS command
performance, enter the ACS REORGANIZE command. For example:

S ACS REORGANIZE

By default, as shown in this example, the ACS REORGANIZE command
reorganizes your current program library.

In general, you should consider reorganizing each of your program libraries
frequently, especially after doing many compilations or recompilations into
the same library.

9./.5 Verifying and Repairing Program Libraries

The ACS VERIFY commandperformsconsistency checkson library files and
requires only read access to a program library. The ACS VERIFY/REPAIR
commandcorrects certain kinds of errors and requires exclusive read-write
access to a program library. Both commands operate on the current program
library by default, or on a specified program library.

When you execute the ACS CHECK, COMPILE, RECOMPILE, or LINK

command, you may encounter the followingerrors:

e Missing units

¢ Obsolete units

¢ Obsolete references to entered units

e Missing copied source files (in the case of the COMPILE and
RECOMPILE commands)

You may occasionally receive other, unexpected, diagnostics with a program
library—for example, messages about missing or corrupted files associated
with units in the library. The COMPILE, RECOMPILE, or LINK commands

may detect these errors; the CHECK command may not. If you suspect that
program library files have been corrupted or are missing, you should enter
the VERIFY command.

The VERIFY command checksthe following items:

e The formatof the library indexfile.

5-32 Managing Program Development

¢ Whetherall files cataloged in the library indexfile exist in the program
library and are accessible. In the case of entered units, the VERIFY
command checks whetherthefiles exist in the library from which they
were entered.

e Whetherall files that exist in the program library directory are cataloged
in the library index file and have the correct format.

¢ Whether the protection code of cataloged files is consistent with that
of the library indexfile (see Section 5.6.1 for information on protection
codes).

Under normal conditions, the VERIFY commandissues a success message.
For example:

S ACS VERIFY

21, USER: [JONES.HOTEL.ADALIB] verified

If you use the /LOG qualifier, the VERIFY commandissues a separate
message for each unit defined in the program library, as well as a final
summary message.

If inconsistencies exist, the VERIFY command issues error messages

indicating the units orfiles that are inconsistent. The following example
shows the kinds of conditions that the VERIFY command can detect
(typically, these conditions should rarely occur):

$ ACS VERIFY [PROJ.ADALIB]
, Inconsistent file protection USER: [PROJ.ADALIB] SQR.OBJ; 3EB

SBE, error opening USER: [PROJ.ADALIB] TESTSTACKS.OBJ;21 as

E, input file not found

E, USER: [PROJ.ADALIB]ODD.COM;12 is not cataloged

in library USER: [PROJ.ADALIB]

SE, USER: [PROJ.ADALIB] SCREENIO.ACU;7 is not cataloged

in library USER: [PROJ.ADALIB]

$I, Units with inaccessible files are obsolete. If repair

(VERIFY/REPAIR) is not possible, then recompilation of

these units is necessary; after entering a VERIFY/REPAIR

command, the CHECK command will show any obsolete units
SE, USER: [PROJ.ADALIB] has uncorrected errors

The messagesin this example have the following meaning:

e The protection code of file SQR.OBJ;3 is inconsistent with that of the

libraryindexfile.

e File TEST_STACKS.OBJ;21 is cataloged in the library indexfile but is
not in the program library (thefile is inaccessible).

Managing Program Development 5-33

5-34

e¢ Files ODD.COM;12 and SCREEN_IO.ACU;7 are not cataloged in the

library index file (these files do not belong in the program library
directory).

These kinds of errors are not detected by the CHECK command, which you
use to determine whether any units in a closure are missing or obsolete.

You can use the ACS VERIFY/REPAIR commandto correct some of the
errors reported by the VERIFY command. The VERIFY/REPAIR command
performs the same checks as the VERIFY command, and takes corrective
action on the specified program library, as follows:

e Identifies any files in the program library directory that are not cata-
loged in the library index file. Deletes any uncataloged files with file
type of .OBJ, .ACU, or .ADC. Deletes any uncatalogedfiles with other
file types only if you have also specified the /CONFIRM qualifier and
given an affirmative response.

e As necessary, changesthe file protection on .OBJ, .ACU, and .ADCfiles
to be consistent with the protection code for the library indexfile.

¢ Marksas obsolete any unit whose .OBJ or .ACU file is inaccessible.
A later VERIFY/REPAIR commandwill reset any such marksif the
associated files are again available.

¢ Removesreferences to inaccessible copied source files (.ADC) from the
library indexfile.

¢ Deletes any index entry with an illegal format from the library index
file.

The VERIFY/REPAIR commanddoes not take corrective action for entered

units.

The VERIFY/REPAIR command requires exclusive read-write access to
the program library to be verified—that is, you mustfirst execute the SET
LIBRARY/EXCLUSIVE commandinteractively (see Chapter 2) and then
enter the VERIFY/REPAIR command(also interactively).

The following example shows the use of the VERIFY/REPAIR commandwith
the error conditions reported by the VERIFY commandin the preceding
example. The /LOG qualifier lists the action taken for each unit or file being
repaired (only units andfiles that had inconsistencies are shown in the
example):

Managing Program Development

S$ ACS

ACS> SET LIBRARY/EXCLUSIVE [PROJ.ADALIB]
ACS> VERIFY/REPAIR/LOG

Inconsistent file protection USER: [PROJ.ADALIB] SOQR.OBJ;3

SQR verified and repaired

error opening USER: [PROJ.ADALIB]TESTSTACKS.OBJ;21 as

input file not found
TESTSTACKS verified and repaired

USER: [PROJ.ADALIB]ODD.COM;12 is not cataloged

in library USER: [PROJ.ADALIB]

USER: [PROJ.ADALIB] SCREEN_IO.ACU;7 is not cataloged

in library USER: [PROJ.ADALIB]

Units with inaccessible files are obsolete. If repair
(VERIFY/REPAIR) is not possible, then recompilation of

these units is necessary; after entering a VERIFY/REPAIR

command, the CHECK command will show any obsolete units
USER: [PROJ.ADALIB] has uncorrected errors

In this example, the VERIFY/REPAIR commandhas taken the following
actions:

Changed the protection of file SQR.OBJ;3 to be consistent with the

protection of the library indexfile

Marked the unit TEST_STACKS as obsolete, because its .OBJ file

(TEST_STACKS.OBJ;21) is inaccessible

Kept the uncataloged file ODD.COM;12, becauseits file type is not .OBJ,
.ACU, or .ADC, and because the /CONFIRM qualifier was not used

Deleted the uncataloged file SCREEN_IO.ACU;7, because its file type

is ACU

The following steps delete the uncataloged file ODD.COM;12:

Managing Program Development 5-35

ACS> VERIFY/REPAIR/CONFIRM
SE, error opening [PROJ.ADALIB]TESTSTACKS.OBJ as input
-E, file not found

SE, USER: [PROJ.ADALIB]ODD.COM;12 is not cataloged
in library USER: [PROJ.ADALIB]

USER: [PROJ.ADALIB]ODD.COM;12, delete? [NJ]: y

$I, Units with inaccessible files are obsolete. If repair

(VERIFY/REPAIR) is not possible, then recompilation of
these units is necessary; after entering a VERIFY/REPAIR
command, the CHECK command will show any obsolete units

$W, USER: [PROJ.ADALIB] verified and repaired

There are two ways to make the unit TEST_STACKScurrent:

¢ Because TEST_STACKS has been marked obsolete, you could use the
RECOMPILE command. For example:

ACS> RECOMPILE TESTSTACKS

e Alternatively, if a current copy of the missing file, TEST_STACKS.OBJ;21,
is available in another program library, you could use the DCL COPY
or BACKUP commandtocreate a copy of the file in the program library
[PROJ.ADALIB]. For example: |

$ COPY [backup-directory] TEST_STACKS.OBJ;21 [PROJ.ADALIB]

After the TEST_STACKS.OBJfile has been copied to [PROJ.ADALIB], the

VERIFY/REPAIR command must be reentered so that TEST_STACKS can

be marked as current.

9./.6 Recompiling Units After a New Release or Update of VAX Ada

5—36

Whenan update or full release of VAX Adais installed on your system,
previously compiled units, as well as references to entered units, may be
rendered obsolete. Your system manager should inform you of this condition,
which will, in any case, become evident when you try to use the program
library manageror the compiler with obsolete units.

To make the contents of your program libraries current, you need to perform
the following steps for each of your program libraries. Note that a program
library with entered units needs to be made currentafter the entered units
are made current in their own libraries. The program library manager
issues an error message if you try to recompile a unit that depends on an
obsolete entered unit.

1. Use the ACS SET LIBRARY commandto define the current program
library:

S$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

Managing Program Development

2. Use the ACS REENTER commandto reenter current references to the

VAX Ada predefined units from the current program library:

S ACS REENTER *

Consult the cover letter and release notes supplied with the release
of VAX Ada that you are using. If new units have been addedto the
VAX Ada predefined units and you want to enter them into the current
program library, use the ACS ENTER UNIT command,specifying the
appropriate unit names:

S ACS ENTER UNIT ADASPREDEFINED unit-name[,...]

3. Use the ACS RECOMPILE commandto make currentall units in the

current program library:

S ACS RECOMPILE *

5.8 Working with Multiple Targets

When working with multiple targets (for example VMS and VAXELN
targets), you need to know which parts of your code are target-specific and
which are target-dependent. You also need to know howbig an effect a
change in the target can have. The following sections discuss topics related
to program portability and target dependence.

9.8.1. Determining VAX Ada Program Portability

To determine if your VAX Ada program uses certain potentially nonportable
features, you can enter the ACS SHOW PROGRAM/PORTABILITY com-

mand or you can use the /SHOW=PORTABILITY qualifier with any of
the VAX Ada compilation commands (DCL ADA or ACS COMPILEor
RECOMPILE). The /SHOW=PORTABILITY qualifier (which is the default
for all of the compilation commands) causes the compiler to include a porta-
bility summary in the compilation listing file (the /LIST qualifier must also
be specified).

The following sections discuss the factors affecting the portability of a VAX
Ada program, and identify those features that may appear in the portability
summary.

Managing Program Development 5-37

5.8.1.1 Factors Affecting Portability

A program’s portability depends on the set of available implementations that
are appropriate for the program. For example, the Ada Standard does not
specify the range of digits for floating-point types that must be supported by
an implementation. Thus, the following type declaration may or may not be

portable to all relevant implementations:

type REAL is digits 9;

If an implementation can support the requested accuracy and implied range,
then the program should be portable with respect to that implementation.
If the implementation cannot support the requested accuracy, then it will
produce an error during compilation (rather than allowing the program to
compile and then execute with unacceptable results). The use of an implicit
underlying type—in this case, the VAX Ada predefined type LONG_FLOAT
(and either a D_floating or G_floating representation)—is not relevant to

whetheror not the program is portable.

The explicit use of a predefined type, such as LONG_FLOAT,also mayor.
may not be portable. For example:

type REAL is new LONGFLOAT;

The fact that some other implementation may support a predefined type
LONG_FLOAT(as described in the Ada Standard) does not ensure that
your program is portable to that implementation. In particular, the accuracy
provided by that implementation may be less than the accuracy provided by
VAX Ada—which may or may not be significant to your program.

The VAX Ada portability summary does not list implicit uses of the type
LONG_FLOAT(asin thefirst example declaration of the type REAL); it does
list explicit uses of the type LONG_FLOAT(as in the second declaration).

The abstraction properties of the Ada language imply that even when a
particular construct is defined by a nonportable construct, uses of that
particular construct are not necessarily also nonportable. For example, an
unchecked conversion from the type INTEGERto the type ADDRESScould
be implemented across a large number of Ada implementations in various
ways—but it is the conversion declaration, not the conversion call, that you

should examine when porting a program that uses the conversion function.

Another example of this concept occurs in the VAX Ada implementation
of the predefined package TEXT_IO. The private part of TEXT_IO’s spec-
ification uses some implementation-defined pragmas, such as the pragma

IMPORT_PROCEDURE.The package body uses even more nonportable

5-38 Managing Program Development

constructs, such as the type ADDRESS, the implementation-defined at-
tribute TYPE_CLASS, and other VAX Ada-specific features. However, the

portability of programs that use the package TEXT_IO is not compromised.

Another consideration is that pragmas (which, as required by the Ada
Standard, cannotaffect the legality of a program) may or maynotberele-
vant to the correct operation and/or portability of a program. For example,
a program may workcorrectly only if the pragma SHAREDis supported by
an implementation, or only if the pragma PRIORITY is supported with a
certain range of priorities. For this reason, the portability summary shows
the use of many of the language-defined pragmasas well as the useofall of
the implementation-defined pragmas.

5.8.1.2 Features Listed in the Portability Summary

The portability summary lists one or more of the features or constructs
shown in Table 5-3. The summary briefly describes each feature or con-
struct, and each description is followed by the line numbers where each
use of the feature or construct occurs. Features or constructs that are
implementation-specific are marked with an asterisk (*). For example:

PORTABILITY SUMMARY

predefined SHORT_INTEGER or SHORTSHORTINTEGER

3
predefined LONGFLOAT or LONGLONGFLOAT

4
with SYSTEM 1

predefined ADDRESS 5
predefined NONADAERROR* 9
attribute ADDRESS 7

where * indicates an implementation-defined feature

Italicized text is used in Table 5-3 to explain some of the features or con-
structs; the text does not appear in the actual portability summary.

Whetheror not you specify the /SHOW=PORTABILITY qualifier for a com-
pilation, the use of any of these features is always recorded (without specific
line numbers) in the current program library. You can obtain portability
information at any time with the ACS SHOW PROGRAM/PORTABILITY
command.

Managing Program Development 5-39

5—40

Table 5-3: Features or Constructs that May Appearin a Portability
Summary

Implementation-Defined Types in the Package STANDARD

predefined SHORT_INTEGER or SHORT_SHORT_INTEGER

predefined LONG_FLOAT or LONG_LONG_FLOAT(thatts, explicit rather than

implicit uses of these types, as discussed previously)

Entities in the Predefined Package SYSTEM

with SYSTEM (that is, use ofpredefined SYSTEM in a with clause)

predefined NAME(includes type NAMEandanyof its enumerals)

predefined named number (such as MAX_INT)

predefined PRIORITY

predefined F_FLOAT, D_FLOAT, G_FLOAT or H_FLOAT*

predefined ADDRESS(includes type ADDRESSand constant ADDRESS_ZERO)

instantiation of FETCH_FROM_ADDRESSor ASSIGN_TO_ADDRESS*

predefined TYPE_CLASS* (includes type TYPE_CLASSand any of its enumerals)

predefined AST_HANDLER*®(includes type AST_HANDLER andconstant

NO_AST_HANDLER)

predefined NON_ADA_ERROR*

predefined type, subtype, or special operator for VAX storage (such as

UNSIGNED_LONGWORD)*

predefined conversion for VAX storage (such as TO_BIT_ARRAY_32)*

predefined read or write input-output register*

predefined read or write processor register*

predefined ALIGNED_WORD*

predefined add, set, or clear interlocked*

predefined INSQ_STATUS or REMQ_STATUS*

predefined insert or remove queue interlocked*

(continued on next page)

Managing Program Development

Table 5-3 (Cont.): Features or Constructs that May Appearin a Portability
Summary

Predefined Procedure UNCHECKED_DEALLOCATION

with UNCHECKED_DEALLOCATION(that is, use ofpredefined UNCHECKED_
DEALLOCATIONin a with clause)

instantiation of UNCHECKED_DEALLOCATION

Predefined Function UNCHECKEDCONVERSION

with UNCHECKED_CONVERSION(that is, use ofpredefined UNCHECKED_
CONVERSIONin a with clause)

instantiation of UNCHECKED_CONVERSION

Representation Clauses

address representation clause

enumeration representation clause

length SIZE representation clause

length STORAGE_SIZE representation clause

length SMALL representation clause

record representation clause

Attributes

attribute ADDRESS

attribute AST_ENTRY*

attribute BIT*

attribute MACHINE_SIZE*

attribute NULL_PARAMETER*

attribute SIZE

attribute STORAGE_SIZE

attribute TYPE_CLASS*

(continued on next page)

Managing Program Development 5—41

Table 5—3 (Cont.): Features or Constructs that May Appearin a Portability
Summary

Pragmas

unknown pragmas(that is, any pragma not recognized by VAXAda)

unsupported pragmas(that is, any pragma supported by another Ada
implementation)

pragma AST_ENTRY*

pragma EXPORT_EXCEPTION*

pragma EXPORT_FUNCTION*

pragma EXPORT_OBJECT*

pragma EXPORT_PROCEDURE*

pragma EXPORT_VALUED_PROCEDURE*

pragma IDENT*

pragma IMPORT_EXCEPTION*

pragma IMPORT_FUNCTION*

pragma IMPORT_OBJECT*

pragma IMPORT_PROCEDURE*

pragma IMPORT_VALUED_PROCEDURE*

pragma INTERFACE

pragma INLINE_GENERIC*

pragma LONG_FLOAT*

pragma MAIN_STORAGE*

pragma MEMORY_SIZE

pragma PACK

pragma PRIORITY

pragma PSECT_OBJECT

pragma SHARED

pragma SHARE_GENERIC

pragma STORAGE_UNIT

pragma SUPPRESS

pragma SUPPRESS_ALL*

(continued on next page)

5-42 Managing Program Development

Table 5-3 (Cont.): Features or Constructs that May Appearin a Portability
Summary

Pragmas

pragma SYSTEM_NAME

pragma TASK_STORAGE*

pragma TIME_SLICE*

pragma TITLE*

pragma VOLATILE*

5.8.2 Setting the System Name

The VAX Ada program library manager, as the interface to the VAX Ada
compiler and VMSLinker, is sensitive to differences in targets through the
value of the predefined constant SYSTEM_NAMEin the package SYSTEM.
This constant can have a value of either VAXELN or VAX_VMS.

The value of SYSTEM.SYSTEM_NAMEdoesnot cause the compiled code to
differ. It is used to determine target-related compilation unit dependences,
which can occur in your Ada code in the following cases:

e Use of SYSTEM.SYSTEMNAMEcauses either a VAX_VMSor a

VAXELN dependence.

e Use of the pragma TIME_SLICE causes a VAX_VMSdependence.

e Use of the pragma AST_ENTRYor the AST_ENTRYattribute causes a
VAX_VMSdependence.

e Use of any of the relative or indexed input-output packages causes a

VAX_VMSdependence.

e Use of the package VAXELN_SERVICES causes a VAXELN dependence.

For example, if a compilation unit uses the pragma AST_ENTRYand the
system name at compile time is VAXELN, you are warned that your unit
depends on SYSTEM.SYSTEM_NAMEandthat the pragma AST_ENTRY
is ignored for a VAXELNtarget. Similarly, if a unit uses the AST_ENTRY
attribute and the system name at compile time is VAXELN, you are warned
that your unit depends on SYSTEM.SYSTEM_NAMEandthat your use of
the AST_ENTRYattribute is illegal.

Managing Program Development 5-43

When you create a program library or sublibrary, the default value of
SYSTEM.SYSTEM_NAMEis VAX_VMS.You can use the /SYSTEM_NAME
qualifier on the ACS CREATE LIBRARY or CREATE SUBLIBRARY
commandto explicitly determine the value of SYSTEM.SYSTEM_NAME,
or you can permanently set the system name to VAXELN(orsetit back to

VAX_VMS)by performing oneof the following operations:

¢ Compiling the predefined Ada pragma SYSTEM_NAME

e Executing the ACS SET PRAGMA command (ACS SET PRAGMA/SYSTEM_

NAME=VAX_VMS or ACS SET PRAGMA/SYSTEM_NAME=VAXELN)

To determine the current setting for your current program library, use
the ACS SHOW LIBRARY/FULL command; to determine system-name
dependencesfor individual program units, use the ACS SHOW PROGRAM
command.

You can temporarily override the current setting when you link or ex-
port units by using the /SYSTEM_NAMEqualifier on the ACS LINK and
EXPORT commands. For example, if you are working in a VMSenvi-
ronment (SYSTEM.SYSTEM_NAME=VAX_VMS), and the units you have

compiled do not contain any of the VMS-specific features, you can link
them for a VAXELNtarget with the ACS LINK/SYSTEM_NAME=VAXKELN

command. However, a link-time error occurs if a unit depends on the value
of SYSTEM.SYSTEM_NAMEand a /SYSTEM_NAME qualifier specifies a
different value. See Chapter 4 for more information on the ACS LINK and
EXPORT commands.

When you use the pragma SYSTEM_NAMEor the ACS SET PRAGMA
command to change the system name(either with an argument of VAX_VMS
or VAXELN), an implicit recompilation of the package SYSTEM occurs.
Those units that depend on the value of SYSTEM.SYSTEM_NAMEare then
madeobsolete, and must be recompiled in the context of the new system

name. For example, consider the following program (dashed lines separate
the individual compilation units):

procedure TASKWORK is -- VMS-dependent procedure.

pragma TIMESLICE(0.4);

task type T;

type TASKFORCETYPE is
array (INTEGER range 1..5) of T;

TASKFORCE: TASKFORCETYPE;

5—44 Managing Program Development

task body T is separate; -- Task body is a subunit.

begin

end TASKWORK;

with TASKWORK;
procedure ALLWORK is -- Main program, depends on

-- target-dependent TASKWORK.

begin

TASKWORK;

end ALLWORK;

with TEXTIO; use TEXTIO;
separate (TASKWORK)

task body T is -- Target-independent subunit depends
—-- on target-independent package

-- TEXTIO and target-dependent
-- ancestor, TASKWORK.

begin

PUTLINE ("My work’s just starting...");

delay 3.0;

PUTLINE ("My work’s all done!");

end T;

If you compile these units into a program library for which SYSTEM.SYSTEM_
NAMEequals VAX_VMS, and subsequently use the ACS SET PRAGMA
command to set SYSTEM_NAMEto VAXELN,then thefollowing effects will

occur:

e Procedure TASKWORKbecomes obsolete because it depends on
SYSTEM.SYSTEM_NAME=VAX_VMS.

¢ The main program, ALL_WORK, becomesobsolete because it depends on
procedure TASK_WORK.

¢ The subunit TASKWORK.T becomesobsolete because it depends on its
ancestor, TASKWORK.

All three units would have to be recompiled before they could be linked, and
recompilation would result in a warning because the pragma TIME_SLICE
is ignored for VAXELN targets. Chapter 1 discusses unit dependences in
more detail.

Managing Program Development 5—45

Chapter 6

Debugging VAX Ada Programs

A debuggeris a tool that helps you locate run-time errors. You use it with a
program that has been compiled and linked successfully, but does not run
correctly. For example, the output may be wrong,or the program goes into
an infinite loop or terminates prematurely. The debugger enables you to
observe and manipulate the program’s execution interactively so that you
can locate the point at which the program stopped workingcorrectly, and
then you can examinethestate of the program at that point.

This chapter is an introduction to using the VMS Version 5.0 Debugger
with VAX Ada programs. This chapter provides you with the following
information:

e An overview of the debugger

¢ Information to get you started using the debugger with Ada programs

e Ada-specific debugger information

e Asample terminal session that demonstrates using the debugger

You can obtain additional debugger information from the following sources:

e Online HELPis available during debugging sessions (type HELP at the
debugger prompt).

e Chapter 7 describes the techniques available for debugging multitasking
VAX Ada programs.

e Appendix B lists debugger commandsby function.

¢ The VMS Debugger Manual provides complete reference information on
the VMS Debugger and its commands.

Debugging VAX Ada Programs 6-1

6.1 VMS Debugger Overview

The VMS Debuggeris a symbolic debugger, which means that you can refer
to program locations by the symbols you used for those locations in your

program—the namesof variables, subprograms, labels, and so on. You do
not need to use virtual addresses (hexadecimal values) to refer to memory

locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX Ada. The debugger also supports the following VAX
languages:

BASIC DIBOL PL/I
BLISS FORTRAN RPGII
C MACRO-32 SCAN
COBOL Pascal

If your program is written in more than one VAX language, you can change
from one language to another during a debugging session. The current
source language determines the format used for entering and displaying
data, as well as other features that have language-specific settings (for
example, operators and operator precedence, and case sensitivity or
insensitivity).

By entering debugger commands at your terminal, you can perform the

following operations:

¢ Start, stop, and resume the program’s execution.

¢ Trace the execution path of the program.

¢ Monitor s :lected locations, variables, or events, including Ada exceptions
and tasks.

e Examine and modify the contents of variables, or force events to occur.

After you find the error in your program, you can edit the source code and
compile, link, and run the corrected version.

The debugger also provides the following features to help you debug your
programs:

¢ Online HELP—Online HELP is always available during a debugging
session and contains information on all the debugger commandsandalso
information on selected topics.

¢ Source Code Display—You can display lines of source code at any time
during a debugging session, without affecting program execution.

6-2 Debugging VAX Ada Programs

e¢ Screen Mode—yYou can display various kinds of information in
scrollable windows, which can be moved aroundthe screen and resized.

Automatically updated source, instruction, and register displays are
available. You can selectively direct debugger input, output, and
diagnostic messagesto displays.

¢ Keypad Mode—Whenyou invoke the debugger, several commonly used
debugger command sequences are assigned by default to the keys of the
numeric keypad (if you have a VT100, VT52, or LK201 keypad).

¢ Source Editing—Asyou find errors during a debugging session, you
can use the debugger EDIT commandto invoke any editor available

on your system. (You can first specify the editor you want with the
debugger SET EDITOR command.)

¢ Command Procedures—The debugger allows you to execute a
commandprocedure to re-create a debugging session, to continue a
previous session, or to avoid typing the same debugger commands many
times during a debugging session.

¢ Symbol Definitions—You can define your own symbols to represent
lengthy commands, address expressions, or values.

¢ Initialization Files—You can create an initialization file containing
commandsto set your default debugging modes, screen display defini-
tions, keypad key definitions, symbol definitions, and so on. In addition,
you may want to have special initialization files for debugging specific
programs.

e Log Files—You can record the commands you enter during a debugging
session and the debugger’s responses to those commandsin a logfile.
You can use log files to keep track of your debugging efforts, or you can
use them as commandprocedures in subsequent debugging sessions.

6.2 Getting Started with the Debugger

The following sections explain how to prepare your Ada program for
debugging, and then focus on the tasks required to run an Ada debugging
session. For more detailed information that is not Ada-specific, see the VMS
Debugger Manual.

Debugging VAX Ada Programs 6-3

6.2.1. Compiling and Linking a Program to Prepare for Debugging

Before you can use the debugger, you must compile and link your program
as explained in this section. The following example shows how to compile
and link a VAX Ada program before using the debugger. The program
consists of a single compilation unit named ADD_INTEGERS:

¢ ADA/DEBUG/NOOPTIMIZE ADDINTEGERS
g ACS LINK/DEBUG ADDINTEGERS

The /DEBUGqualifier on the DCL ADA command(also the default) causes
the compiler to write the debugger symbol records associated with the
compilation unit ADD_INTEGERSinto the object module in the current
Ada program library. These records allow you to use the namesof variables
and other symbols declared in debugger commands. Theyalso allow the
debugger to display source code for the program.

The /NOOPTIMIZE (or /OPTIMIZE=NONE)qualifier prevents program
optimizations, which may make program symbols inaccessible to the
debugger, or which may make the generated code difficult to understand.
You should use the /NOOPTIMIZEqualifier when you compile a program
to prepare it for debugging; the default is /OPTIMIZE. After you debug
your program, you can compile it again with the /OPTIMIZE qualifier. The
/OPTIMIZE=DEVELOPMENToption is another alternative that provides
some optimization, but also prepares the code for debugging.

See Chapter 3 and Appendix A for more information on the /[LNOJOPTIMIZE
qualifier; see Chapter 3 for more information on recompiling your program
with different qualifiers.

If your program has several compilation units, you must compile all of the
units that you want to debug with the appropriate qualifiers. For example:

$ ADA/DEBUG/NOOPTIMIZE SUM, MAIN
¢ ACS LINK/DEBUG MAIN

Note the following points when compiling Ada programs or units for
debugging:

¢ The DCL ADA and ACS COMPILE and RECOMPILE commands assume
the /DEBUG qualifier by default. Unless you use the /NODEBUG
qualifier with these commands, they will automatically compile units for
debugging.

e The VAX Ada predefined units in the ADA$PREDEFINED program
library on your system have been compiled with the /NODEBUG
qualifier. Before using the debugger to refer to names declared in the
predefined units, you must first copy the predefined unit source files

6-4 Debugging VAX Ada Programs

using the ACS EXTRACT SOURCE command. Then, you must compile
the copies into the appropriate library with the /DEBUGqualifier, and
relink the program with the /DEBUGqualifier.

¢ Ifyou use the /NODEBUGqualifier with one of the Ada compilation
commands, only global symbol records are included in the modules for

debugging. Global symbols in this case are names that the program
exports to modules in other languages by means of the VAX Ada export
pragmas: EXPORT_PROCEDURE, EXPORT_VALUED_PROCEDURE,
EXPORT_FUNCTION, EXPORT_OBJECT, EXPORT_EXCEPTION,and
PSECT_OBJECT.

The /DEBUG qualifier on the ACS LINK commandcausesthelinker to
include all debugging information in the closure of the specified unit in the
executable image. This qualifier also causes the VMS imageactivator to
start the debugger at run time. See Chapter 4 and Appendix A for more
information on the ACS LINK command.

With the default /TRACEBACKqualifier and without the /DEBUG qualifier
(or with the default /NODEBUG qualifier), the ACS LINK commandincludes
only traceback information in the image—thatis, it includes the names of
compilation units, subprograms, and compiler-generated line numbers.
Traceback information is used by the VMStraceback utility to identify the
active calls and PC(program counter) location when an error occurs.

6.2.2 Starting and Ending a Debugging Session

To invoke the debugger, enter the DCL RUN command. Thefollowing
messages will appear on your terminal:

$ RUN ADDINTEGERS

VAX DEBUG Version V5.0-00

sDEBUG-I-INITIAL, language is ADA, module set to ADDINTEGERS
SDEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

The INITIAL message indicates that the debuggingsession is initialized for
a VAX Ada program and that the name of the main program unit is ADD_
INTEGERS.Theinitialization sets up any language-dependent debugger
parameters.

The NOTATMAIN messageindicates that execution is suspended before the
elaboration of library units and before the start of the main program, so that
you can execute this elaboration code under debugger control. This message

Debugging VAX Ada Programs 6-5

is issued both for Ada main programs and for non-Ada main programsthat

call Ada exported units.

Typing the GO commandplaces you at the start of the main program.
At that point, type the GO command again to start program execution.
Execution continues until it is forced to pause or stop (for example, if

the program prompts you for input, a breakpointis triggered, or an error
occurs).

The following message indicates that your program has completed
successfully:

SDEBUG-I-EXITSTATUS, is ’SSYSTEM-S-NORMAL, normal successful

completion’
DBG>

If you want to continue debugging at this point, type EXIT and then enter
the DCL RUN commandto start a new debugging session.

To interrupt a debugging session and return to DCLlevel, press CTRL/Y.
For example, pressing CTRL/Y is useful if your program loops or you want

to interrupt a debugger commandthatis still in progress. See Chapter 7 for
information on using CTRL/Y if your program hastasks.

To resume the debugging session after a CTRL/Y interruption, enter either
the CONTINUE or DEBUG command at DCL level. Use the CONTINUE
command to resume execution at the point which you interrupted the
debugging session. If you interrupted the session because of an infinite loop,
use the DEBUG commandinstead. The DEBUG command returns you to

the debugger prompt so that you can enter another command. For example:

DBG> GO

(infinite loop)

Interrupt

$ DEBUG
DBG>

If you do not want to continue the debugging session, you can enter the

DCL EXIT or STOP commands, or any DCL commandthat executes an
image, such as COPY, MAIL, or RUN. The EXIT commandis preferable to

the STOP commandbecause it invokes exit handlers in your program and
the debugger, and thus causes orderly termination of the debugging session.
The STOP command prevents exit handlers in your program or the debugger
from executing, and thus is not recommended. Running another imageis
equivalent to entering the EXIT command and then running the image.

6-6 Debugging VAX Ada Programs

To suspend a debugging session to execute other images (for example, read
MAIL or submit a batch job), enter the debugger SPAWN or ATTACH com-
mand. These debugger commands behavejust like their DCL counterparts
(see the VMS DCL Dictionary).

To end a debugging session, enter the EXIT commandor press CTRL/Z:

DBG> EXIT
$

If you have linked an image with the /DEBUGqualifier, and you want to
execute that image without the debugger and without relinking, you can use
the DCL RUN commandwith the /NODEBUGqualifier. For example:

$ RUN/NODEBUG ADDINTEGERS

The RUN/NODEBUG commandis convenient for checking a program once
you think it is error free.

6.2.3 Entering Debugger Commands

The debugger provides a comprehensive set of commandsto help you debug
your program. A summary by function appears in Appendix B;see the
online HELPfile and the VMS Debugger Manual for more information on
individual commands.

You can enter debugger commandsany time you see the debugger prompt

(DBG>). Type the commandon the keyboard and press the RETURN key.
Note that if a commandresults in an informational-level error, the debugger
executes the command, even though it issues a diagnostic message.

You can enter several commandson a line by separating the command
strings with semicolons (;). As with DCL commands, you can continue a
commandstring on a new line by ending the previous line with a
hyphen (—).

DBG> EXAMINE LONGVARIABLENAME1, -

_DBG> LONG_VARIABLENAME2

If you have a Digital keyboard, you can use the numeric keypad to enter
certain commands. Figure 6—1 identifies the predefined key functions. You
can also redefine key functions with the DEFINE/KEY command.

Most keypad keyshave three predefined functions—DEFAULT, GOLD,and
BLUE.To obtain a key’s DEFAULT function, press the key. To obtain its
GOLDfunction, first press the PF1 (GOLD) key, and then the key. To obtain
its BLUE function, first press the PF4 (BLUE) key, and then the key.

Debugging VAX Ada Programs 6-7

In Figure 6-1, the DEFAULT, GOLD, and BLUE functions are listed within

each key’s outline, from top to bottom, respectively. For example, pressing
keypad key 0 enters the STEP command; pressing key PF1 and then key 0
enters the STEP/INTO command; pressing key PF4 and then key 0 enters
the STEP/OVER command.

Enter the command HELP KEYPAD to get help on the keypad key
definitions.

6.2.4 Viewing Your Source Code

The debugger provides two modes for displaying information: noscreen
mode and screen mode. By default, when you invoke the debugger, you are
in noscreen mode. But you mayfind that it is easier to view your source
code in screen mode. Both modes—and somegeneral considerations about
displaying source code—are briefly described in the following sections.

Note that to view your source code, you must have compiled and linked the
code with the /DEBUGqualifier in effect (see Section 6.2.1).

6.2.4.1 Noscreen Mode

Noscreen modeis the default, line-oriented mode of displaying input and
output. To invoke noscreen mode from screen mode, press the keypad key
sequence PF1(GOLD key)-PF3 or type SET MODE NOSCREEN.See the
sample debugging session in Section 6.7 for a demonstration of noscreen
mode.

To display one or more source lines in noscreen mode, use the debugger
TYPE command or the debugger EXAMINE/SOURCE command. For ex-
ample, the following command displays line 9 of the module whose codeis
executing:

DBG> TYPE 9

module MAIN

9: I := 7;

DBG>

6-8 Debugging VAX Ada Programs

Figure 6-1: Debugger Keypad Key Functions

F17 Fi9 F20

DEFAULT MOVE EXPAND CONTRACT

(SCROLL) (EXPAND+) (EXPAND-)

(PF PF2 PF3 PF4 >

GOLD HELP DEFAULT SET MODE SCREEN BLUE
GOLD HELP GOLD SET MODE NOSCR BLUE
GOLD HELP BLUE DISP/GENERATE BLUE

7 fs 9 _

DISP SRC,INST,OUT SCROLL/'UP DISPLAY next DISP next at FS
DISP INST,REG,OUT SCROLL/TOP

SCROLUUP... DISP SRC, OUT

MOVE/LEFT
MOVE/LEFT:999

MOVE/LEFT:10

 MOVE/UP
MOVE/UP:999
MOVE/UP:5

MOVE/RIGHT
MOVE/RIGHT:999
MOVE/RIGHT:10

MOVE/DOWN
MOVE/DOWN:999
MOVE/DOWN:5

EXPAND/LEFT
EXPAND/LEFT:999
EXPAND/LEFT:10

EXPAND/UP
EXPAND/UP:999
EXPAND/UP:5

EXPAND/RIGHT
EXPAND/RIGHT:999
EXPAND/RIGHT:10

EXPAND/DOWN
EXPAND/DOWN:999
EXPAND/DOWN:5

"CONTRACT"

SCROLULEFT EX/SOU .O\%PC SCROLLRIGHT GO
SCROLL/LEFT:255 SHOW CALLS SCROLL/RIGHT:-255
SCROLLUALEFT... SHOW CALLS3 SCROLURIGHT... SEU/INSTnext

1 ENTER

EXAMINE SCROLL/DOWN SEL/SCROLLnext
EXAM*(prev) SCROLL/BOTTOM SEL/OUTPUT next

SCROLL/DOWN... SEL/SOURCE next

\ ENTER
0

STEP RESET
STEPANTO RESET
STEP/OVER RESET

LK201 Keyboard:

F17 SCROLL
F18 MOVE
F19 EXPAND
F20 CONTRACT

VT-100 Keyboard:

Type Keys 2,4,6,8

SET KEY/STATE=DEFAULT SCROLL
SET KEY/STATE=MOVE MOVE
SET KEY/STATE=EXPAND EXPAND
SET KEY/STATE=CONTRACT CONTRACT

EXPAND/UP:-1
EXPAND/UP:-999
EXPAND/UP:-5

EXPAND/LEFT:-1
EXPAND/LEFT:-999
EXPAND/LEFT:-10

EXPAND/RIGHT:—1
EXPAND/RIGHT:-999
EXPAND/RIGHT:-—10

EXPAND/DOWN:-1
EXPAND/DOWN:-3$99
EXPAND/DOWN:-5

ZK-4774-GE

Debugging VAX Ada Programs 6-9

Similarly, the following command displays the next line to be executed,
which correspondsto the current value of the program counter (PC):

DBG> EXAMINE/SOURCE .PC
module MAIN

2: procedure MAIN is
DBG>

The display of source lines using the TYPE and EXAMINE/SOURCEcom-
mands is independent of program execution. To display source code from

a module other than the one whose code is currently executing, use the
TYPE command with a path nameto specify the module. For example, the

following commanddisplays lines 2 through 6 of module MAIN:

DBG> TYPE MAIN\2:6
module MAIN

2: procedure MAIN is
3: I,J,K: INTEGER;

4; function AVERAGE (Y: INTEGER) return INTEGER is

5: begin
6: return SUM(Y)/Y;

Note that the debugger also automatically displays source lines when it
suspends execution at a breakpoint or watchpoint or after a STEP command,
or when a tracepoint is triggered (see Section 6.3).

If the debugger cannot locate source lines for display, it issues a diagnostic
message. Source lines may not be available for a variety of reasons. See
Section 6.2.4.3 for more information.

6.2.4.2 Screen Mode

To invoke screen mode, press keypad key PF8 or enter the debugger SET
MODE SCREEN command. In screen mode, the debugger splits the screen
into three displays named SRC, OUT, and PROMPT,by default.

For example:

6-10 Debugging VAX Ada Programs

- SRC: module MAIN -scroll-SoOurCe@nnrrrrrrrrrrrrr
1: with SUM;

2: procedure MAIN is
3 I,J,K: INTEGER;

4; function AVERAGE (Y: INTEGER) return INTEGER is

5 begin
6 return SUM(Y)/Y;
7] end AVERAGE;

8: begin
9; I := 7;

-> 10: J := SUM(I);

11: K := AVERAGE (J) ;

~— OUT -OUEDUEmrrrrrrrrrrrrrrrrrr

stepped to MAIN.%LINE 10
MAIN.I: 7

MAIN.J: QO
MAIN.K: 214658404

— PROMPT -error-program-PLloOMPtmrrtrrnnn
DBG> STEP 2
DBG> EXAMINE I,J,K

DBG>

The SRC display, at the top of the screen, shows the source code of the
module (compilation unit) whose code is currently executing. An arrow in
the left column points to the next line to be executed, which corresponds to
the current value of the program counter (PC). The PC is a VAX register
that contains the address of the next instruction to be executed. The line
numbers, which are assigned by the compiler, match those in listingfile.

The OUT display, in the middle of the screen, shows the debugger’s output
in response to the commands that you enter.

The PROMPTdisplay, at the bottom of the screen, shows the debugger
prompt (DBG>), your input, debugger diagnostic messages, and program
output. In the example, the two debugger commandsthat were entered
(STEP 2 and EXAMINEI,J,K) are displayed. (The unpredictable values
reported by the debugger for J and K indicate that lines 10 and 11 have not
been executed yet; lines 10 and 11 will subsequently assign the values 4 to J
and 14 to K.)

You can scroll the SRC and OUT displays to display information beyond the

window’s edge. Press keypad key 8 to scroll up and keypad key 2 to scroll
down; press keypad key6 to scroll right and keypad key 4 to scroll left.
Use keypad key 3 to change the display to be scrolled (by default, the SRC
display is scrolled). You can move andresize the default displays with the
debugger MOVE, DISPLAY, EXPAND, and CONTRACT commands. You can

also use the debugger SET DISPLAY commandto create displays that show
specific information. Scrolling a display does not affect program execution.

Debugging VAX Ada Programs 6-11

If the debugger cannot locate source lines for display, it issues a diagnostic
message. Source lines may not be available for a variety of reasons. See
Section 6.2.4.3 for more information.

6.2.4.3. Source Code Display Considerations

If the /COPY_SOURCEqualifier (the default) was in effect when you com-
piled your program, the debugger obtains the displayed Ada source code from
the copied source files located in the program library where the program was
originally compiled. If you compiled your program with the /NOCOPY_
SOURCEqualifier, the debugger obtains the displayed Ada source code from
the external sourcefiles associated with your program’s compilation units.
See Chapter3 or the description of the DCL ADA and ACS COMPILE com-
mands in Appendix A for more information on copied source files and the
/[NOJCOPY_SOURCEqualifier.

Thefile specifications of the copied or external source files are embedded in
the associated object files. For example, if you have used the ACS COPY
UNIT commandto copy units, or the DCL COPY or BACKUP command
to copy an entire library, the debuggerstill searches the original program
library for copied sourcefiles. If, after copying, the original units have been
modified or the original library has been deleted, the debugger may not find
the original copied source files. Similarly, if you have moved the external
source files to another disk or directory, the debugger may not find them.

In such cases, use the debugger SET SOURCE commandto locate the
correct files for screen-mode display. You can specify a search list of one or
more program library or source code directories where the debugger should

look for thefiles.

For example, the following commandline instructs the debugger to look
for copied sourcefiles first in the current program library, and then in the
program library DISK:[SMITH.SHARE.ADALIB] (ADA$LIBis the logical
name that the program library manager equates to the current program
library):

DBG> SET SOURCE ADASLIB, DISK: [SMITH. SHARE. ADALIB]

The debugger SET SOURCE commanddoes not affect the search list for the
source files (.ADA) that the debugger fetches when you use the debugger
EDIT command. To tell the debugger EDIT command where tolook for
your sourcefiles, use the debugger SET SOURCE/EDIT command(see
Section 6.6.2).

The debugger SHOW SOURCE commanddisplays the current search list for
copied or external sourcefiles. The debugger CANCEL SOURCE command
cancels the current searchlist.

6-12 Debugging VAX Ada Programs

If the debugger cannot locate source lines for the routine (subprogram) that
is currently executing, it tries to display source lines in the next routine
down on thecall stack for which source lines are available. It then issues a
messagelike one of the following:

SDEBUG-W-UNAOPNSRC, unable to open source file USER: [PROJ.ADALIB]

RESERVATIONS .ADC; 1

-RMS-E-FNF, file not found

SDEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.

Displaying source in a caller of the current routine.

SDEBUG-W-NOSRCLIN, no source line for address 000006C6

Source lines may not be available for the following reasons:

¢ The PC value is within a system routine or a shareable image routine

for which no source codeis available.

¢ The PC value is within Ada initialization or elaboration code, for which

no source code is available.

e The PC value is within a routine that was compiled without the /DEBUG
compiler command qualifier (or was compiled with the /NODEBUG
qualifier).

e The PC value is within a routine whose module is not set (see

Section 6.5.2 for an explanation of module setting).

¢ The copied sourcefile is not in the program library where the unit was
originally compiled (see the preceding discussion).

e The external source file is not where it was when the unit was originally
compiled (see the preceding discussion).

¢ The source file has been modified since the executable image was gener-

ated, and the original copied source file or external sourcefile no longer
exists (see the preceding discussion).

6.3 Controlling and Monitoring Program Execution

The following sections discuss a numberof topics related to continuing and
monitoring program execution:

e Starting and resuming program execution with the GO command

e Stepping through the program’s code with the STEP command

¢ Determining the current value of the program counter (PC) with the
SHOW CALLS command

¢ Suspending program execution with breakpoints

Debugging VAX Ada Programs 6-13

¢ Tracing program execution with tracepoints

¢ Monitoring changes in variables with watchpoints

NOTE

The debugger refers to Ada subprogramsas routines.

The debugger refers to Ada compilation units as modules. In
some cases, to have access to the symbol records of an arbitrary
compilation unit, you may need to use the SET MODULE
command. To specify names and other symbols that are multiply
defined, you may need to use path names or the SET SCOPE
command. Path names and the SET MODULEand SET SCOPE
commands are explained in Section 6.5.

6.3.1 Starting and Resuming Program Execution

Two basic debugger commandsstart or resume program execution: GO and
STEP. The GO commandstarts execution. The STEP command executes one

or more source lines or instructions.

6.3.1.1 The GO Command

The debugger GO commandstarts program execution, which continues
until forced to stop. The GO commandis used most often in conjunction
with breakpoints, tracepoints, and watchpoints (described in Sections 6.3.3
through 6.3.5). If you set a breakpoint in the path of execution and then
enter the GO command, execution is suspended at that breakpoint. If you
set a tracepoint, the path of execution through that tracepoint is monitored.
If you set a watchpoint, execution is suspended whenthe value of the
watched variable changes.

When debugging an Ada program that involves library packages, you can
use the GO commandin combination with breakpoints to stop at individual
package specifications and bodies and then step through their elaboration
code. (See Section 6.3.6 for detailed information on debugging library
packages.)

You can also use the GO commandto test for an exception condition. If
an exception condition occurs and is not handled by your program, the
debugger takes control and displays the DBG> prompt so that you can enter
commands. If you are using screen mode, the pointer in the source display
indicates where execution stopped. You can use the debugger SHOW CALLS
command(explained in Section 6.3.2) to identify the currently active routine
calls (the call stack).

6-14 Debugging VAX Ada Programs

You can interrupt a GO commandbyfirst pressing CTRL/Y and then enter-
ing the DCL DEBUG command. You can then enter debugger commands,
look at the source display, enter a SHOW CALLS command,and so on. For

example, this action is useful if your program has an infinite loop.

6.3.1.2 The STEP Command

The debugger STEP command allows you to execute one or more source

lines or instructions, or to execute the program to the next instruction of
a particular kind, for example, to the next debugger CALL instruction. By

default, the STEP commandexecutes a single source line at a time. In the
following example, the STEP command executes oneline, reports the action
(“stepped to... ”), and displays the line number (9) and source code of the
next line to be executed:

DBG> STEP
stepped to MAIN.%LINE 9

9; Io:= 7;

DBG>

Execution is now suspendedat the first machine code instruction for line 9
of the unit MAIN. Note the path name MAIN.%LINE9 in this example. The
debugger uses path namesto refer to symbols. (See Section 6.5.3.2 for more
information on path names.)

The STEP command can execute a numberof lines at a time. In the follow-

ing example, the STEP commandexecutes twolines:

DBG> STEP 2
stepped to MAIN.SLINE 11 |

11: K := AVERAGE (J) ;
DBG>

Only those source lines for which machine code instructions were generated
by the compiler are regarded as executable lines by the debugger. The

debugger skips over any otherlines, for example, comment lines or a line
that contains only the keyword begin or an uninitialized object declaration.
In the case of a source line that has more than one Ada statement, the

line numbercorrespondstothefirst statement on that line. Also, if a line
contains more than one statement, the debugger executesall the statements
on that line as part of the single step.

NOTE

If you use the STEP commandat the start of an Ada debugging

session, before going to the beginning of the program using the
preset breakpoint for that purpose, you will step through compiler-
generated initialization code. You should always use the GO

Debugging VAX Ada Programs 6-15

command when you start a debugging session. You should also
use the GO command and breakpoints to get to the beginning of
any library packages. (See Section 6.3.6 for more information on

debugging library packages.)

You can specify different stepping modes, such as stepping by ma-

chine instruction rather than by line (SET STEP INSTRUCTIONor
STEP/INSTRUCTION). Also, by default, the debugger steps over called
routines; each routine is executed, but execution is not suspended within it.

Entering the SET STEP INTO or STEP/INTO command causes the debugger
to suspend execution within called routines, as well as within the routine
that is currently executing.

NOTE

Ada task entry calls are not the same as subprogram calls because

task entry calls are queued and may not execute right away. If
you try to step into a task entry call, the results may not be what
you expect. See Chapter 7 for more information on debugging
tasks.

You can determine the current STEP mode with the SHOW STEP command.

For example:

DBG> SHOW STEP
step type: source, nosilent, by line,

into routine calls
DBG>

6.3.2 Determining Where Execution is Suspended

The debuggger SHOW CALLS commandis useful when you are unsure
where execution is suspended during a debugging session (for example, after
a CTRL/Y interruption).

The SHOW CALLS commanddisplays a traceback that lists the sequence of
calls leading to the routine in which execution is currently suspended. For
each routine (beginning with the routine in which execution is suspended),
the debugger displays the following information:

e The nameof the module (compilation unit) that contains the routine

¢ The nameof the routine

¢ The line number at which the call was made(or at which execution is

suspended, in the case of the current routine)

6-16 Debugging VAX Ada Programs

¢ The corresponding PC addresses (the relative PC address from the start
of the routine, and the absolute PC address of the program)

Some of the information in the display (such as the routine name and the
line number) depends on whetheror not the module for a routine has been
set. An asterisk next to a module nameindicates that the module has been
set. See Section 6.5.2 for more information on module setting.

For example:

DBG> SHOW CALLS

module name routine name line rel PC abs PC

* SUM SUM 1 00000002 00000622
*MAIN AVERAGE 6 0000001D 0000067D

*MAIN MAIN 11 00000027 OQ00006B2

*ADASELABMAIN ADASELABMAIN 00000009 00000609

LIBSINITIALIZE 00000054 0000070C

SHARESADARTL 00000000 00035DB2
*ADASELABMAIN ADASELABMAIN 0000001B 0000061B

LIBSINITIALIZE QO000002F OQO00006E7
DBG>

This example indicates the following sequence ofcalls:

e Execution is currently at line 1 of subprogram SUM (in unit SUM).

¢ Subprogram SUM wascalled from line 6 of subprogram AVERAGE(in
unit MAIN).

e Subprogram AVERAGEwascalled from line 11 of subprogram MAIN (in

unit MAIN).

The modules ADA$ELABMAIN and SHARE$ADARTLexecute the elabora-

tion andinitialization code for the procedure MAIN.

6.3.3 Suspending Program Execution

The debugger SET BREAK commandallows you to select breakpoints, which
are locations at which program execution is suspended. When you reach
a breakpoint, you can enter commands to examine the current values of
variables, check the call stack, and so on.

To cancel a breakpoint, enter the debugger CANCEL BREAK command,
specifying the program location or event exactly as you did whensetting
the breakpoint. The CANCEL BREAK/ALL commandcancels all user-set
breakpoints. |

Debugging VAX Ada Programs 6~17

NOTE

If the symbol on which you want to set a breakpoint is in a scope
that is not visible to the debugger, you may haveto set its module.
See Section 6.5.2.4 for more information on the debugger SET
MODULE command.

If you set a breakpoint at a location currently used as a trace-
point, the tracepoint is canceled in favor of the breakpoint. See
Section 6.3.4 for more information on tracepoints.

In the following example, the SET BREAK commandsets a breakpoint

on the procedure SUM. The GO commandthen starts execution. When

the procedure SUM is encountered, execution is suspended. The debugger

reports that the breakpoint at SUM has been reached (“break at... ”),

displays the source line (1) where execution is suspended, and prompts you
for another command. At this breakpoint, you could enter the EXAMINE
command(discussed in Section 6.4.1) to check on the current value of X,

step through the procedure SUM using the STEP command,andsoon.

DBG> SET BREAK SUM

DBG> GO

break at routine MAIN.SUM

1: function SUM (X: INTEGER) return INTEGER is

DBG>

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
subprogram names, instructions, virtual memory addresses, or byte offsets).
With high-level languages like Ada, you typically use subprogram names,
library package names, labels, or line numbers, possibly with path names
to ensure uniqueness. (See Section 6.3.6 for information on naming library
packages with the SET BREAK command; see Section 6.5.3.2 for more
information on path names.)

You should specify subprogram namesandlabels as they appear in the
source code. You can determine line numbers from either a source code
display in the debuggerora listing file. When specifying a line number, use
the prefix %LINE; otherwise, the debugger interprets the line number as a
memory location. For example, the following commandsets a breakpoint at
line 11 of the module (compilation unit) in which execution is suspended; the
debugger suspends execution when the PC valueis at the start of line 11:

DBG> SET BREAK $LINE 11
DBG>

6-18 Debugging VAX Ada Programs

Note that you can set breakpoints only on lines that result in machine

code instructions. The debugger warns you if you try to do otherwise
(for example, if you try to set a breakpoint on a commentline). To set a
breakpoint on a line number in a module other than the one whose code
is currently executing, specify the module’s name in a path name. For

example:

DBG> SET BREAK SUM\$LINE 6
DBG>

You do not always need to specify a particular program location, such as line
6 or SUM,to set a breakpoint. You can set breakpoints on events, such as
exceptions (see Section 6.3.7). You can also use the SET BREAK command
with the /LINE qualifier (but no parameter) to break on every line, or with
the /CALL qualifier to break on every CALL instruction, and so on. For
example: |

DBG> SET BREAK/LINE

DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHENclause) or specify that
a list of commandsbe executed at the breakpoint (with a DO clause). For
example, the next commandsets a breakpoint on the label SUM_LOOP. The
DO (EXAMINE TOTAL) clause causes the value of the variable TOTAL to
be displayed whenever the breakpointis triggered.

DBG> SET BREAK SUM_LOOP DO (EXAMINE TOTAL)
DBG> GO

break at SUM.SUMLOOP
5: for I in 1..X loop

SUM. TOTAL: 0

DBG>

To display the currently active breakpoints, enter the SHOW BREAK
command:

DBG> SHOW BREAK

breakpoint at SUM.LOOPS5.%LINE 6 MAIN.SUM
breakpoint at SUM.SUM_LOOP

do (EXAMINE TOTAL)

DBG>

Debugging VAX Ada Programs 6—19

If any portion of your program was written in Ada, two breakpoints that are
associated with Ada tasking-exception events are automatically established
when you invoke the debugger. When you enter a SHOW BREAK command
under these conditions, the following breakpoints are displayed:

DBG> SHOW BREAK

breakpoint on ADA Event "DEPENDENTSEXCEPTION" for any value

breakpoint on ADA Event "EXCEPTIONTERMINATED" for any value

These breakpoints are equivalent to entering the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION

DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

See Section 6.3.7 for more information on debugging Ada exceptions; see
Chapter 7 for more information on debugging Ada tasking programsthat
involve exceptions.

6.3.4 Tracing Program Execution

The debugger SET TRACE commandallows you to select tracepoints, which
are locations for tracing the execution of your program without suspending
its execution. After setting a tracepoint, you can start execution with the GO
command and then monitor the path of execution, checking for unexpected
behavior. By setting a tracepoint on a subprogram, you can also monitor the

numberof times the subprogram is called.

To cancel a tracepoint, enter the debugger CANCEL TRACE command,
specifying the program location or event exactly as you did whensetting the
breakpoint. The CANCEL TRACE/ALL commandcancels all tracepoints.

NOTE

If the symbol on which you want to set a tracepoint is in a scope
that is not visible to the debugger, you may haveto set its module.
See Section 6.5.2.4 for more information on the debugger SET
MODULE command.

If you set a tracepoint at a location currently used as a break-
point, the breakpoint is canceled in favor of the tracepoint. See
Section 6.3.3 for more information on breakpoints.

As with breakpoints, every time a tracepoint is reached, the debugger
enters a message and displays the source line. However, at tracepoints, the
program continues executing, and the debugger promptis not displayed.
For example:

6-20 Debugging VAX Ada Programs

DBG> SET TRACE SUM

DBG> GO

trace at routine MAIN.SUM

1: function SUM (X: INTEGER) return INTEGER is

When using the SET TRACE command,specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE commandto trace every line
and is a convenient means of checking the execution path. By default,
lines are traced within all called routines, as well as within the currently
executing routine. If you do not want to trace through system routines or
through routines in shareable images, use the /NOSYSTEM or /NOSHARE
qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

The /SILENT qualifier suppresses the trace message andthe display of
source code. This is useful when you want to use the SET TRACE command
to execute a debugger commandat the tracepoint. For example:

DBG> SET TRACE/SILENT SLINE 11 DO (EXAMINE I,J,K)

DBG> GO

MAIN.I: 7

MAIN.J: 28

MAIN.K: 176906

6.3.5 Monitoring Changesin Variables

The debugger SET WATCH commandallows you to set watchpoints that
will be monitored continuously as your program executes. With high-level
languages like Ada, you typically set watchpoints on variables that have
been declared in your program (you can also set watchpoints on arbitrary
program locations). If the program modifies the value of a watched variable,
the debugger suspends execution and displays the old and new values.

Debugging VAX Ada Programs 6~21

To set a watchpoint on a variable, specify the variable’s name with the SET
WATCH command.

NOTE

If the symbol on which you want to set a watchpointis in a scope
that is not visible to the debugger, you may haveto set its module.
See Section 6.5.2.4 for more information on the debugger SET
MODULE command.

For example, the following command sets a watchpoint on the variable
TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpointis triggered, and the debugger suspends execution.

NOTE

The use of watchpoints may increase the CPU time required by
your program, causing a large increase in elapsed time. This time
increase does not indicate an error in your program.

Like the SET BREAK and SET TRACE commands, the SET WATCH
commandaccepts optional DO and WHENclauses. Also, you use the
SHOW WATCH and CANCEL WATCH commandsto display and cancel the
currently active watchpoints.

The following example showsthe effect on program execution when your

program modifies the contents of a watched variable:

DBG> SET WATCH TOTAL
DBG> GO

watch of SUM.TOTAL at SUM.LOOPS5.%SLINE 6+6

6: TOTAL := TOTAL + I;

old value: 0

new value: 1

break at SUM.LOOPS5.%LINE 7
7: end loop;

DBG>

In this example, a watchpoint is set on the variable TOTAL, and the GO
commandis entered to start execution. When the value of TOTAL changes,
execution is suspended. The debugger reports the event (“watch of... ”)
and identifies where TOTAL changed(line 6) and the associated source
line. The debugger then displays the old and new values and reports

6-22 Debugging VAX Ada Programs

that execution has been suspendedat the start of the next line (7). (The
debugger reports “break at... ”, but this is the effect of the watchpoint, not.
a breakpoint.) Finally, the debugger prompts for another command.

Whena changein a variable occurs at a point other than at the start of a
source line, the debugger gives the line numberplus the byte offset from the

start of the line.

This general technique for setting watchpoints always applies to static
variables. A static variable is associated with the same virtual memory
location throughout program execution. In VAX Ada, only somevariables
that are declared in library packagesare statically allocated.

A variable that is allocated on the stack or in a register—a nonstatic
variable—exists only when its defining routine (subprogram or task) is
active (on the call stack). If you try to set a watchpoint on a nonstatic

variable when its defining routineis not active, the debugger issues a
warning:

DBG> SET WATCH Y

SDEBUG-W-SYMNOTACT, nonstatic variable ’MAIN.AVERAGE.Y’ is not activ:

A convenient technique for setting a watchpoint on a nonstatic variable
is to set a breakpoint on the defining routine, specifying a DO clause to
set the watchpoint whenever execution reaches the breakpoint. In the
following example, a watchpoint is set on the nonstatic variable Y in routine
AVERAGE:

DBG> SET BREAK AVERAGE DO (SET WATCH Y)

DBG> GO

break at routine MAIN.AVERAGE

4; function AVERAGE (Y: INTEGER) return INTEGER is

SDEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG> SHOWWATCH

watchpoint of MAIN.AVERAGE.Y [tracing every instruction]
DBG>

The debugger monitors nonstatic watchpoints by tracing every instruc-
tion. Because this slows execution speed compared to monitoring static
watchpoints, the debugger lets you know whenit is monitoring nonstatic
watchpoints.

When execution eventually returns to the calling routine, the nonstatic
variable is no longer active, so the debugger automatically cancels the
watchpoint and enters a messageto thateffect.

Debugging VAX Ada Programs 6-23

Note that if you specify the /OPTIMIZE qualifier (the default) when com-
piling your program, the compiler may removecertain variables in the
program. If you try to set a watchpoint on one of these variables, the

debugger issues the following warning:

S$DEBUG-W-UNALLOCATED, entity symbol was not allocated in memory

(was optimized away)

For this reason, you should compile your program with the /NOOPTIMIZE
(or /OPTIMIZE=NONE)qualifier when you prepare for debugging.

6.3.6 Debugging Ada Library Packages

When an Ada main program (or a non-Ada main program that calls Ada
code) is executed, initialization code is executed for the Ada run-timelibrary
and elaboration code for all library units that the program depends on. The
elaboration code causes the library units to be elaborated in appropriate
order before the main program is executed. Library specifications, bodies,
and someof their subunits are also elaborated by this process.

The elaboration of library packages accomplishes the following operations:

¢ Causes package declarations to take effect

¢ Initializes any variables whose declaration includes initialization code

e Executes any sequence of statements that appear between the begin
and end statements of package bodies

When you run a VAX Ada main program under debugger control, execution
is suspended initially before the initialization code is executed and before
the elaboration of library units. For example:

S RUN HOTEL

VAX DEBUG Version V5.0-00

SDEBUG-I-INITIAL, language is ADA, module set to HOTEL

SDEBUG-I-NOTATMAIN, type GO to get to start of main program

DBG>

At that point, before typing GO to get to the start of the main program,
you can step through and examinepartsof the library packagesby setting
breakpoints at the package specifications or bodies you are interestedin.
You then use the GO commandtoget to the start of each package. (See
Section 6.3.1.1 for more information on the GO command.)

6-24 Debugging VAX Ada Programs

You set a breakpoint (or a tracepoint) on a package body by specifying
the package unit name in a debugger SET BREAK (or SET TRACE)
command. You set a breakpoint (or a tracepoint) on a package specification
by specifying the package unit namefollowed by a trailing underscore
character(_).

NOTE

Even if you have set a breakpoint on a package body, the break

will not occur if the debugger module for that body is not set. If
the module is not set, the break will occur at the package specifi-
cation. This effect occurs because the debugger automatically sets
modules for the specifications of packages named in with clauses;

it does not automatically set modules for the associated package
bodies.

Also, to set a breakpoint on a subprogram declared in a package
specification, you must set the module for the package body.

See Section 6.5.2 for more information on modulesetting.

For example, the following commandsets breakpoints on both the specifica-
tion and body of the package RESERVATIONS:

DBG> SET BREAK RESERVATIONS_, RESERVATIONS

Note that the compiler generates unique names for subprograms declared
in library packages that are or could be overloaded names. The debugger
uses these unique namesin its output, and requires them in commands
where the names would otherwise be ambiguous. See Section 6.5.4 for more
information on resolving overloaded names and symbols.

6.3.7 Monitoring Ada Exceptions

The debugger recognizes three kinds of exceptions:

¢ A user-defined exception—an exception declared with the Ada reserved

word exception in an Ada compilation unit

e An Ada predefined exception, such as PROGRAM_ERROR or

CONSTRAINT_ERROR

e Any other (non-Ada) exception or VMS condition

The debugger provides a number of methods for monitoring exceptions.
These methods are described in the following sections.

Debugging VAX Ada Programs 6-25

6.3.7.1. Monitoring Any Exception

You can use the debugger commands SET BREAK/EXCEPTIONand

SET TRACE/EXCEPTIONto cause a breakpoint or tracepoint to occur on
any exception or VMS condition.

NOTE

The SET BREAK/EXCEPTION commandwill cause breakpoints
to occur at certain VMSconditions that are signaled internally
within the VAX Ada run-timelibrary. These conditions are an
implementation mechanism—they do not represent program
failures, and they cannot be handled by Ada exception handlers.
If these conditions appear while you are debugging your program,
you may want to consider selecting the kind of exceptions that you
set breakpoints on (see Sections 6.3.7.2 and 6.3.7.3).

The following example showsa tracepoint occurring for an Ada
CONSTRAINT_ERRORexception as the result of a SET TRACE/EXCEPTION

debugger command:

DBG> SET TRACE/EXCEPTION

DBG> GO

SADA-F-CONSTRAINTERRO, CONSTRAINTERROR

-ADA-I-EXCRAIPRI, Exception raised prior to PC = QOOOOATC

trace on exception preceding ADASRAISE\ADASRAISECONDITION.%LINE 333+12

The next example uses the SET BREAK/EXCEPTION command and the
SHOW CALLS command. The SET BREAK/EXCEPTION command causes
a breakpoint to occur for any exception raised; the SHOW CALLS command
displays a traceback of the calls leading to the subprogram where the
exception occurred or to which the exception was raised. For example:

6-26 Debugging VAX Ada Programs

DBG> SET BREAK/EXCEPTION DO (SHOW CALLS)
DBG> GO

SSYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=000008AF,

PSL=03COO00A2 break on exception preceding SYSTEMOPS.DIVIDE.%LINE 17+6
17: return X/Y;

module name routine name line rel PC abs PC

*SYSTEMOPS DIVIDE 17 00000015 OQO00008AF

*PROCESSOR PROCESSOR 19 OOOOO00ARE OQOO0QOOBAD

*ADASELABPROCESSOR

ADASELABPROCESSOR 00000009 00000809

LIBSINITIALIZE 00000054 0Q0000C36
SHARESADARTL 00000000 O000398BE

*ADASELABPROCESSOR

ADASELABPROCESSOR ~ Q000001B 0000081B

LIBSINITIALIZE OO00002F O0000C21

DBG>

In this example, the VAX condition SS$_INTDIV is raised at line 17 of the
subprogram DIVIDE in the package SYSTEM_OPS. The example shows an
important effect: some VAX conditions (such as $SS_INTDIV)aretreated
as being equivalent to some Ada predefined exceptions. See the VAXAda
Run-Time Reference Manual for a list of these conditions and exceptions.

The matching of a VAX condition and an Ada predefined exception is per-
formed by the condition handler provided by VAX Ada for any frame that
includes an exception part. Therefore, when an exception breakpoint or
tracepoint is triggered by a VAX condition that has an equivalent Ada excep-
tion name, the message displays only the system condition code name, and
not the nameof the corresponding Ada exception.

6.3.7.2 Monitoring Specific Exceptions

Whenever an exception is raised, the debugger sets the symbols identified
in Table 6-1. You can use these exception symbols to qualify your exception

breakpoints or tracepoints so that they trigger only on certain exceptions.

For example, the following commandsets a breakpoint only when a
CONSTRAINT_ERRORexception is raised:

DBG> SET BREAK/EXCEPTION WHEN (%EXC_NAME = "CONSTRAINT ERRO")
DBG> 7

You can use the debugger EVALUATE command with any of these sym-
bols to obtain information from the debugger. For example, the following
commandcauses the value of the exception to be displayed whenit is traced:

Debugging VAX Ada Programs 6-27

DBG> SET TRACE/EXCEPTION DO (EVALUATE %EXC_NUM)

DBG> GO

SADA-F-CONSTRAINTERRO, CONSTRAINTERROR

-ADA-I-EXCRAIPRI, Exception raised prior to PC = QQQQOBCC

trace on exception preceding SHARESADARTL+69323

3244836

Table 6-1: Debugger Exception Symbols

Exception Symbol Contents

%EXC_FACILITY

%EXC_NAME

%ADAEXC_NAME

%EXC_NUM

%EXC_SEVERITY

A string that namesthe facility that issued the exception.
The facility name for Ada predefined exceptions and user-
defined exceptions is ADA.

An uppercase string that names the exception. If the
exception raised is an Ada predefined exception, its name
is truncated if it exceeds 15 characters. For example,
CONSTRAINT_ERRORis truncated to CONSTRAINT_
ERRO.If the exception is a user-defined exception, 7EXC_
NAMEcontains the string "EXCEPTION", and the name
of the user-defined exception is contained in 7ADAEXC_

NAME.

If the exception raised is user-defined, 7ADAEXC_NAME
contains a string that names the exception, and %EXC_
NAMEcontains the string "EXCEPTION". If the exception
is not user-defined, 7ADAEXC_NAMEcontains a null

string, and the nameof the exception is contained in %EXC_
NAME.

The numberof the exception.

A string that gives the exception severity level (F, E, W,I, 8,
or ?).

6.3.7.3 Monitoring Handled Exceptions and Exception Handlers

You can use the debugger SET BREAK/EVENT=event-name and SET
TRACE/EVENT=event-name commandsto set breakpoints or tracepoints on
exceptions that are about to be handled by Ada exception handlers. These
commands allow you to observe the execution of each Ada exception handler
that gains control.

6-28 Debugging VAX Ada Programs

The complete syntax for these commandsis asfollows:

SET BREAK/EVENT=event-name [WHEN(lang-expr)] [DO(command[;...]

SET TRACE/EVENT=event-name [WHEN(lang-expr)] [DO(command[;...]

You can specify two event names—HANDLED and HANDLED_OTHERS—
as defined in Table 6-2.

Table 6-2: Exception-Related VAX Ada Event Names

Event-name Description

HANDLED Triggers when an exception is about to be handled in some
Ada exception handler, including an others handler.

HANDLED_OTHERS Triggers only when an exception is about to be handled in
an others Ada exception handler.

For example, the following command causes a breakpoint to occur whenever
an exception is about to be handled by an Ada exception handler:

DBG> SET BREAK/EVENT=HANDLED

Whenthe breakpoint occurs, the debugger identifies the exception that is
about to be handled and the exception handler that is about to be executed.
You can then use that information to set a breakpoint on a particular
handler, or you can type the GO command, and see which Ada handler next
attempts to handle the exception. For example:

DBG> GO

break on Ada event HANDLED
task STASK 1 is about to handle an exception

The Ada exception handler is at: PROCESSOR.%SLINE 21

SADA-F-CONSTRAINTERRO, CONSTRAINTERROR

-ADA-I-EXCRAIPRI, Exception raised prior to PC = QOOQOOAT7C

DBG> SET BREAK PROCESSOR.%SLINE 21

In this example, the exception CONSTRAINT_ERRORis about to be han-
dled by an exception handler at line 21 of procedure PROCESSOR. The SET
BREAK commandsetsa specific breakpoint on the handlerat line 21.

Debugging VAX Ada Programs 6-29

6.4 Examining and Manipulating Data

The following sections explain how to use the debugger EXAMINE,
DEPOSIT, and EVALUATE commandsto display and modify the contents of
variables and to evaluate expressions. They also note restrictions on the use
of these commands with VAX Ada programs.

When examining and manipulating data, note the following considerations:

e¢ You must have compiled and linked your program with the /DEBUG
qualifier in effect; otherwise, the debugger will not have the infor-

mation it needs about the variables in the executable image. You
should also have compiled your program with the /NOOPTIMIZE(or

/OPTIMIZE=NONE)qualifier (see Section 6.2.1).

¢ Ifthe symbol that you want to examine or manipulate is in a scope

that is not visible to the debugger, you may have to set its module. See
Section 6.5.2.4 for more information on the debugger SET MODULE
command.

¢ Before you can examine or deposit into a nonstatic variable (any variable
not declared in a library package), its defining subprogram, task, and so
on, must be active (must be on the call stack). In other words, program
execution must be suspended somewhere within the defining routine.

e¢ Before you can examine, deposit, or evaluate an Ada subprogram formal
parameter or an Ada variable, the parameter or variable must be
elaborated. In other words, you should step or otherwise move control
past the parameter or variable’s declaration. The value contained in any
variable or formal parameter whose declaration has not been elaborated
may beinvalid.

See Section 6.4.5 for detailed information on debugger support of Ada
constructs with the EXAMINE, DEPOSIT, and EVALUATE commands.

6.4.1 Displaying the Values of Variables

To display the current value of a variable, use the debugger EXAMINE
command. The EXAMINE commandhasthe following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly.

6-30 Debugging VAX Ada Programs

You can use the EXAMINE command with any kind of address expression,
not just a variable name, to display the contents of a program location. The
debugger associates certain default data types with untyped locations. You
can override the defaults for typed and untyped locations if you want the
data to be interpreted and displayed in some other data format.

You cannot use the EXAMINE command to determine the values of Ada

attributes (for example, EXAMINE MONTH’ LAST) or named numbers.
You must use the EVALUATE commandinstead. See Section 6.4.4 for

more information and for a comparison of the EXAMINE and EVALUATE
commands.

The following examples show some uses of the EXAMINE command;
additional examples appear in Section 6.4.7.

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA

EXAMPLE.WIDTH: 4

EXAMPLE.LENGTH: 7

EXAMPLE. AREA: 28

DBG>

Examine a two-dimensional array of integers (three per dimension):

DBG> EXAMINE INTEGER_ARRAY

EXAMPLE. INTEGERARRAY

(1,1): 27
(1,2): 31
(1,3): 12
(2,1): 15

(2,2):— 22
(2,3): 18

DBG>

To determine the storage representation of a variable, you can use the
SHOW SYMBOL/TYPE command. For example:

DBG> SHOW SYMBOL/TYPE AREA
data EXAMPLE.AREA

atomic type, longword integer, size: 4 bytes
DBG>

Debugging VAX Ada Programs 6-31

6.4.2 Changing the Values of Variables

6-32

To change the value of a variable, use the debugger DEPOSIT command.
The DEPOSIT commandhasthe following form:

DEPOSIT variable-name := value

The DEPOSIT commandis like an assignment statement in VAX Ada. In
VAX Ada, you can assign a value to an object of a scalar type, an access type,
or to an individual component of an object of a composite type (record or
array). Except for string literals, the debugger cannot evaluate expressions
of array or record types. Also, the value to be assigned must be an Ada
language expression. Debugger support for Ada language expressionsis

identified in Section 6.4.5.2.

In the following examples, the DEPOSIT commandassigns new values
to different variables. The debugger checks that the value assigned is
consistent with the data type and constraints of the variable. Additional
examples appear in Section 6.4.7.

Deposit a string value (it must be enclosed in quotation marks or
apostrophes):

DBG> DEPOSIT PARTNUMBER := "WG-7619.3-84"

Note that if a string constant has fewer characters than the numberspeci-
fied in the string declaration, the debugger pads the remaining characters
with blanks from the right. If a string constant has more characters than
the numberspecified in the string declaration, the debugger truncates the
extra characters from the right and issues the following message:

SDEBUG-I-ISTRTRU, string truncated at or near DEPOSIT

Deposit an integer expression:

DBG> DEPOSIT WIDTH := CURRENTWIDTH + 10

Note that if you deposit an out-of-range integer value, the debugger issues
an informational message and truncates the high-orderbits.

Deposit element 2 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_12ARRAY(2) := 'K’

As with the EXAMINE command, the DEPOSIT commandallows you to
specify any kind of address expression, not just a variable name. You can
override the defaults for typed and untypedlocations if you want the data to
be interpreted in some other data format.

Debugging VAX Ada Programs

6.4.3 Current, Previous, and Next Locations

When using the debugger EXAMINE and DEPOSIT commands, you can use
three special debugger operators to refer to the current, previous, and next
data locations. The operators are the period (.), the circumflex (“), and the
RETURNkey.

The period (.) denotes the current location—that is, the location most
recently referenced by an EXAMINE or DEPOSIT command. For example:

DBG> EXAMINE WIDTH

EXAMPLE.WIDTH: 15

DBG> DEPOSIT . := 12

DBG> EXAMINE .

EXAMPLE.WIDTH: 12

DBG>

Similarly, the circumflex (“) denotes the previous location, and the
RETURNkey denotes the next location. These operators are useful for
referring to consecutive indexed components of an array. For example,if
INTEGER_ARRAYis a two-dimensional array of integers, then you can
examine it as follows:

DBG> EXAMINE INTEGERARRAY(1, 2)

EXAMPLE.INTEGERARRAY (1,2): 31

DBG> EXAMINE ~*

EXAMPLE.INTEGERARRAY (1,1): 27

DBG> EXAMINE

EXAMPLE.INTEGERARRAY (1,2): 31

6.4.4 Evaluating Expressions

To evaluate a language expression, use the debugger EVALUATE command. |
You must use the EVALUATE commandto determine the value of an Ada

attribute or named number.

NOTE

The debuggeris not as strongly typed or precise as the Adalan-
guage. Thus, the evaluation of an expression by the EVALUATE
command maydiffer from the result that would be calculated by
Ada-generated code and obtained with the EXAMINE command.

The EVALUATE commandhasthe following form:

EVALUATE language-expression

Debugging VAX Ada Programs 6-33

The debugger recognizes the operators and expression syntax of the cur-
rently set language. In the following example, the value 45 is assigned to
the integer variable WIDTH; the EVALUATE commandthen obtains the
sum of the current value of WIDTH plus7.

DBG> DEPOSIT WIDTH := 45
DBG> EVALUATE WIDTH + 7

52
DBG>

The following example shows how the EVALUATE and EXAMINE com-

mands are similar. When the expression following the command is a
variable name, the value reported by the debugger is the samefor either
command.

DBG> DEPOSIT WIDTH := 45

DBG> EVALUATE WIDTH

45

DBG> EXAMINE WIDTH

EXAMPLE.WIDTH: 45

The following example shows an important difference between the

EVALUATE and EXAMINE commands:

DBG> EVALUATE WIDTH + 7

52

DBG> EXAMINE WIDTH + 7

EXAMPLE .WIDTH+7: -310853632

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE command,

WIDTH + 7 is interpreted as an address expression: 7 bytes are added to
the address of WIDTH, and whatever value is in the resulting addressis
reported (in this instance, —310853632).

See Section 6.4.7 for additional examples of the EVALUATE and EXAMINE
commands.

6.4.5 Debugger Support for VAX Ada Data

In general, the debugger supports the data types and operators of VAX Ada.
However, there are certain language-specific limitations or other differences.
This section presents those limitations or differences, roughly following
the organization of Chapters 2 and 4 of the VAXAda Language Reference
Manual.

For information on the supported data types and operators of any of the
debugger-supported languages, type the debugger HELP LANGUAGE
command at the DBG> prompt.

6-34 Debugging VAX Ada Programs

6.4.5.1 Ada Names

Table 6-3 presents the debugger support for Ada names. In this table, “fully
supported” has the following meaning:

e Whenyou use the debugger EXAMINE and DEPOSIT commands, you
can specify a variable name exactly as you might in the program.

e Whenyou use the debugger DEPOSIT command, the debugger performs
the same type and constraint checks that the compiler and VAX Ada
run-time library do.

Note that parts of names may be language expressions—for example,at-
tributes such as FIRST or POS. This affects how you use the EXAMINE,
EVALUATE, and DEPOSIT commands with such names(see the examples
of enumeration types in Section 6.4.7.1).

Table 6-3: Debugger Support for Ada Names

Kind of Name Debugger Support

Lexical elements Full support for Ada rules for the syntax of
identifiers.

Function designators that are operator symbols (for
example, + and *) rather than identifiers must be —
prefixed with 2%NAME.Also, the operator symbol
must be enclosed in quotation marks.

Full support for Ada rules for numericliterals,
character literals, string literals, and reserved
words. |

The debugger accepts signed integerliterals in the
range —2147483648 to 2147483647.

Depending on context, the debugger interprets
floating-point types as F_floating, D_floating,
G_floating, or H_floating.

(continued on next page)

Debugging VAX Ada Programs 6-35

Table 6-3 (Cont.): Debugger Support for Ada Names

Kind of Name Debugger Support

Function calls

Indexed components

Slices

Selected components

Attributes

Literals

Aggregates

You cannot use function calls with the EXAMINE,
EVALUATE, or DEPOSIT commands. For example,
if PRODUCTis a function that multiplies two in-
tegers, you cannot enter the command EVALUATE
PRODUCT(3,5). If your program assigns the re-
turned value of a function to a variable, you can
then examine the value of that variable.

The only commands that cause the program to
execute are GO, STEP, CALL, and EXIT (EXIT
executes exit handlers). See Section 6.6.5 for
summary information on the CALL command.

Full support.

You can examine and evaluate an entire slice or an

indexed componentofa slice.

You can deposit only to an indexed componentof a
slice. You cannot deposit an entire slice.

Full support, including use of the keyword all in
all.

Only the predefined attributes in Table 6-4 are
supported.

Note that the debugger SHOW SYMBOL/TYPE
command provides the same information that is
provided by the P’ FIRST, P’ LAST, P’ LENGTH,
P’ SIZE, and P’ CONSTRAINEDattributes.

Full support, including the keyword null.

You can examine the entire record and array objects
with the EXAMINE command. You can deposit a
value in a component of an array or record. You
cannot use the DEPOSIT command with aggregates,
except to deposit character string values.

6-36 Debugging VAX Ada Programs

Table 6-4: Debugger Support for Ada Predefined Attributes

Attribute Debugger Support

P’ CONSTRAINED

P’ FIRST

P’ FIRST

P’ FIRST)

P’ LAST

P’ LAST

P’ LAST(N)

P’ LENGTH

P’ LENGTH(N)

P’ POS(X)

P’ PRED(X)

For a prefix P that denotes a record object with discrimi-
nants. The value of P’- CONSTRAINEDreflects the current

state of P (constrained or unconstrained).

For a prefix P that denotes an enumeration type or a
subtype of an enumeration type. Yields the lower bound

of P.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound
of the first index range.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound

of the Nth index range.

For a prefix P that denotes an enumeration type, or a
subtype of an enumeration type. Yields the upper bound
of P.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper bound
of the first index range.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper bound
of the Nth index range.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the numberof
values of the first index range (zero for a null range).

For a prefix P that is appropriate for an array type, or that.
denotes a constrained array subtype. Yields the numberof
values of the Nth index range (zero for a null range).

For a prefix P that denotes an enumeration type or a
subtype of an enumeration type. Yields the position number

of the value X. Thefirst position is 0.

For a prefix P that denotes an enumeration type or a
subtype of an enumeration type. Yields the value of type P,
which has a position numberoneless than that of X.

(continued on next page)

Debugging VAX Ada Programs 6-37

Table 6—4 (Cont.): Debugger Support for Ada Predefined Attributes

Attribute Debugger Support

P’ SIZE For a prefix P that denotes an object. Yields the numberof
bits allocated to hold the object.

P’SUCC(X) For a prefix P that denotes an enumeration type or a
subtype of an enumeration type. Yields the value of typeP,
which has a position number one more than that of X.

P’ VAL(N) For a prefix P that denotes an enumeration type or a
subtype of an enumeration type. Yields the value of type P,
which has the position numberN.Thefirst position is 0.

6.4.5.2 Ada Language Expressions

Table 6-5 presents the debugger support for Ada language expressions. You
use language expressions with the debugger EVALUATE and DEPOSIT
commands. For example:

DBG> EVALUATE PART_NUMBER (CURRENTWIDTH+1
ror .

DBG> DEPOSIT WIDTH := 56
DBG>

Language expressions can also appear in a debugger WHENor DOclause.
For example:

DBG> SET BREAK/INSTRUCTION WHEN (A /= 0)
DBG>

Table 6-5: Debugger Support for Ada Language Expressions

Kind of Expression Debugger Support

Operators Table 6-6 indicates the debugger support for the prede-
fined Ada operators.

The debugger does not support the following:

e Operations on entire arrays or records

e The short-circuit control forms: and then, or else

¢ The membership tests: in, not in

e User-defined operators

(continued on next page)

6-38 Debugging VAX Ada Programs

Table 6—5 (Cont.): Debugger Support for Ada Language Expressions

Kind of Expression Debugger Support

Type conversions

Subtypes

Qualified expressions

Allocators

Universal expressions

No support for any of the explicit type conversions
specified in Ada. However, the debugger performscertain
implicit type conversions between numeric types during
the evaluation of expressions.

The debugger converts lower-precision types to higher-
precision types before evaluating expressions involving
types of different precision:

e If integer and floating-point types are mixed, the
integer type is converted to floating-point type.

e If integer and fixed-point types are mixed, the
integer type is converted to fixed-point type.

e If integer types of different sizes are mixed (for
example, byte-integer and word-integer), the one
with the smaller size is converted to the largersize.

In general, the debugger allows more implicit type
conversion than the Ada language. In addition, the
hardware type used for a debugger calculation maydiffer
from that chosen by the compiler.

Full support. Note that the debugger denotes subtypes
and types that have range constraints as “subrange”

types. |

Supported as required to resolve overloaded enumeration
literals (literals that have the sameidentifier but belong
to different enumeration types). The debugger does not
support qualified expressions for any other purpose.

No support for any operations with allocators.

No support.

Table 6-6: Debugger Support for Ada Predefined Operators

Operator Operation Debugger Support

and Conjunction Full support, except for bit arrays

or Inclusive disjunction Full support, except for bit arrays

xor Exclusive disjunction Full support, except for bit arrays

(continued on next page)

Debugging VAX Ada Programs 6-39

Table 6-6 (Cont.): Debugger Support for Ada Predefined Operators

Operator Operation Debugger Support

= Equality Only scalar and string types

/= Inequality Only scalar and string types

< Less than Only scalar and string types

<= Less than or equal Only scalar and string types

> Greater than Only scalar and string types

>= Greater than or equal Only scalar and string types

+ Addition Full support

_ Subtraction Full support

& Catenation Only string types

+ Identity Full support

_ Negation Full support

Multiplication Full support
/ Division | Full support

mod Modulus Full support

rem Remainder Full support

abs Absolute value Full support

not —_—— Logical negation Full support

i Exponentiation Full support

6.4.6 Special EXAMINE, DEPOSIT, and EVALUATE Options

The following sections summarize the use of additional options for the
debugger EXAMINE, DEPOSIT, and EVALUATE commands.

6.4.6.1 Specifying Data Type and Radix

When you examine an Ada variable or deposit a value into one, you do not
need to specify the data type of the variable, unless you want to alter the
way in which data is displayed or deposited. By default, the debugger uses
the declared data type of a variable (including constraints) and the decimal
radix for numeric values.

6-40 Debugging VAX Ada Programs

You can override the default data type or radix by using a command
qualifier, such as /ASCII, /BINARY, /BYTE, /‘WORD, /LONG, /G_FLOAT,
/DECIMAL, /HEXADECIMAL,and so on. The command qualifier causes

the debugger to take the current type representation or radix and convert
it to the one required by the qualifier. For example, consider the following
declaration:

CHAR: CHARACTER := ’B’;

You can examine the value of CHAR asfollows:

DBG> EXAMINE CHAR

EXAMPLE.CHAR: ‘B’

DBG>

You can then determine the ASCII decimal value of CHAR asfollows:

DBG> EXAMINE/DECIMAL CHAR

EXAMPLE .CHAR: 66

DBG>

When an EXAMINEor DEPOSIT commandspecifies a location that has no
associated data type, the debugger uses its default type to determine how
manybytes to display or modify. The debugger also uses the default type .
whenever an EXAMINE or DEPOSIT commandspecifies a virtual address
or an address expression more complicated than a single symbolic reference.

For VAX Ada, the debugger’s default type for data is LONG integer; its
default type for line number references is INSTRUCTION. You can change
either default type with the SET TYPE command. You can use the SET
TYPE/OVERRIDE commandto control the operation of all succeeding
EXAMINE and DEPOSIT commandsthat do not explicitly specify a type.
For example:

DBG> SET TYPE/OVERRIDE BYTE

DBG>

After this commandis entered, an unqualified EXAMINE or DEPOSIT
command displays or modifies only thefirst byte of any variable’s storage.
To restore the normal interpretation of data types, enter the CANCEL
TYPE/OVERRIDE command.

6.4.6.2 Obtaining Virtual Addresses

By default, the debugger displays virtual addresses in decimal radix.
However, VMSvirtual addresses are expressed in hexadecimal radix in
various contexts, such as linker maps or the debugger’s SHOW CALLSdis-
play. This section describes how to use special EXAMINE and EVALUATE
commandqualifiers to determine virtual addresses and specify the radix.

Debugging VAX Ada Programs 6-41

You can determine the virtual address of a line number, module, routine,

or variable by using the EVALUATE/ADDRESS command. Bydefault,
the address is displayed in decimal radix, but if you further specify the
/HEXADECIMAL qualifier, the debugger displays the virtual address in
hexadecimal radix. For example:

DBG> EVALUATE/ADDRESS/HEXADECIMAL %LINE 20
OOOOOCES
DBG> EVALUATE/ADDRESS/HEXADECIMAL EXAMPLE

OOOOODEA
DBG>

If a variable is stored in a register instead of in virtual memory, the
EVALUATE/ADDRESS commandreturns the nameof the register.

When you examine an access object, you obtain the location in virtual

memory of the designated object (see Section 6.4.7.4). The value is provided
in decimal radix by default, but you can use the /HEXADECIMALqualifier

to convert it to hexadecimal radix. For example:

DBG> EXAMINE/HEXADECIMAL A

EXAMPLE .A: 0OA2000

DBG>

You can use the SET RADIX commandto alter the radix for numeric data.
For example, the SET RADIX HEXADECIMAL commandcausesall numeric
data to be interpreted and displayed by the debugger in hexadecimalradix.
To restore the decimal radix, use the SET RADIX DECIMAL command.

6.4.7 Ada Data Types—Debugging Examples

6-42

The following sections provide examples showing how to use the debugger
EXAMINE, EVALUATE, and DEPOSIT commandswith selected Ada data

types. These sections are organized according to data type, as in the VAX
Ada Language Reference Manual. The examples include the use of Ada
names and language expressions.

Several examples show the kinds of checks the debugger performs and the
messages entered when there is an error. In particular, the debugger checks
for the following: |

e Values that are out of bounds, for any discrete type

¢ Index values that are out of bounds, for any constrained array type

¢ Type conflicts—for example, when you use the DEPOSIT command

Debugging VAX Ada Programs

6.4.7.1 Scalar Types

The examples of scalar types include enumeration types, integer types, and
floating-point types.

Enumeration Types

Consider the following declarations:

type DAY is

(MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY);

MYDAY : DAY;

You can determine the debugger’s storage representation for type DAY as
follows:

DBG> SHOW SYMBOL/TYPE DAY
type EXAMPLE.DAY

enumeration type (DAY, 7 elements), size: 1 byte
DBG>

The following examples show the use of attributes with enumeration types.
Note that you cannot use the EXAMINE command to determine the value
of attributes, because attributes are not variable names. You must use the

EVALUATE commandinstead. For the same reason, attributes can appear
only on the right of the := operator in a DEPOSIT command.

DBG> EVALUATE DAY’ FIRST
MONDAY

DBG> EVALUATE DAY’ LAST
SUNDAY

DBG> EVALUATE DAY’ POS (WEDNESDAY)
2

DBG> EVALUATE DAY’ VAL (4)
FRIDAY

DBG> DEPOSIT MYDAY := TUESDAY

DBG> EVALUATE DAY’ SUCC (MY DAY)
WEDNESDAY -
DBG> DEPOSIT . := DAY’ PRED (MY_DAY)

DBG> EXAMINE
EXAMPLE.MYDAY: MONDAY

DBG> EVALUATE DAY’ PRED (MY_DAY)
*DEBUG-W-ILLENUMVAL, enumeration value out of legal range
DBG>

Consider the following declarations:

type MASK is (DEC,FIX,EXP);
type CODE is (FIX,CLA,DEC);
MYMASK : MASK;
MYCODE : CODE;

Debugging VAX Ada Programs 6-43

In the following example, the qualified expression CODE’ (FIX) resolves the
overloaded enumeration literal FIX, which belongs to both type CODE and
type MASK:

DBG> DEPOSIT MYCODE := FIX
%DEBUG-W-NOUNIQUE, symbol /FIX’ is not unique
DBG> SHOW SYMBOL/TYPE FIX

data EXAMPLE.FIX
enumeration type (CODE, 3 elements), size: 1 byte

data EXAMPLE.FIX
enumeration type (MASK, 3 elements), size: 1 byte

DBG> DEPOSIT MYCODE := CODE’ (FIX)
DBG> EXAMINE MYCODE
EXAMPLE .MY_CODE: FIX
DBG>

integer Types

Consider the following declarations:

type INDEX is range 1 .. 700;
subtype SMALLINDEX is INDEX range 1 .. 20;
MYINDEX : INDEX;

MYSMALLINDEX : SMALLINDEX;

You can determine the debugger’s storage representations for types INDEX
and SMALL_INDEXas follows:

DBG> SHOW SYMBOL/TYPE INDEX, SMALLINDEX

type EXAMPLE. INDEX

Subrange type, size: 2 bytes, range: 1..700

parent type: atomic type, word integer, size: 2 bytes
type EXAMPLE.SMALLINDEX

subrange type, size: 2 bytes, range: 1..20

parent type: atomic type, word integer, size: 2 bytes
DBG>

In the next example, the value 30000 is out of bounds for the subtype
MY_SMALL_INDEX:

DBG> DEPOSIT MYINDEX := 50

DBG> DEPOSIT MYSMALLINDEX := 30000
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or

near DEPOSIT

DBG>

Note that the severity level of the message in this exampleis I (informa-
tional), so the debugger executes the command even thoughit enters the
message. Unlike Ada, the debugger allows the out-of-bounds assignmentto
be performedin this case, truncating high-order bits if the assignment value
will not fit into the storage allocated. For example:

6-44 Debugging VAX Ada Programs

DBG> EXAMINE MYSMALLINDEX

EXAMPLE.MYSMALLINDEX: -25536

DBG>

The debugger terminates an illegal commandline only when the severity
level of the message is W (warning) or greater.

Real Types

Consider the following declarations:

type VOLUME is digits 7 range 0.0..1.0E6;
type FIXEDPOINT is delta 0.25 range 0.0..25.0;
MYVOLUME : VOLUME;

FP: FIXEDPOINT;

You can determine the debugger’s storage representation for type VOLUME
as follows:

DBG> SHOW SYMBOL/TYPE VOLUME

type EXAMPLE .VOLUME
Subrange type, size: 8 bytes,

range: 0.000000000000000. .1000000.00000000
parent type: atomic type, Gfloating, size: 8 bytes

DBG>

Similarly, the debugger’s representation for type FIXED_POINTis as
follows:

DBG> SHOW SYMBOL/TYPE FIXEDPOINT

type EXAMPLE.FIXEDPOINT

Subrange type, size: 1 byte, range: 0.00..25.00
parent type: binary scalar string descriptor type,

byte integer, size: 1 byte scaled -2
DBG>

If you try to deposit an out-of-bounds value (in this example a negative
value), you receive the following result:

DBG> DEPOSIT MYVOLUME := -12.0

%S$DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near -

DBG>

Note that if numeric types are mixed in an expression, the debugger per-
forms a type conversion as discussed in Section 6.4.5.2. The debugger uses
the hardware representation that provides at least the precision specified in
the type declaration or required to evaluate an expression. For example:

Debugging VAX Ada Programs 6-45

DBG> DEPOSIT MY_VOLUME := 2.356
DBG> EXAMINE MYVOLUME

EXAMPLE.MYVOLUME: 2.35600000000000
DBG> EVALUATE MY_VOLUME + 3

5.35600000000000
DBG>

6.4.7.2 Array Types

The following examples show operations on various array types: string,
nonstring, and multidimensional arrays. The examples show how to use
indexed components,slices, and full arrays.

String Arrays

Consider the following declarations:

PARTNUMBER : STRING(1 .. 12);

PARTNUMBER := "LP-3592.6-84";

You can examineor deposit an entire string, or a slice, or a single component
(character). The debugger displays string values in horizontal ASCII format,
enclosed in quotation characters, rather than in the vertical format used for
nonstring arrays. When depositing values, you must enclose the appropriate

string, slice, or character value in apostrophes or quotation characters. For
example:

DBG> EXAMINE PARTNUMBER
EXAMPLE.PARTNUMBER(1..12): "TP-3592.6-84"
DBG> DEPOSIT PARTNUMBER := "WG-7619.3-84"

DBG> EXAMINE PARTNUMBER (4..9)
EXAMPLE.PARTNUMBER (4..9): "7619.3"
DBG>

A single component (a character) is displayed within apostrophes. For

example:

DBG> EXAMINE PARTNUMBER(2)

EXAMPLE.PARTNUMBER(2): ‘G’
DBG> DEPOSIT PART_NUMBER(8) := ‘/’
DBG> EXAMINE PARTNUMBER

EXAMPLE.PARTNUMBER(1..12): "WG-7619/3-84"
DBG> .

6-46 Debugging VAX Ada Programs

Nonstring Arrays

Consider the following declarations, assuming that all variables have been
initialized:

type CAR is (BUICK, FORD, HONDA, MERCEDES, PLYMOUTH);

type CARARRAY is array(CAR) of INTEGER;

CARNUM : CARARRAY;

You can examine an entire array, or a slice, or a single indexed component.

For example:

DBG> EXAMINE CARNUM

EXAMPLE.CARNUM

(BUICK): 39

(FORD) : 57

(HONDA): 109

(MERCEDES): 36

(PLYMOUTH): 87

DBG> EXAMINE CAR_NUM(FORD. .MERCEDES)

EXAMPLE.CARNUM

(FORD) : 57

(HONDA): 109

(MERCEDES): 36

DBG> EXAMINE CAR_NUM(FORD)

EXAMPLE.CAR_NUM(FORD): 57

DBG>

You can evaluate array expressions that include attributes. For example:

DBG> EVALUATE CAR_NUM(CAR’FIRST) + CAR_NUM(CAR’ SUCC (CAR’ FIRST))
96
DBG>

You can deposit only a single indexed component of a nonstring array at a
time (you cannot deposit a nonstring array aggregate). For example:

DBG> DEPOSIT CAR_NUM(BUICK) := 12
DBG>

Multidimensional Arrays

Consider the following declarations, assuming that all variables have been
initialized:

type CHARARRAY is array(1..2, 1..3) of CHARACTER;
type FLOATARRAY is array(1..2, 1..3) of FLOAT;
CHARRAY : CHARARRAY;
FARRAY : FLOATARRAY;

Debugging VAX Ada Programs 6-47

The operations that are allowed for multidimensional string and non-
string arrays are the sameas those allowed for one-dimensional string and
nonstring arrays, respectively. The debugger displays nonstring multidimen-
sional arrays as shownin the following example:

DBG> EXAMINE F_ARRAY

EXAMPLE.FARRAY

(1,1): 27.01000
(1,2): 31.00000

(1,3): 12.48000
(2,1): 15.08000

(2,2): 22.30000
(2,3): 18.73000

DBG>

Character arrays are treated as string arrays. In the case of multidimen-
sional arrays of characters, the debugger displays each “string” horizontally
in ASCII format, as for a one-dimensional string array. For example:

DBG> EXAMINE CHARRAY

EXAMPLE .CHARRAY

(1) (1:3): "ABC"

(2) (1:3): "DEF"

DBG>

The following examples show how to deposit to individual indexed compo-
nents and show the kinds of checks the debugger performs on arrays in
general:

DBG> DEPOSIT FARRAY(2,1) := 3.92
DBG> DEPOSIT CHARRAY(1,3) := '?!
DBG>

If you try to deposit to an out-of-bound index value (1,4), you receive an
informational warning, as follows:

DBG> DEPOSIT CHARRAY(1,4) := ‘u!
%SDEBUG-I-SUBOUTBND, subscript 2 is out of bounds value is 4,

bounds are 1..3
DBG>

Because the warning is only informational, however, the debugger assigns
the value as best it can. The result of the operation in this example is as
follows:

DBG>EXAMINE CHARRAY

EXAMPLE.CHARRAY

(1) (1:3): "AB?"

(2) (1:3): "UEF"

DBG>

6-48 Debugging VAX Ada Programs

If you try to deposit a floating-point type into the character array, you
receive an error message, as follows:

DBG> DEPOSIT CHARRAY (2,1) := 12.77
SDEBUG-E-OPTNOTALLOW, operator ’DEPOSIT’ not allowed on given

data types

DBG> EXAMINE CHARRAY

EXAMPLE.CHARRAY

(1) (1:3): "AB?"

(2) (1:3): "UBF"

DBG>

6.4.7.3. Record Types

The following examples show operations on records with nested records or
arrays and records with variant parts. Each example shows howto specify
both full records and selected record components.

Records with Nested Records or Arrays

Consider the following declarations, assuming that all variables have been
initialized:

type ADDRESS is
record

NUMBER : INTEGER;

STREET : STRING(1..12);

end record;

type CHILDRENARRAY is array (1..3) of STRING(1..11);

type FAMILY is
record

FATHERNAME, MOTHERNAME : STRING(1..12);
THEIRADDRESS : ADDRESS; -- A nested record.

CHILDRENNAME : CHILDRENARRAY; ~~ A nested array.
end record;

THISFAMILY : FAMILY;

The following example shows how to examine and manipulate data in the
record variable THISFAMILY:

Debugging VAX Ada Programs 6—49

DBG> EXAMINE THISFAMILY
EXAMPLE.THISFAMILY

FATHERNAME(1..12): "John Brown "
MOTHERNAME (1..12): "Betsy Brown "

THEIRADDRESS

NUMBER: 42

STREET(1..12): "Walnut St. "

CHILDRENNAME
(1) (1..6): "Christopher"
(2) (1..6): "Willy "

(3) (1..6): " "

DBG> DEPOSIT THISFAMILY.CHILDREN_NAME(3) := "Jenny "

DBG> EXAMINE THISFAMILY.CHILDREN_NAME

EXAMPLE.THIS FAMILY.CHILDRENNAME

(1) (1..6): "Christopher"

(2) (1..6): "Willy "
(3) (1..6): "Jenny "

DBG> DEPOSIT THISFAMILY.THEIR_ADDRESS.STREET := "Maple St. "

DBG> EXAMINE THIS FAMILY.THEIRADDRESS
EXAMPLE.THISFAMILY.THEIRADDRESS

NUMBER: 42
STREET (1..12): "Maple St."

DBG>

Records with Variant Parts

Consider the following declarations, assuming that all variables have been
initialized:

type STATUSTYPE is (INSTOCK, ONORDER);
type MODELTYPE 1s (SEDAN, HATCHBACK, CONVERTIBLE);

type COLORTYPE is (WHITE, GRAY, BLUE, RED);

type CAR_RECORD(STATUS : STATUSTYPE := INSTOCK) is
record

MODEL : MODELTYPE;

COLOR : COLORTYPE;

case STATUS is

when IN STOCK =>

SERIALNUMBER : STRING(1 .. 10);

when ONORDER =>

ORDERDATE : STRING(1 .. 11);

end case;

end record;

ONECAR : CARRECORD := (MODEL => SEDAN, COLOR => RED,
STATUS => INSTOCK,
SERIALNUMBER => "2014FZS-OH") ;

6-50 Debugging VAX Ada Programs

The discriminant (STATUS) has a default value of IN_.STOCK. You can
examine an entire record object that has been declared with the default
variant value. For example:

DBG> EXAMINE ONECAR

EXAMPLE.ONECAR

STATUS: INSTOCK

MODEL: SEDAN

COLOR: RED
Variant Record with Discriminant Value INSTOCK

SERIALNUMBER(1..10): "2014F2S-OH"

DBG>

Note that the debugger tries to examine or assign a value to a component of

a variant part that is not active, but because this is an illegal action in Ada,
the debugger also issues an informational message. For example:

DBG> DEPOSIT ONE_CAR.STATUS := ONORDER

DBG> EXAMINE ONECAR.SERIALNUMBER

SDEBUG-I-BADDISCVAL, incorrect value of 1 in discriminant

field STATUS

EXAMPLE.ONECAR.SERIALNUMBER(1..10): "2014FZS-OH"

6.4.7.4 Access Types

The following examples show operations on objects of access types and
explain how to debug incomplete access types.

Objects of Access Types

Consider the following declarations:

type PERSONRECORD;

type LIST is access PERSONRECORD;
type PERSONRECORD is

record

NAME : STRING(1..10);

AGE : 1..100;

NEXT : LIST;

end record;

A, B, : LIST := new PERSONRECORD;

A and B are accessobjects of type LIST that have been created by theallo-
cator new PERSON_RECORD.The debugger does not support allocators, so
you cannot create new access objects with the debugger.

Debugging VAX Ada Programs 6-51

Figure 6-2: Access Objects in Virtual Memory

Access Objects: Designated Objects:

A.NAME

A = 1462784 > AAGE

A.NEXT

| o
n

NY

B.NAME

B = 1462808 > B.AGE

B.NEXT

 Il
ZK-6749-GE

Figure 6—2 shows howthe access objects, A and B, and the objects they
designate (point to) exist in virtual memory.

When A and B werecreated, their NEXT component, wasinitialized to the

value null. A and B contain the virtual memory locations of the objects
they designate (1462784 and 1462808, respectively, in this case). When
you specify the nameof an access object with the EXAMINE command,
the debugger displays the memory location of the object it designates. For
example:

-DBG> EXAMINE A, B
EXAMPLE.A: 1462784
EXAMPLE.B: 1462808
DBG>

By default, the debugger displays memory locations in decimal radix. The
EXAMINE commandhasseveral qualifiers that allow you to display numeric
values in different radixes. For example, you would display the preceding
memory locations in hexadecimal radix as follows:

DBG> EXAMINE/HEXADECIMAL A, B

EXAMPLE.A: 00165200

EXAMPLE.B: 00165218

DBG>

The following examples show how to perform the following operations:

¢ Examine designated objects and their components.

6-52 Debugging VAX Ada Programs

e Assign values to the NAME and AGE components of an object of type
LIST.

¢ Create a linkedlist of objects of type LIST by assigning valuesto the
NEXT component of an object.

To examine the value of a designated object, you must use selected com-

ponent notation, specifying .ALL. For example, consider that A has been
initialized as follows:

A.NAME := "John Doe ";

A.AGE = 6;

A.NEXT := B;

Then, to examine the value of the object designated by A you would enter
the following command:

DBG> EXAMINE A.ALL

EXAMPLE.A.ALL

NAME (1..10): : "John Doe "

AGE : 6

NEXT: 1462808

DBG>

To examine one componentof a designated object, you can omit .ALL from
the selected component syntax. For example:

DBG> EXAMINE A.NAME

EXAMPLE.A.ALL.NAME (1..10): "John Doe "

DBG>

Alternatively, you could have specified the following:

DBG> EXAMINE A.ALL.NAME

EXAMPLE.A.ALL.NAME (1..10): "John Doe "

DBG>

Now assumethat the object designated by B and by A.NEXT has been
initialized to the following component values:

B.NAME :

B.AGE

"Sam Spade "

3

The following example shows how to examine the componentsof the object
designated by A.NEXT:

DBG> EXAMINE A.NEXT.ALL

EXAMPLE .A.ALL.NEXT.ALL

NAME (1..10): "Sam Spade "
AGE: 3

NEXT: 0

DBG>

Debugging VAX Ada Programs 6-53

Note that you can deposit only to selected components; you cannot deposit

an aggregate. For example:

DBG> DEPOSIT A.NAME := "John Doe "

DBG> DEPOSIT A.AGE := 6

DBG> DEPOSIT A.NEXT := B

DBG>

After these commands have been executed, A.NEXT has the value contained

in B, namely 1462808. Thus, AANEXT designates the sameobject as B.

Figure 6-3 showsthe result of these DEPOSIT assignments.

Figure 6-3: Depositing to Access Object Components

Access Objects: Designated Objects:

A.NAME = "JOHN DOE"

A = 1462784 >» AAGE = 6

A.NEXT = 1462808

B.INAME = ?

B=1462808 : > BAGE = ?

B.NEXT = 0

ZK-6746-GE

6-54 Debugging VAX Ada Programs

Accessto Incomplete Types

Consider the following declarations:

package P is
type T is private;

private
type TTYPE;
type T is access TTYPE;

end P;

package body P is

type TTYPE is
record

A: NATURAL := 5;

B: NATURAL := 4;

end record;

TREC: TTYPE;
TPTR: T := new TTYPE’ (T_REC);

end P;

with P; use P;
procedure INCOMPLETE is

VAR: T;

begin

end INCOMPLETE;

The debugger does not have complete information about the type T, so you
cannot manipulate the variable VAR. However, the debugger does have
information about objects declared in the package body P. Thus, you can
manipulate the variables T_PTR and T_REC.

Modules for package bodies are not automatically set by the debugger. To set
a module, use the debugger SET MODULE command. For more information
on module setting and the SET MODULE command,see Section 6.5.2

6.5 Controlling Symbol References

In general, the debugger automatically finds symbols in a mannerthatis
consistent with Ada’s scope andvisibility rules. (The term symbol denotes
names, operators, line numbers, and so on.) Thus, you can use any symbol
visible at the point of execution (that is, in the PC scope) directly in
debugger commands.

The debugger also allows you to reference symbols that are not visible at the
point of execution. However, in such cases you may have to use somespecial
debugger techniques to help the debugger locate or properly interpret the
symbols.

Debugging VAX Ada Programs 6-55

These techniques and the mechanisms behind them are described in the
following sections.

6.5.1 Creating Symbol Information for the Debugger

6-56

When you compile your program with the /DEBUGqualifier on any of

the compilation commands(the default in VAX Ada), the compiler creates
symbol records in the debug symbol table (DST) and puts them in the
associated object module. Symbols include namesof constants, variables,
subprograms, packages, and so on, as well as operators and line numbers.
Symbol records consist of symbols plus any information the debugger needs
to properly interpret them as you use them in debugger commands. For
example, in the case of variables, symbol records contain type, size, and
constraint information; in the case of compilation units, symbol records

identify specifications, bodies, subunits, and their relationships, and any

additional dependences resulting from with and useclauses.

DST records contain information aboutall of the symbols that are defined
(declared) in your program. Symbols can beeither local or global. Typically,
local symbols are symbols that are referenced only within the module where
they are defined; global symbols are symbols that are defined in one module
but referenced by others. In VAX Ada,all of the symbols you use in your
program are local symbols, with the following exception: symbols that you
export with export pragmas are global symbols. Global symbols are the only
symbols placed in object modules when you compile units by specifying the
/NODEBUG qualifier on any of the compilation commands.

Whenyou link your program with the ACS LINK/DEBUG command,
the linker copies any symbol records that are in the object files into a
DST that is in the executable image. The DST also contains traceback
information. Traceback information includes the names of compilation units,
subprograms, and packages, and the compiler-assigned line numbers as they
might appear on listing (.LIS)file.

To facilitate symbol searches, the debugger loads symbol records from the
DST into a run-time symbol table (RST), which is structured for efficient
symbol lookup. During a debugging session, the debugger searches the RST
(not the DST) for any symbols you specify in debugger commands. The
debugger cannot recognize symbols that are not in the RST.

Section 6.5.2 explains how the debugger loads modules into the RST.

Debugging VAX Ada Programs

6.5.2 Module Setting

Because the RST takes up memory and loading the RST takes time,the
debugger loads it dynamically, anticipating what symbols you might want to
reference as your program executes during a debugging session. The loading
process is called module setting, because all of the symbol records of a given
module are loaded into the RST at one time.

A debugger module always corresponds to a compilation unit. To conserve
space at run time and maximize system response, not all modules of a
program are automatically set when you begin a debugging session. Rather,
the debugger anticipates which modules need to be set and sets them
gradually as you execute the program.

NOTE

You may need to set the modules for library package bodies
yourself so that you can debug the package body or debug
subprograms declared in the corresponding packagespecification.

See Section 6.3.6 for more information on debugging Ada library
packages.

Modules are set so that you can reference any symbol thatis visible in the

program at the point of execution—that is, in the PC scope. Thus, if you are
debugging in screen mode, you can reference any of the symbols that appear
in the source code display.

To make symbols visible, the debugger performs two kinds of module
setting automatically and simultaneously: dynamic module setting and
related module setting. You can determine which modules have been set
with the debugger SHOW MODULE command. You can explicitly control
module setting with the debugger SET MODULE and CANCEL MODULE
commands. The following sections describe the two kinds of module setting
and the use of the various module-related commands.

6.5.2.1 Dynamic and Related Module Setting

In dynamic module setting, the debugger sets the module enclosing the
PC location whenever the debugger interrupts execution (whenever the
debugger prompt is displayed). Dynamic module setting makes the symbols
in that module accessible to debugger commands. Whensetting a module
dynamically, the debugger displays a messagelike the following:

SDEBUG-I-DYNMODSET, setting module X

Debugging VAX Ada Programs 6-57

Dynamic module setting makes the debugger easier to use; however, it may
slow the debugger down as more symbol records are loaded into the RST.
If performance becomes a problem, you can use the CANCEL MODULE
commandselectively, or you can turn off dynamic module setting by entering
the SET MODE NODYNAMIC command.

Related module setting is an Ada-specific debugger feature. In related
module setting, the debugger sets any module whose symbols should be

visible within the module that is being set dynamically. In other words,
whenit sets a given module dynamically, the debugger also sets any module
that the given module depends on. In general, you need to control related
module setting only when debugger performance or memory shortage is a
problem.

Related module setting takes place as follows. If M1 is the module that is
being set dynamically, then the following modules are considered related and
are also set:

e If M1 is a library body, the debugger also sets the associated library
specification, if any.

e IfM1is a subunit, the debuggeralso sets its parent unit and, therefore,
any parent of the parent.

e If M1 mentions a library package P1 in a with clause, the debugger
also sets Pl’s specification. Neither the body of P1 nor any possible
subunits of Pl are set, because symbols declared within them should not
be visible outside.

If Pl’s specification mentions a package P2 in a with clause, the debug-
ger also sets P2’s specification. Likewise, if P2’s specification mentions
a package P3 in a with clause, the debugger also sets P3’s specification,
and so on. Thespecifications of all such library packages are set so that
you can access data components (for example, record components) that
may have been declared in other packages.

e If M1 mentions a library subprogram in a with clause, the debugger
does not set the subprogram. Only the subprogram nameneedsto be
visible in M1 (no declaration within a library subprogram should be
visible outside the subprogram). Therefore, the debugger inserts the
nameof the library subprogram into the RST when M1isset.

Thus, after you start a debugging session and type GO to reach the start of
the main program, the following modules are set: the main program and any
modules related to the main program. As you execute the program under
debugger control, modules are set whenever the debugger interrupts the
program, such as when a breakpoint occurs.

6-58 Debugging VAX Ada Programs

Once set, a module remains set until its symbol records are removed from
the RST by a CANCEL MODULE command(see Section 6.5.2.5).

6.5.2.2 The SHOW MODULE Command

To determine if one or more modules of the program are set, enter the de-
bugger SHOW MODULE command,specifying the module names as
parameters. The debugger uses Ada unit-name conventions to distinguish

modules internally and in displays. However, the debugger also appends
an underscore to specification names to distinguish them from body names
(which are the same, according to Ada unit-name conventions). In addition,
the debugger recognizes specifications and bodiesfor library generic instan-
tiations. You should use this notation when specifying module names with
the SHOW MODULE command.

The quickest way to determine module namesis to use the SHOW MODULE
command with no parameters; this commanddisplays information aboutall
of the modules of the program. For example:

DBG> SHOW MODULE
module name symbols size

ACCOUNTING no 2404

ACCOUNTING_ no 1492

ADASELABHOTEL yes 236

CONFIRM no 768

GUESTQUEUE no 2492
GUESTQUEUE_ no 1516

HOTEL yes 1068

RESERVATIONS no 1252

RESERVATIONS .CANCEL no 1100

RESERVATIONS . RESERVE no 1104

RESERVATIONS .RESERVE.BILL no 1064

RESERVATIONS_ yes 932

total ADA modules: 23. bytes allocated: 183152.

DBG>

The third module displayed (ADA$ELAB_HOTEL)is an internal module
used by VAX Ada to elaborate library packages. Its name is formed by
prefixing ADA$ELAB_ to the name of the main program (which in this
case is HOTEL). You do not need to concern yourself with that module.
The remaining modules listed comprise all of the modules for the program.

Note the use of the appended underscores to distinguish specifications

Debugging VAX Ada Programs 6-59

(RESERVATIONS_) from bodies (RESERVATIONS) andto identify library
generic instantiations (ACCOUNTING_). For each module, the symbols

column states whether the module has been set (yes or no); the size column
states the size, in bytes, of the module.

After a module has been set, you can reference any symbol defined within
that module. See Section 6.4 for information on referring to variables.

6.5.2.3 The SHOW MODULE/RELATED Command

The debugger SHOW MODULE/RELATED commandidentifies the modules
that are related to a specified module as defined in Section 6.5.2.1. The com-
mand shows the modules that are automatically set when a given moduleis
set dynamically or with the SET MODULE command(see Section 6.5.2.4).
The SHOW MODULE/RELATED commandalso shows the modules that
may be affected when you enter the CANCEL MODULE command(see

Section 6.5.2.5).

Consider the following package structure:

package P3 is

with P3;

package Pi is

with P2;
package body Pl is
begin

end Pi;

e Package body P1 mentions package specification P2_ in a with clause.

¢ Package specification Pl1_ mentions package specification P3_ in a with
clause.

P1_ and P2_ are considered directly related to P1. P3_ is considered related

to Pl (by way of P1_).

6-60 Debugging VAX Ada Programs

The SHOW MODULE/RELATED command, applied to package body P1,
would display information like the following:

DBG> SHOW MODULE/RELATED Pl

module name symbols size relationship

Pl yes 868
directly related modules:
Pl yes 884 withed
P2_ yes 916 withed

related modules:

P3_ yes 868 withed

total ADA modules: 1. bytes allocated: 109512.
DBG>

The entries in the relationship column indicate that all modules directly
related and related to Pl are library packages. Notethat the debugger

treats the relationship between a package body andits specification the
same as it treats the relationship between a unit and a package it mentions
in a with clause. The reason for this nondifferentiation is that the action of
making the symbols of a package specification visible elsewhere is the same
in both cases.

Consider the following subunit structure:

package P4 is

procedure SUB1;
end P4;

package body P4 is

procedure SUB1 is separate;
end P4;

separate (P4)

procedure SUB1 is

procedure SUB2 is separate;

begin

end SUB1;

separate (P4.SUB1)
procedure SUB2 is
begin

end SUB2;

e 4 and P4_are library package body andits specification, respectively.

¢ P4.SUB1.SUB2 is a subunit of P4.SUB1, which is a subunit of P4.

Debugging VAX Ada Programs 6-61

The SHOW MODULE/RELATED command,applied to P4.SUB1, would
display information like the following:

DBG> SHOW MODULE/RELATED P4.SUB1

module name symbols size relationship

P4.SUB1 yes 828
directly related modules:

P4 yes 7176 parent

P4.SUB1.SUB2 yes 836 subunit
related modules:

P4_ yes 728 withed

total ADA modules: 1. bytes allocated: 191888.
DBG>

The distinction between related and directly related for subunits is analo-
gous to that for library packages.

6.5.2.4 The SET MODULE Command

You use the debugger SET MODULE commandif you needto set one or
more modules that the debugger has not already set automatically. When
using the SET MODULE command, use the naming conventions described
in Chapter 1 to specify module (compilation unit) names. You can determine

the correct names for modules by entering a SHOW MODULE command.

The following example shows how you might use the SET MODULE

command. Procedure COUNTERis local to library package body
RESERVATIONS.

4 package body RESERVATIONS is

8 procedure COUNTER (X: in out INTEGER) is

9 begin
10 X := X + 1;

11 end COUNTER;

18 end RESERVATIONS;

If you try to set a breakpoint on COUNTERbefore its containing module

(RESERVATIONS) has been set, the debugger issues the following message:

DBG> SET BREAK COUNTER
%SDEBUG-E-NOSYMBOL, symbol ‘COUNTER’ is not in the symbol table

DBG>

6-62 Debugging VAX Ada Programs

Line numbers are symbol information; therefore, you cannot specify line

numbers in RESERVATIONSeither. For example:

DBG> SET BREAK RESERVATIONS.%LINE 7

SDEBUG-I-LINEINFO, no line 7, previous line is 6

SDEBUG-E-NOSYMBOL, symbol ’%LINE 7’ is not in the symbol table
DBG>

Once you have set module RESERVATIONS, you can reference its symbols.
For example: |

DBG> SET MODULE RESERVATIONS

DBG> SET BREAK COUNTER
DBG> SHOW BREAK
breakpoint on ADA Event "DEPENDENTSEXCEPTION" for any value

breakpoint on ADA Event "EXCEPTIONTERMINATED" for any value
breakpoint at routine RESERVATIONS.COUNTER
DBG>

By default, the SET MODULE commandsets related modules simultane-

ously with the module specified in the command. If a related moduleis
already set, then there is no other effect. In the preceding example, set-
ting RESERVATIONS would also set the associated library specification,
RESERVATIONS_, because the symbols declared in RESERVATIONS_ must
be visible in RESERVATIONS.

Note that you can use the /CALLS qualifier with the SET MODULE com-
mandto set all of the modules in the call stack.

You can override the setting of related modules with the /NORELATED
commandqualifier: SET MODULE/NORELATEDsets only the modules
you specify explicitly. However, if you use SET MODULE/NORELATED,
you may find that a symbol which is declared in another unit and which
should be visible at the point of execution is no longervisible; or that a
symbol which should be hidden by a redeclaration of that same symbol is
now visible.

See Sections 6.5.2.1 and 6.5.2.3 for more information on related modules.

6.5.2.5 The CANCEL MODULE Command

The debugger CANCEL MODULE commanddeletes the symbol records
of one or more specified modules from the RST. When using the CANCEL
MODULE command, use the naming conventions described in Chapter 1
to specify module (compilation unit) names. You can determine the correct
names for modules by entering a SHOW MODULE command.

CANCEL MODULE/ALLdeletes all modules from the RST.

Debugging VAX Ada Programs 6-63

The behavior of the CANCEL MODULE command depends on whether you
use the /[NOJRELATED qualifier. CANCEL MODULE/NORELATEDdeletes
from the RST only the modules you specify explicitly.

The effect of CANCEL MODULE/RELATED,which is the default, is to

delete related modules in a mannerconsistent with the intent of Ada’s scope
and visibility rules. The exact effect depends on modulerelationships.

For example, consider the following Ada code:

package P3 is

with P3;

package Pl is

end Pl;

package body Pl is

begin

end Pl;

Pl1_ is a library package specification, and P1 is its body. The specification
P1_ mentions the library package specification P3_ in a with clause. Then:

e CANCEL MODULE/RELATED P3_ deletes only P3_.

e CANCEL MODULE/RELATED P1_ deletes P1_ and P3_ (but P3_ is not

deleted if it is directly related to another set module).

e CANCEL MODULE/RELATED P1 deletes P1, P1_, and P3_ (but neither

P1_ nor P3_ are deleted if they are directly related to another set
module).

Similarly, consider the following set of subunits:

6-64 Debugging VAX Ada Programs

package P4 is
procedure SUB1;

end P4;

package body P4 is

procedure SUB1 is separate;
end P4;

separate (P4)

procedure SUB1 is
procedure SUB2 is separate;

begin

end SUBI1;

separate (P4.SUB1)

procedure SUB2 is
begin

end SUB2:

P4.SUB1.SUB2 is a subunit of P4.SUB1, which is a subunit of P4. Then:

¢ CANCEL MODULE/RELATED P4.SUB1.SUB2 deletes P4.SUB1.SUB2.

¢ CANCEL MODULE/RELATED P4.SUB1 deletes P4.SUB1 and
P4.SUB1.SUB2. —

¢ CANCEL MODULE/RELATED P4 deletes P4, P4.SUB1, and
P4.SUB1.SUB2.

6.5.3 Resolving Multiply-Defined Symbols

Whenyou reference a multiply-defined symbol in a debugger command, the
debugger may not be able to determine the particular declaration of the
symbol that you intended. For example:

DBG> EXAMINE X

SDEBUG-E-NOUNIQUE, symbol ’X’ is not unique
DBG>

Alternatively, the debugger may reference a declaration that is visible in the
current scope, but the declaration is not the one you are interested in.

To resolve either of these problems, you first need to understand scope, path
names, and symbol lookup conventions. Then, you can use the debugger
SHOW SYMBOL, SET SCOPE, and SHOW SCOPE commandsto help

resolve your problems. Scope regions, path names, and symbol lookup
are discussed in the following sections. Use of the SHOW SYMBOL, SET

Debugging VAX Ada Programs 6-65

SCOPE, and SHOW SCOPE commandsis discussed in Sections 6.5.3.4

and 6.5.3.5.

6.5.3.1 Scope

The scope of the subprogram that is executing is called the PC scope. When
you begin a debugging session, the PC scope is that of the main program.
The PC scope is known asscope0.

As the program executes, the PC scopeis redefined so that it is always that
of the subprogram that is on top of the call stack. Thus, the scope of the

subprogram that called the currently executing subprogram is known as
scope 1. Similarly, the scope of its caller is known as scope 2, and so on.

The automatic redefinition of the PC scope follows Ada rules. In somecases,
you may need to change the scope; see Section 6.5.3.5 for more information.

6.5.3.2 Path Name Conventions

A path name identifies a unique declaration of a symbol. The debugger
always uses path namesto display symbols; you need to use path names in
debugger commandsonly to resolve ambiguities.

Whenthe debugger language is set to Ada, the debugger generally con-
structs path namesthat follow the Ada rules, using selected component
notation to separate path name elements (with other languages, a backslash
is used to separate elements). However, the debugger also follows the nam-
ing conventions described in Chapter 1 to identify specifications, bodies, and
subunits. Thus, the following path nameidentifies the symbol Al, which is
declared in the package specification for the unit SYSTEM_OPS:

SYSTEMOPS.Al

The next path name identifies the symbol B1, which is declared in the
package body for the unit SYSTEM_OPS:

SYSTEMOPS.B1

Because it follows the Ada rules, the debugger also honors use clauses.
Whena use clause makes a symbol declared in a package directly visible
outside the package, you do not need to specify an expanded name (package-
name.symbol) to refer to the symbol in the program itself.

The complete path name formatis as follows:

¢ The leftmost element of a path nameidentifies the debugger module

(Ada compilation unit) containing the symbol. For example, the path

6-66 Debugging VAX Ada Programs

name MAIN.AVERAGEindicates that the symbol AVERAGEis in the
compilation unit MAIN.

e Moving toward the right, the path namelists the successively nested
subprograms, packages, loop statements, or declare blocks that lead to
the particular declaration of the symbol. For example, the path name
RESERVATIONS.COUNTER.X indicates that X is in the subprogram
COUNTER, which in turn is nested in the package body of the unit

RESERVATIONS.

e The rightmost element is the symbol.

e Ifa label has been assigned to a loop statement or declare block in
the source code, the debugger displays the label; otherwise, the debugger
displays LOOP$nfor a loop statement or BLOCK¢$nfor a declare block,
where n is the line numberat which the statement or block begins.

You use path namesto refer to symbols that are not visible in the current
scope. For example, consider the following source code:

package SIMPLEPKG is
subtype SMALLSTRING is STRING(1..14);
Sl: SMALLSTRING := "The value is: ";
Il: INTEGER := 5;

procedure PRINTOUT (X: SMALLSTRING; Y: INTEGER);
end SIMPLEPKG;

with TEXTIO; use TEXTIO;
with INTEGERTEXTI0; use INTEGER_TEXT_I0;

package body SIMPLEPKG is
procedure PRINTOUT (X: SMALLSTRING; Y: INTEGER) is
begin

PUT (X) ;

PUT (Y);

end PRINTOUT;

end SIMPLEPKG;

with SIMPLEPKG;

procedure SIMPLEPROCEDURE is
Sl: SIMPLEPKG.SMALLSTRING := "What number?? ";

I1: INTEGER := 6;

begin
SIMPLEPKG.PRINTOUT(S1,I1);

end SIMPLEPROCEDURE;

If the current scope is the procedure SIMPLE_PROCEDURE,then you need
to use a path name to examine the variable S1 in the specification of the
package SIMPLE_PKG.For example:

DBG> EXAMINE SIMPLEPKG.S1
SIMPLEPKG.S1(1..14): "The value is: "
DBG>

Debugging VAX Ada Programs 6-67

You can also use path namesto distinguish among recursive Ada subpro-
grams. In this case, you can include an invocation number in a path name

to indicate which call to the subprogram corresponds to the reference. An
invocation number is a nonnegative integer that you insert in the path
name; the number must follow the name of the rightmost subprogram in
the path name. Thus, 0 denotes the most recent invocation, 1 denotes the

immediately previous invocation, and so on. When you do not include an
invocation number, the debugger assumesthat the reference is to the most
recent call to the subprogram, and it supplies the default value 0.

For example, if FACTORIAL is a recursive function, and each call of
FACTORIAL creates a new variable X, then the following path name would
indicate X in the most recent call to FACTORIAL:

FACTORIAL\FACTORIAL 0\X

To refer to the variable X that was generated in the previouscall to
FACTORIAL, you would express the path name with a 1 in place of
the 0. For example:

DBG> EXAMINE FACTORIAL\FACTORIAL 1\X

FACTORIAL\FACTORIAL 1.x: 6

DBG>

Note that in this case, the debugger recognizes only its backslash notation,
rather than the Ada selected component notation.

6.5.3.3 Symbol Lookup Conventions

When you specify a path name for a symbol in a debugger command, the
debugger looks for the symbol in the scope region denoted by the path name.

When you do not specify a path name (including an Ada expanded name),
the debugger searches the RST as follows. The search proceeds in this order
until the specified symbol is found.

1. The debugger looks for the symbol within the module (compilation
unit) surrounding the current PC value (where execution is currently
suspended).

2. Ifthe symbol is not found, the debugger then searches any package
that is mentioned in a use clause. The debugger does not distinguish
between a library package and a package whose declaration is in the
same module as the current scope region. If the same symbol is declared
in two or more packagesthat are visible, the symbol is not unique
(according to Ada rules), and the debugger issues a messagelike the
following:

SDEBUG-E-NOUNIQUE, symbol ’X’ is not unique

6-68 Debugging VAX Ada Programs

3. Ifthe symbolis still not found, the debugger searches thecall stack.
It searches scopes 1, 2, 3, ..., N, in that order (as applicable), where N

is the numberof calls on the call stack. Within each scope region, the
search proceeds exactly as described for scope 0 in step 1.

4, Finally, the debugger searches everywhereelse in the RST, in all of
the modules that have been set. At this point, the debugger does not
attempt to resolve multiply-defined symbols. Instead, if more than one
occurrence of the symbol is found, the debugger issues a message like
the following:

%DEBUG-E-NOUNIQUE, symbol ’X’ is not unique

6.5.3.4 Using the SHOW SYMBOL Command and Path Namesto Specify Symbols
Uniquely

If the debuggertells you that a symbol reference is not unique, you should
use the debugger SHOW SYMBOL commandto obtain all possible path
namesfor that symbol. The SHOW SYMBOL commandlistsall of the
possible declarations or definitions of a specified symbol that exist in the
RST—that is, in all modules (compilation units) that have been set. For
example:

DBG> EXAMINE X

SDEBUG-W-NOUNIQUE, symbol ’X’ is not unique
DBG> SHOW SYMBOL X

data RESERVATIONS .X

data RESERVATIONS .COUNTER.X

routine QUEUEMANAGER.X

data SCREENI0.INPUT.BUFFER.X

data HOTEL.X
DBG>

Note that you can use an asterisk (*) as a wildcard character with the
SHOW SYMBOL command—for example, SHOW SYMBOL PL*selectsall
symbols in the RST that start with the letters PL.

Each path name in the SHOW SYMBOLdisplay identifies a unique decla-
ration of a symbol. In the preceding example,thefirst two declarations of X
are variables (data); the declaration of X in QUEUE_MANAGERis a sub-

program or function (routine). Each declaration of X includes its path name
prefix, which indicates the path (search scope) the debugger must follow to

reach that particular declaration. (See Sections 6.5.3.1 through 6.5.3.3 for
more information on scope regions, path names, and symbol lookup.)

Debugging VAX Ada Programs 6-69

After you have identified the path name you wantto reference, you just use
it in your command. For example:

DBG> EXAMINE RESERVATIONS .X

RESERVATIONS.X: 3

DBG>

Path names may include line numbers. For example:

DBG> SET BREAK RESERVATIONS. %LINE 14 DO (EXAMINE RESERVATIONS. X)

DBG> GO

break at RESERVATIONS.tLINE 14

14: CANCEL(X);

RESERVATIONS.X: 3

Whendisplaying symbols, the debugger always uses path names; but you
need to use path names in debugger commandsonly to resolve an ambiguity.

Whenit displays path names, the debugger uses the file-name conventions
described in Chapter 1 to identify specifications, bodies, and subunits. Thus,
in the preceding example, HOTEL, RESERVATIONS, SCREEN_IO, and
QUEUE_MANAGERare bodies, and BUFFERis a subunit of INPUT, which

is itself a subunit of SCREEN_IO.

In general, you should specify path names exactly as indicated in the SHOW
SYMBOLdisplay. But you can also take shortcuts. For example, unless
there is a possible ambiguity, you do not haveto type the trailing underscore
character to distinguish a specification from its body. The debugger can
usually distinguish the two from the context. You can also shorten, or
abbreviate, path names. When abbreviating, start from the left, leaving

enough of the path nameto uniquely specify it. For example, BUFFER.X is
a valid abbreviated path name for SCREEN_IO.INPUT.BUFFER.X.

A path namecanbe regardedas the scope for one symbol, or for a set of sym-
bols. For example, the following commandidentifies all of the declarations
in QUEUE_MANAGER:

DBG> SHOW SYMBOL * IN QUEUEMANAGER

package body QUEUEMANAGER

routine QUEUEMANAGER.PRINT

routine QUEUEMANAGER. xX
DBG>

If you want to make frequent references to a symbol with a long path
name, you can define a new symbolfor it with the DEFINE command. For
example:

DBG> DEFINE QX = QUEUEMANAGER.PRINT

DBG>

6-70 Debugging VAX Ada Programs

In Ada, a use clause makes a symbol declared in a package directly visible
outside the package. In such cases, you do not need to specify an expanded
name (package-name.symbol) to refer to the symbol in the program itself.

This is also true when you reference the symbol in a debugger command.
The SHOW SYMBOL/USE_CLAUSE commandidentifies any package
(library or otherwise) that a specified block, subprogram, or package men-
tions in a use clause. If the entity specified is a package (library or other-
wise), the commandalso identifies any block, subprogram, package, and so

on, that the specified module is mentioned by in a use clause. For example:

package A is

X: INTEGER;

end A;

with A;use A;

package B is
Y: INTEGER;

end B;

with B;

function F return BOOLEAN is

use B;

end F;

DBG> SHOW SYMBOL/USE_CLAUSE B_
package spec B_

used by: F

uses: A
DBG>

Thus, when the current scope is B, you can reference X in A without having
to use an expanded name,just as in the program.

Refer to Section 6.5.3.2 and the VMS Debugger Manual for more information
on the use of path names.

6.5.3.5 Using the SET SCOPE Commandto Specify a Symbol Search Scope

The debugger SET SCOPE commandenables you to establish a new scope

for symbol lookup, so that you do not have to use a path name whenrefer-
encing symbols in that scope region. After you have entered a SET SCOPE

command, the debugger applies the path name you specified in the command
to all references that are not individually qualified with path names.

Debugging VAX Ada Programs 6-71

The following commandsets the current scope to that of routine QUEUE_
MANAGER.PRINT:

DBG> SET SCOPE QUEUEMANAGER.PRINT

DBG>

You can use numeric path names with the SET SCOPE command. Numeric
path namesrefer to the order of calls on the call stack (as displayed by
SHOW CALLS). The number 0 means the PC scope; 1 meansthe scope of
the caller subprogram; 2 meansthe scope of the caller’s caller, and so on.
For example, the following commandsets the current scope to be threecalls
down from the PC scope:

DBG> SET SCOPE 3

DBG>

You can also define a scope search list to specify the order in which the
debugger should search for symbols. The debugger’s default scope search list
is equivalent to entering the following hypothetical command:

DBG> SET SCOPE 0,1,2,3,...N

Here the debugger searches successively down the call stack (0 is the PC
scope, 1 is the scope of the caller subprogram, and so on).

The following commandinstructs the debugger to search first for symbols in
the PC scope (denoted by 0). If the debugger cannot find a specified symbol
using that scope, it uses QUEUE_MANAGER.PRINT;if necessary, it then
uses SCREEN_IO.INPUT.BUFFER;andif further necessary, it uses the

entire RST until it finds a definition.

DBG> SET SCOPE 0, QUEUEMANAGER.PRINT, SCREENIO. INPUT.BUFFER

DBG>

The scope defined in a SET SCOPE command becomes the default scope (or
scope search list) for all symbol searches until you explicitly change or cancel
the scope. You can determine the current scope at any time by entering the
SHOW SCOPE command. For example:

DBG> SHOW SCOPE

scope:
O [= HOTEL],

QUEUEMANAGER.PRINT,

SCREENIO.INPUT.BUFFER

DBG>

6-72 Debugging VAX Ada Programs

If no SET SCOPE command has been entered, the SHOW SCOPE command

responds as in the following example:

DBG> SHOW SCOPE

scope:
O [= HOTEL],
1 [= ADASELABHOTEL],
2,
3,
4 [= ADASELABHOTEL\ADASELABHOTEL 1],
5

DBG>

The number displayed in the SHOW SCOPE command(0, 1, 2, and so on)

indicates the call stack: 0 is the PC scope. The brackets enclose the names
of the modules and (if applicable) subprograms.

The CANCEL SCOPE commandresets the default scope searchlist (0, 1,
2,...N).

6.5.4 Resolving Overloaded Names and Symbols

When you encounter overloaded names and symbols, the debugger issues a
messagelike the following:

S“DEBUG-E-NOTUNQOVR, symbol ‘ADD’ is overloaded

use SHOW SYMBOL to find the unique symbol names

If the overloaded symbol is an enumeration literal, you can use qualified
expressions to resolve the overloadings. See Section 6.4.7.1 for an example

of using qualified expressions.

If the overloaded symbol represents a subprogram or task accept statement,
you can use the unique namegenerated by the compiler for the debugger.
The compiler always generates unique names for subprogramsdeclared in
library package specifications, because the names might later be overloaded
in the package body. Unique namesare only generated for task accept

statements and subprogramsdeclared in other places if the task accept
statements or subprogramsare actually overloaded.

Overloaded task accept statement names and subprogram namesare
distinguished by a suffix consisting of two underscores followed by an
integer that uniquely identifies the given symbol. You must use the unique
naming notation in debugger commandsto uniquely specify a subprogram
whose nameis overloaded. However, if there is no ambiguity, you do not
need to use the unique name, even though one was generated.

Debugging VAX Ada Programs 6-73

For example, suppose you are debugging a library package with the following
declarations:

package SYSTEMOPS is
type Al is array (1..10) of INTEGER;
type A2 is array (1..20) of INTEGER;

function ADD(X,Y: Al) return Al;

function ADD(X,Y: A2) return A2;

function DIVIDE (X,Y: INTEGER) return INTEGER;

end SYSTEMOPS;

package body SYSTEMOPS is
function ADD(X,Y: Al) return Al is

begin
return (1..10 => 3);

end;

function ADD(X,Y: A2) return A2 is
begin

return (1..20 => 5);

end;

function DIVIDE (X,Y: INTEGER) return INTEGER is

begin

return X/Y;

end;

function SQUARE (X: INTEGER) return INTEGER is

begin
return X*xX;

end;

function SQUARE (X: FLOAT) return FLOAT is

begin
return X*xX;

end;

end SYSTEMOPS;

If you try to set a breakpoint on ADD (declared in the packagespecification),
you will receive an errorlike the following:

SDEBUG-E-NOTUNQOVR, symbol ’ADD’ is overloaded
use SHOW SYMBOL to find the unique symbol names

Then, when you enter the debugger SHOW SYMBOL command, you receive
a list of the overloaded symbols and their origins (SYSTEM_OPS_ is the

package specification; SYSTEM_OPSis the package body):

DBG> SHOW SYMBOL ADD
overloaded symbol SYSTEMOPS.ADD

overloaded instance SYSTEM_OPS.ADD_1
overloaded instance SYSTEMOPS.ADD2

DBG>

6-74 Debugging VAX Ada Programs

Similarly, if you try to set a breakpoint on SQUARE(declared in the body of
the package SYSTEM_OPS), you receive a similar set of responses:

DBG> SET BREAK SQUARE
%DEBUG-E-NOTUNQOVR, symbol ‘SQUARE’ is overloaded

use SHOW SYMBOL to find the unique symbol names

DBG> SHOW SYMBOL SQUARE
overloaded symbol SYSTEMOPS.SQUARE

overloaded instance SYSTEMOPS.SQUARE1

overloaded instance SYSTEMOPS.SQUARE2
DBG>

You can use the debugger EXAMINE/SOURCE commandto determine which
declaration an overloaded subprogram suffix number correspondsto. For
example:

DBG> EXAMINE/SOURCE SYSTEM_OPS.ADD__1, SQUARE1, SQUARE2
module SYSTEMOPS

5: function ADD(X,Y: Al) return Al is

module SYSTEMOPS
20: function SQUARE (X: INTEGER) return INTEGER is

module SYSTEMOPS
25: function SQUARE (X: FLOAT) return FLOAT is

DBG>

You can then uniquely specify a particular declaration of an overloaded
name. For example:

DBG> SET BREAK SYSTEM_OPS.ADD_1, SQUARE2
DBG>

6.6 Supplementary Debugger Features

This section presents additional debugger features that you mayfind useful.
The following subjects are covered briefly:

e Logging a debugging session into file

e Invoking an editor from the debugger

e Using a debuggerinitialization file

e Using command proceduresto control debugging sessions

e Using the CALL command

See the VMS Debugger Manual for more information on all supplementary

debugger features.

Debugging VAX Ada Programs 6-75

6.6.1 Logging a Debugging Sessioninto a File

A debuggerlog file maintains a history of a debugging session. Each
debugger command entered during the session and the subsequent debugger

output are stored in thefile.

Note that the DBG> prompt is not recorded in the debuggerlogfile, and

the debugger output is commented out with exclamation points so that
the file can be used as a debugger command procedure. Thus,if a lengthy

debugging session is interrupted, you can execute thelog file as you would
any other debugger command procedure, andit will restore the debugging
session to the point at which it was previously terminated.

To create a log file, specify the following debugger command:

DBG> SET OUTPUT LOG

You may want to enter the SET OUTPUT LOG commandin your debugger
initialization file (see Section 6.6.3). The SHOW OUTPUT command
indicates whether you are logging the session.

By default, the output is written to the file DEBUG.LOGin your current
default directory, but you can provide a different file specification for
the log file. For example, the following commandlines specify thefile
PROCESSOR_V1.LOGas the debuglogfile:

DBG> SET OUTPUT LOG

DBG> SET LOG PROCESSOR_V1.LOG
DBG> SHOW OUTPUT

noverify, terminal, noscreen_log, logging to
DISK: [JONES .WORK] PROCESSOR_V1.LOG; 2

Note that the debugger logs output only after you have entered a SET
OUTPUT LOG command. You can use the SET LOG commandto change
the nameof the log file at any time. In this example, the SET OUTPUT
LOG commandlogs the SET LOG commandto the file DEBUG.LOG. Then
it closes DEBUG.LOGandstarts logging output in the file PROCESSOR_
V1.LOG.

6.6.2 Invoking an Editor from the Debugger

The debugger EDIT commandallows you to invoke an editor from the
debugger. By default, the VAX Language-Sensitive Editor is invokedif it is
installed on your system. You can use the debugger SET EDIT command to
establish another editor (see Chapter 1 for summary information about the

available editors).

6-76 Debugging VAX Ada Programs

The EDIT commandallows you to correct errors in your source file as you
discover them during a debugging session, without losing the debugger
execution context. When you exit from the editor, you return to the de-
bugger prompt, at the same program location where you entered the EDIT
command.

By default, when you use the EDIT command, the debugger fetches the
external source file that was compiled to produce the currently executing
compilation unit. You do not edit the copied sourcefile that the debugger
displays in screen mode(see Section 6.2.4.2).

Thefile specifications of the source files you edit are embedded in the
associated object files during compilation (unless you specify /NODEBUG).If
some source files have been relocated since the units being debugged were
compiled, the debugger may not find them.

In such cases, you can use the debugger SET SOURCE/EDIT command to
specify a search list of one or more directories where the debugger should
look for source files. For example, the following commandline instructs the
debugger to look for source files first in the current default directory, and

then in directory USER:[JONES.HOTEL]:

DBG> SET SOURCE/EDIT [],USER: [JONES.HOTEL]

You can also providefile specifications rather than directory specifications
with the SET SOURCE/EDIT command. The SET SOURCE/EDIT command
does not affect the search list for copied source files that the debugger
displays in screen mode.

The SHOW SOURCE/EDIT commanddisplays the source-file search list
currently being used for the EDIT command. The CANCEL SOURCE/EDIT
command cancels the source-file search list currently being used for the
EDIT command andrestores the default search mode.

6.6.3 Using a DebuggerInitialization File

You can use a command procedure as a debugger initialization file by
equating it to the process logical name DBG$INIT. Thefile assigned the
name DBG$INIT automatically executes when you invoke the debugger.

The following commandprocedure contains sample commandsused to
initialize a debugging session:

Debugging VAX Ada Programs 6-77

USER: [JONES .HOTEL] DEBUGSTART. COM

! If source is not in current default directory, use [SMITH.SHARE]

SET SOURCE [], [SMITH. SHARE]

SET OUTPUT LOG, VERIFY

SET MODE SCREEN

To make DEBUGSTART.COM the debuggerinitialization file, you equate
it to DBG$INIT using either the DCL ASSIGN or DEFINE command. For
example:

S ASSIGN USER: {[JONES.HOTEL] DEBUGSTART.COM DBGSINIT
S DEFINE DBGSINIT USER: [JONES.HOTEL] DEBUGSTART.COM

A sample debuggerinitialization file for VAX Ada tasking programs is shown
in Chapter7.

6.6.4 Using Command Procedures to Control Debugging Sessions

Like the VMS command-line interpreter, the debugger can execute a
sequence of debugger commandscontained in a file—a debugger command
procedure. The execution syntax is the same as for any series of DCL
commands. For example, the following commandline invokes the com-
mand procedure TEST.COM (.COM is the default file type for command
procedures):

DBG> @TEST

You can execute a debugger commandprocedureinteractively from within
a DO commandsequence, or from within another commandprocedure.
Commandprocedures are especially useful when you regularly perform a
number of standard setup debugger commands,as specified in a debugger
initialization file (see Section 6.6.3). You can also use a debugger log file as
a commandprocedure. For example:

DBG> SET OUTPUT VERIFY

DBG> @PROCESSOR_V1.LOG
SDEBUG-I-VERIFYICF, entering command procedure PROCESSORV1.LOG

sDEBUG-I-VERIFYICF, exiting command procedure PROCESSORV1.LOG
DBG>

As shown in this example, when using log file as a command procedure,
you can first enter the SET OUTPUT VERIFY commandso that debugger

commandsare displayed as they are entered and executed.

See Section 6.6.1 for information on how to generate a debuggerlogfile.

6-78 Debugging VAX Ada Programs

6.6.5 The CALL Command

The debugger CALL commandperformsthe following steps:

1. Invokes a subprogram, passing it any specified parameters

2. Executes the subprogram

3. Displays the value returned for a function in register RO (the value
returned for a procedureis 0)

The general form of the CALL commandis as follows:

DBG> CALL subprogram-name[(parameter[,parameter,...])]

When debugging VAX Ada programs, you can use the CALL command
reliably only with a subprogram that has been exported. An exported
subprogram must be a library subprogram or must be declared in the
outermost declarative part of a library package.

The CALL commanddoes not check whether or not the subprogram can
be exported, nor does it check the parameter-passing mechanismsthat you
specify. Note that you cannot use the CALL command to modify the value of
a parameter.

A CALL command mayresult in a deadlock if it is entered when the VAX
Ada run-timelibrary is executing. The VAX Ada run-time library routines
acquire and release internal locks that allow the routines to operate in a
tasking environment. Deadlock can result if a subprogram called from the
CALL command requires a resource that has been locked by an executing
VAX Ada run-time library routine. To avoid this situation in a nontasking
program, enter the CALL command immediately before or after an Ada
statement has been executed. However, this approach is not sufficient to
assure that deadlock will not occur in a tasking program, as some other task
may be executing a VAX Ada run-timelibrary routine at the timeofthecall.
If you must use the CALL commandin a tasking program, you can avoid

deadlock if the called subprogram does not do any tasking or input-output
operations.

See the VMS Debugger Manualfor additional details on using the CALL
command. See Chapter 7 for more information on task debugging.

Debugging VAX Ada Programs 6-79

6.7 Sample Debugging Session

This section shows a sample debugging session with a VAX Ada program,
ADD_INTEGERS,that contains a logic error. Line numbers have been
addedto facilitate the discussion.

1 with TEXTIO; use TEXT10;

2 with INTEGERTEXTIO; use INTEGER_TEXT_IO;

3 procedure ADD_INTEGERS is
4 HIGHEST, TOTAL: INTEGER;

5 begin
6 TOTAL := 0;

7 loop

8 PUT("Type a number greater than 0, or 0 to quit: ");
9 GET (HIGHEST);

10 if HIGHEST <= 0 then
11 exit;
12 else

13 for I in 1..HIGHEST loop
14 TOTAL := TOTAL + I;

15 end loop;

16 end if;
17 PUT("The sum of integers from 1 through");
18 PUT (HIGHEST);

19 PUT(" is ");
20 PUT (TOTAL);

21 NEW_LINE;
22 end loop;

23 end ADDINTEGERS;

This program prompts for a numberand prints the sum of the integers from
1 through the number entered. The problem in the program occurs because
the variable TOTAL is not reinitialized when a new numberis entered; the

statement assigning the value 0 to TOTAL occurs before the loop instead of
within it.

Initially, you might compile, link, and run the program asfollows:

S ADA ADDINTEGERS

S$ ACS LINK ADDINTEGERS

$ RUN ADDINTEGERS

Type a number greater than 0, or 0 to quit:

The sum of integers from 1 through
Type a number greater than 0, or 0 to quit:
The sum of integers from 1 through

Type a number greater than 0, or 0 to quit:

$

5
5 is 15
4

4 is 25

0

The program returns a correct sum forthe first number you enter, but the
sum for the second numberis obviously too high.

6-80 Debugging VAX Ada Programs

To debug the program, you must compile and link with the debugger. If you
want a listing with line numbersto refer to during the debugging session,
include the /LIST qualifier with the ADA command, and then print the
listing file that results. For example:

$ ADA/DEBUG/LIST/NOOPTIMIZE ADDINTEGERS

$ ACS LINK/DEBUG ADDINTEGERS
$ PRINT ADD_INTEGERS.LIS

You are now ready to begin a debugging session. The terminal session is
keyed to the numbered notes that follow.

$ RUN ADDINTEGERS

VAX DEBUG Version V5.0-00

SDEBUG-I-INITIAL, language is ADA, module set to ADDINTEGERS

%SDEBUG-I-NOTATMAIN, type GO to get to start of main program 0

DBG> SET BREAK %LINE 7 @
DBG> GO

break at routine ADDINTEGERS

3: procedure ADD INTEGERS is
DBG> GO 7
break at ADDINTEGERS. LOOP$7. LINE 8 ©

8: PUT ("Type a number greater than 0, or 0 to quit: .");
DBG> EXAMINE TOTAL

ADD INTEGERS. TOTAL: 0 8
DBG> GO
Type a number greater than 0, or 0 to quit: 5

The sum of integers from 1 through 5 is 15 @
break at ADD_INTEGERS.LOOP$7.%LINE 8

8: PUT ("Type a number greater than 0, or 0 to quit: "); @
DBG> EXAMINE TOTAL

ADDINTEGERS. TOTAL: is @
DBG> DEPOSIT TOTAL :=0 @
DBG> GO

Type a number greater than 0, or 0 to quit: 4

The sum of integers from 1 through 4 is 10 ©
break at ADDINTEGERS .LOOP$7. LINE 8

8: PUT("Type a number greater than 0, or 0 to quit: ");
DBG> GO

Type a number greater than 0, or 0 to quit: 0 @
SDEBUG-I-EXITSTATUS, is '’%SYSTEM-S-NORMAL, normal successful completion’

DBG> EXIT @
$

The actions in this example are keyed to the following notes:

@ When you enter the RUN command, the debuggerdisplays an infor-
mational message and the DBG> prompt. You are now in the default

Debugging VAX Ada Programs 6-81

noscreen mode. Thelines of source code are displayed as they are
executed, by default.

@ You decide that the problem may lie with the initialization of the

variable TOTAL. You can test this hypothesis by examining the value
of TOTAL each time you enter a new number. To stop the program at

the point at which you can do this, you set a breakpoint at the line that
begins the loop (%LINE 7).

© The first GO commandexecutes the program’s elaboration code, and
breaks at the main program; the next GO commandstarts program
execution.

@ Whenthe loop statement is reached, the debugger interrupts program
execution and displays the source line at which the breakpoint wasset.
Note that the debugger interrupts execution only at executable lines;
thus, the break occurs at the first line inside the loop, not at the loop
statement.

Use the EXAMINE commandto determine the current value of the

variable TOTAL.Its value is 0, as expected at this point.

The GO command resumes program execution. The program now
prompts you for a number. You type 5. The program’s responseis
correct.

The debugger again reaches the breakpoint at the first executable line
inside the loop and displays the sourceline.

® You examine the variable TOTAL with the EXAMINE command.Its
value is 15, not 0 as it should be. This indicates that the assignment
statement that initializes TOTAL is misplaced.

© The DEPOSIT commandreplaces the contents of TOTAL with 0, which
allows the program to return a correct result the next time through the
loop.

@® The GO command resumes program execution. The result is correct.

® Whenyou enter a 0 in response to the prompt, the program exits,
causing the debuggerto display a message that indicates the termination
status.

® The EXIT command terminates the debuggingsession.

You can now correct the program so that it reinitializes the variable TOTAL
correctly.

6-82 Debugging VAX Ada Programs

Chapter 7

Debugging VAX Ada Tasks

All of the debugger techniques covered in Chapter 6 apply to tasks.
However, the debugger provides additional features that allow you to
observe task characteristics, control task states, and monitor events that are

specific to tasks, such as rendezvous. For example:

¢ The debugger SHOW TASK command allows you to observe task states
and the tasks in your program in detail.

e The debugger SET TASK commandallows you to control execution rates

and task ordering by setting task states, priorities, time-slicing values,
and so on.

e The debugger SET BREAK/EVENT and SET TRACE/EVENT commands
allow you to monitor a variety of tasking events and state transitions.

This chapter describes how to use these additional features. You should be
familiar with the tasking information in the VAXAda Language Reference
Manual and VAXAda Run-Time Reference Manual.

When using these features, remember that use of the debugger may alter
the behavior of a tasking program from run to run. For example, while
you are suspending execution of the currently active task at a breakpoint,
the delivery of an AST (asynchronous system trap) as some input-output

completes may make someothertask eligible to run as soon as you allow
execution to continue.

Debugging VAX Ada Tasks 7-1

7.1 A Sample Tasking Program

Example 7—1 demonstrates a number of commonerrors that you may

encounter when debugging tasking programs. The labels (<<B1>>, and so
on) in the example mark points of interest where breakpoints could be set
and the state of each task observed. If you were to run the example under
debugger control, you could enter the following commandto set breakpoints
at each label and display the current state of each task:

DBG> SET BREAK B1,B2,B3,B4,B5,B6,B7 DO (SHOW TASK/ALL)

The program creates four tasks:

e An environment task that runs the main program, TASK_EXAMPLE.
This task is created before any library packages are elaborated (in this
case, TEXT_IO). The environment task has the task ID %TASK 1 in the

SHOW TASKdisplays.

e A task object named FATHER. This task is declared by the main
program, and is designated %TASK 2 in the SHOW TASKdisplays.

e A single task named MOTHER. This task is declared by the main

program, and is designated %TASK 3 in the SHOW TASKdisplays.

e A single task named CHILD. This task is declared by task FATHER, and
is designated %TASK 4 in the SHOW TASKdisplays.

Example 7-1: Procedure TASK_EXAMPLE

1 -- Tasking program that demonstrates various tasking conditions.
2
3 with TEXT_IO; use TEXTIO;

4 procedure TASKEXAMPLE is @
5
6 pragma TIMESLICE(0.0); -- Disable time slicing. Q
7

8 task type FATHERTYPE is
9 entry START;

10 entry RENDEZVOUS;

11 entry BOGUS; -- Never accepted, caller deadlocks.

12 end FATHERTYPE;
13

14 FATHER : FATHERTYPE; ©
15

(continued on next page)

7-2 Debugging VAX Ada Tasks

Example 7-1 (Cont.): Procedure TASK_EXAMPLE

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44

45
46
47]

48

49

50
51

52

53
54

95
56
57

task body FATHERTYPE is
SOMEERROR : exception;

task CHILD is @
entry EH;

end CHILD;

task body CHILD is
begin

FATHERTYPE.BOGUS;

end CHILD;

-- CHILD deadlocks on call to its parent

-- (parent does not have an accept

-- statement for entry BOGUS).

begin -- (of FATHER_TYPE body)

accept START do

-- Main program is waiting for this rendezvous to
-- complete; CHILD is suspended when it calls the

-- entry BOGUS.

null;

end START;

PUTLINE("FATHER is now active and"); 6

PUTLINE("is going to rendezvous with main program.");

for I in 1..2 loop

select
accept RENDEZVOUS do

PUTLINE("FATHER now in rendezvous with main program");
end RENDEZVOUS;

or
terminate;

end select;

if I = 2 then
raise SOMEERROR;

end if;

end loop;

(continued on next page)

Debugging VAX Ada Tasks 7-3

Example 7-1 (Cont.): Procedure TASK_EXAMPLE

58 exception
59 when others =>

60 <<B2>> -- CHILD is suspended on entry call to BOGUS.

61 -- Main program is going to delay while FATHER terminates.

62 -- MOTHER is ready to begin executing.
63 abort CHILD;

64 <<B3>> -- CHILD is now abnormal due to the abort statement.

65
66 raise; -~- SOMEERROR exception terminates FATHER.

67 end FATHERTYPE;

68

69 task MOTHER is @
70 entry START;
71 pragma PRIORITY (6);

72 end MOTHER;

73
74 task body MOTHER is

75 begin
76 accept START;

77 <<B4>> -- At this point, the main program is waiting for its
78 -- dependents (FATHER and MOTHER) to terminate. FATHER

79 ~- is terminated.
80 null;

81 end MOTHER;

82

83 begin -- (of TASKEXAMPLE) @
84 <<B5>> -- FATHER is suspended at accept start.
85 -- CHILD is suspended in its deadlock.
86 -- MOTHER has activated and is ready to begin executing.

87 FATHER. START; @
88 <<B6>> -~- FATHER is suspended at its ’select or terminate’
89 -- statement.

90
91

92 FATHER.RENDEZVOUS; @
93 FATHER.RENDEZVOUS; ©
94 loop
95 -- This loop causes the main program to busy wait
96 -~- for the termination of FATHER, so that FATHER

97 -- can be observed in its terminated state.

98 1£ FATHER’ TERMINATED then

99 exit;
100 end if;

101 delay 1.0;
102 end loop;

(continued on next page)

7—4 Debugging VAX Ada Tasks

Example 7-1 (Cont.): Procedure TASK_EXAMPLE

103
104

105
106

107
108
109

110
111

<<B7>> -- FATHER has terminated by now with the unhandled

-- exception SOMEERROR. CHILD no longer exists
-- because its master (FATHER) has terminated. Task

-- MOTHER is ready.

MOTHER. START; ®
-- The main program enters a wait-for-dependents state,
-- so that MOTHER can finish executing.

end TASKEXAMPLE; ®

Key to Example 7-1:

e

After all of the library packages are elaborated (in this case, TEXT_IO),
the main program is automatically called and begins to elaborate its

declarative part (lines 5 through 82).

To ensure repeatability from run to run, the example uses no time
slicing. The 0.0 value for the pragma TIME_SLICE documents that the

procedure TASK_EXAMPLEneedsto have timeslicing disabled (time
slicing is disabled if the pragma TIME_SLICE is omitted or is specified

with a value of 0.0).

Task object FATHER is elaborated, and a task designated %TASK 2 is

created. FATHER (%TASK 2) is created in a suspended state and is not
activated until the beginning of the statement part of the main program
(line 83), in accordance with Ada rules. The elaboration of the task

body on lines 16 through 67 defines the statements that tasks of type
FATHERTYPE will execute.

Task FATHERdeclares a single task named CHILD (line 19). A single
task represents both a task object and an anonymoustask type. Task
CHILD is not created or activated until FATHERis activated.

© Theonly source of ASTsis this series of TEXT_IO.PUT_LINE statements

(input-output completion delivers ASTs).

© single task, MOTHER,is defined, and a task designated %TASK is
created. The pragma PRIORITY gives MOTHERa priority of 6.

@ The tasks FATHER and MOTHERareactivated in parallel, while the
main program waits. FATHER has no pragma PRIORITY, and thusas-
sumes a default priority of 7. Because this is higher than the priority of

MOTHER, FATHERexecutesits activation first. Its activation consists

of the elaboration of lines 16 to 31.

Debugging VAX Ada Tasks 7-5

When task FATHERis activated, it waits while its task CHILD is

activated and a task designated %TASK 4 is created. CHILD executes
one entry call on line 25, and then deadlocks because the entry is never

accepted.

® This is the first rendezvous the main program makes with task FATHER.

This rendezvous causes FATHER to suspendat its first accept statement
(line 34). Note that FATHER continues to execute past the endofits
activation, even though MOTHERhasnot been activated, because VAX

Ada attempts to continue tasks as far as they will go, to minimize task
switch overhead. When FATHER becomes suspended, MOTHER begins
its activation, and executes lines 74 and 75.

© After tasks FATHER and MOTHERare activated, the main program
(%TASK1)is eligible to resume its execution. Because TASK 1 has the
default priority of 7, which is higher than MOTHER’spriority, the main
program resumes execution.

@ At the third rendezvous with FATHER, FATHERraises the exception
SOME_ERRORon line 54. The handler on line 59 catches the exception,
aborts the suspended CHILD task, and then reraises the exception;
FATHERthen terminates.

A loop with a delay statement ensures that when control reaches line
103, FATHERhas executed far enough to be terminated.

® This entry call ensures that MOTHER does not wait forever for its ren-
dezvous on line 76. MOTHERexecutes the accept statement (which in-
volves no other statements), the rendezvous is completed, and MOTHER
is immediately switched off the processor at line 77 becauseits priority
is only 6.

® After its rendezvous with MOTHER,the main program (%TASK 1)
executes lines 108 through 110. At line 110, the main program must
wait for all its dependent tasks to terminate. When the main program
reaches line 110, the only nonterminated task is MOTHER (MOTHER

cannot terminate until the null statement at line 80 has been executed).
MOTHERfinally executes to its completion at line 81. Now thatall
tasks are terminated, the main program completes its execution. The
main program then returns and execution resumes with the VMS
command-line interpreter.

7-6 Debugging VAX Ada Tasks

7.2 Referring to Tasks in Debugger Commands

You refer to tasks in debugger commandsusing three kinds of expressions:

e An Ada language expression for a task value (for example, FATHER)

e A task ID (for example, %TASK 2)

e A pseudotask name (for example, 7ACTIVE_TASK)

You can mix these expressions in the same debugger commandline.

The following sections discuss these expressions in more detail and give
examples of how to use them (the examples are derived from Example 7-1).

NOTE

The debugger does not support the task-specific attributes
T’ CALLABLE, E’ COUNT, T’STORAGE_SIZE, and
T’ TERMINATED. See Section 7.2.4 for more information.

7.2.1 Ada Language Expressions for Tasks

A task is an entity that executes in parallel with other tasks. A task is
characterized by a unique task ID (defined in Section 7.2.2), a separate
stack, and a separate register set. You declare a task either by declaring a
single task or by declaring an object of a task type. For example:

-- TASK TYPE declaration.

task type FATHERTYPE is

end FATHERTYPE;

task body FATHERTYPE is

end FATHERTYPE;

-- A single task.

task MOTHER is

end MOTHER;

task body MOTHER is

end MOTHER;

Debugging VAX Ada Tasks 7-7

A task object is a data item that contains a 32-bit task value. A task object
is created when the program elaborates a single task or task object, when
you declare a record or array containing a task component, or when a task
allocator is evaluated. For example:

-- Task object declaration.

FATHER : FATHERTYPE;

-- Task object (T) as a component of a record.

type SOMERECORDTYPE is
record

A, B: INTEGER;
T $$: FATHERTYPE;

end record;

HASTASK : SOMERECORDTYPE;

-- Task object (POINTER1) via allocator.

type A is access FATHERTYPE;
POINTER1L : A := new FATHERTYPE;

A task object is comparable to any other object. You refer to a task object in

debugger commandseither by nameor by path name. For example:

DBG> EXAMINE FATHER

DBG> EXAMINE FATHER_TYPESTASK_BODY.CHILD

See Chapter 6 for more information on path names.

Whena task object is elaborated, a task is created by the VAX Ada run-time

library, and the task object is assigned its 32-bit task value. As with other
Ada objects, the value of a task object is undefined before the object is
initialized, and the results of using an uninitialized value are unpredictable.

The task body of a task type or single task is implemented in VAX Ada as a
procedure. This procedure is called by the VAX Ada run-time library when
a task of that type is activated. A task body is treated by the debugger as a
normal Ada procedure, except that it has a specially constructed name.

To specify the task body in a debugger command,usethe following syntax to
refer to tasks declared as task types:

task-type-identifierSTASKBODY

Use the following syntax to refer to single tasks:

task-identifierSTASKBODY

7-8 Debugging VAX Ada Tasks

For example:

DBG> SET BREAK FATHER_TYPESTASK_BODY

7.2.2 Task ID (%TASK)

A task ID is the value used by the VAX Ada run-time library and debugger

to uniquely identify a task during the entire execution of a program.

A task ID has the following syntax, where n is a positive decimal integer:

STASK n

You can determine the task ID of a task object by evaluating or examining
the task object. For example:

DBG> EVALUATE FATHER

6TASK 2

DBG>EXAMINE FATHER

TASKEXAMPLE.FATHER: %TASK 2

You can also use the SHOW TASK/ALL commandto identify the task IDs

that have been assignedto all currently existing tasks. For example:

DBG> SHOW TASK/ALL

task id pri hold state substate task object
* STASK 1

TASK 2

6TASK 4

6TASK 3

DBG>

7 RUN SHARESADARTL+130428

7 SUSP Accept TASKEXAMPLE .MOTHER+4

7 SUSP Entry call TASKEXAMPLE.FATHERTYPESTASKBODY.CHILD+4

6 READY TASKEXAMPLE .MOTHER+4

You can use task IDs to refer to nonexistent tasks in debugger conditional

statements. For example, if you had already run your program once, and

you discovered that 2TASK 2 and 3 were of interest, you could enter the

following commandsat the beginning of your next debugging session, before
%TASK 2 or 3 was created:

DBG> SET BREAK %LINE 44 WHEN (%ACTIVETASK=%TASK 2)

DBG> IF (%CALLER=%TASK 3) THEN (SHOW TASK/FULL)

In other words, you can use a task ID in certain debugger commandsbefore
the task has been created, without the debugger reporting an error (as it
would if you were to use a task object name before the task object came into
existence). A task does not exist until the task object is elaborated, and later
becomes nonexistent sometime after it terminates (when the task’s master
terminates). A nonexistent task never appears in a debugger SHOW TASK
display.

Debugging VAX Ada Tasks 7-9

Each time a program is run, the same task IDs are assigned to the same
tasks as long as the program statements are executed in the sameorder.
Different execution orders may result from asynchronous system traps
(ASTs) (caused by delay statement expiration or input-output completion)
being delivered in a different order or from timeslicing being enabled. Task
IDs are never reassigned during the execution of the program.

The VAX Ada run-timelibrary always assigns %TASK 1 to the environment
task that executes the main program; it always assigns %TASK 0 to the
null task that executes when there are no other tasks—including the main
program—eligible to execute. The null task is a special task created by the
run-time library; you cannot apply most debugger commandsto the null
task.

7.2.3 Pseudotask Names

The debugger recognizes a numberof significant tasks by pseudotask name:

¢ %ACTIVE_TASK—refers to the task that will run when a STEP or GO

commandis executed

¢ %VISIBLE_TASK—refers to the task whose task and register set are the
current context for looking up names, calls, and so on

°° %NEXT_TASK—refers to the task that will run next, after the active

task

¢ 9%CALLER_TASK—when an accept statement is being executed, refers
to the task that called the entry associated with the accept statement

More information on these pseudotask names and examplesof their use with
various debugger commandsare given in the following sections.

7.2.3.1 Active Task (%ACTIVE_TASK)
The active task is the task that runs when a debugger STEP or GO command
is executed. Initially, it is the task that is interrupted when the debuggeris
invoked. You can cause a different task to become the active task by using
the debugger SET TASK/ACTIVE command(see Section 7.5).

You can specify the active task in debugger commands using the pseudotask
name %ZACTIVE_TASK. For example, the following commandplaces the
active task on HOLD:

DBG> SET TASK/HOLD %ACTIVE_TASK

7-10 Debugging VAX Ada Tasks

The following commandtriggers a breakpoint at line 25 only whenline 25 is
executed by the task named CHILD:

DBG> SET BREAK SLINE 25 WHEN (%SACTIVETASK=CHILD)

7.2.3.2 Visible Task (%VISIBLE_TASK)

The visible task is the task whose stack and register set are the current
context for looking up names, calls, and so on. In the following example,
the value of the variable KEEP_COUNTin the context of the visible task is
returned:

DBG> EXAMINE KEEPCOUNT

Initially, the visible task is the active task, but in a multitasking program,

it may not always be the active task. You can cause a task to become the
visible task by using the debugger SET TASK/VISIBLE command. However,
making a task the visible task does not make it the active task.

You can specify the visible task in debugger commands with the pseudotask
name %VISIBLE_TASK. For example, the following commandobtains the

task ID of thevisible task:

DBG> EVALUATE sVISIBLETASK

The visible task is the task recognized by many of the debugger commands.
In particular, the SET TASK commandandits various qualifiers operate on

the visible task; see Section 7.5.

7.2.3.3 Next Task (%NEXT_TASK)

The next task is the task that will execute when the visible task has finished
executing. You can specify the next task in debugger commands using the
pseudotask name %NEXT_TASK. The ordering of tasks is arbitrary but
consistent within a single run of a program.

The pseudotask name %NEXT_TASKis useful for cycling through the total
set of tasks that currently exist. For example, the following sequence of
commands eventually cycles back to the task you started with:

DBG> SHOW TASK %VISIBLETASK; SET TASK/VISIBLE %*NEXT_TASK

DBG> SHOW TASK %SVISIBLETASK; SET TASK/VISIBLE %NEXT_TASK

Debugging VAX Ada Tasks 7-11

7.2.3.4 Caller Task (%CALLER_TASK)
The caller task is the task that called the entry associated with an accept

statement, when the sequence of statements in the accept statementis

being executed. You can specify the caller task in debugger commands using
the pseudotask name %CALLER_TASK. This pseudotask name evaluates
to the task ID of the task that called the entry associated with the accept

statement. Otherwise, %CALLER_TASK evaluates to TASK 0 (the null

task). For example, %CALLER_TASKevaluates to TASK 0 if the active

task is not currently executing the accept statement.

For example, the following commandsets a breakpoint within an accept
statement of the sample program in Example 7-1:

DBG> SET BREAK %LINE 48

The accept statement in this case is being executed by task FATHER

(%TASK 2) in response to a call of entry RENDEZVOUSby the main pro-

gram (%TASK 1). Thus, when an EVALUATE %CALLER_TASK commandis

entered at this point, the result is the task ID of the calling task, the main

program:

DBG> EVALUATE *CALLER_TASK
6TASK 1
DBG>

Whenthe rendezvousis the result of an AST entry call, @7CALLER_TASK
evaluates to %TASK 0 because the caller is not a task. See the VAX

Ada Run-Time Reference Manual for information on AST entry calls; see
Section 7.2.2 for a definition of %TASK 0 (the null task).

7.2.4 Debugger Support of Ada Task Attributes

The Ada language defines the following attributes specific to tasks:
T’ CALLABLE, E’ COUNT, T’ STORAGE_SIZE, and T’ TERMINATED,
where T is a task type and E is a task entry (see the VAXAda Language

Reference Manual for more information on these attributes).

The debugger does not support these attributes, so you cannot enter
commands such as EVALUATE CHILD’ CALLABLE. However, you can
obtain the information provided by each of these attributes with the
debugger SHOW TASK command. See Section 7.3 for more information on

this command.

7-12 Debugging VAX Ada Tasks

7.3 Displaying Task Information (SHOW TASK)

You use the debugger SHOW TASK commandto display information about
one or more tasks in a multitasking program. The command formatis as
follows:

SHOW TASK[/qualifier[...]] [task-expression[,...]]

The SHOW TASK command has two kinds of qualifiers: task-selection
qualifiers, which allow you to select tasks satisfying certain criteria; and

information qualifiers, which provide additional information about specified
tasks. Task expressions are defined in Section 7.2.

The following sections explain how to use the SHOW TASK command and
its qualifiers. |

7.3.1 Displaying Basic Information on All Tasks

The debugger SHOW TASK/ALL commandprovides basic information on all
the tasks of a program that are currently in existence—namely, tasks that
have been created and whose master has not yet terminated. For example:

DBG> SHOW TASK/ALL

6 Oo 8 ©
task id pri hold state substate task object

* STASK 1 7 RUN SHARESADARTL+130428

S6TASK 2 7 HOLD SUSP Accept TASKEXAMPLE .MOTHER+4

S6TASK 4 7 SUSP Entry call TASKEXAMPLE. FATHERTYPESTASKBODY . CHILD+4

STASK 3 6 READY TASKEXAMPLE .MOTHER

DBG>

The information in each columnis asfollows:

@ The task ID of the task. An asterisk indicates that the task is a visible

task.

@ Thetask priority. VAX Ada priorities range from 0 to 15. A task is
created with a default priority of 7, unless another value is specified
with the pragma PRIORITY.

© Indicates whether the task has been placed on HOLD with a SET
TASK/HOLD command. Placing a task on HOLD restricts the state
transitions it can make once the program is subsequently allowed
to execute. A task placed on HOLD mayenter any state except the

RUNNINGstate (however, you can force it into the RUNNINGstate by
using the SET TASK/ACTIVE command).

Debugging VAX Ada Tasks 7-13

© Indicates the state of the task when the debugger interrupted program
execution. The four possible states recognized by the debugger are
identified in Table 7-1. Figure 7—1 showsthe possible transitions of
a task’s state during program execution. Note from the SHOW TASK
display that the states of Table 7-1 are abbreviated to RUN, READY,
SUSP, and TERM,respectively.

© Indicates the substate of a task when the debugger interrupted program
execution. The possible task substates refer to Ada-specific task condi-
tions as identified in Table 7-2. The substate helps indicate the possible
cause of a task’s state. For example, if the current state of the task
is SUSPENDED,then the entry in the substate column indicates the

reason.

© A debugger path name for the task object, or the address of the task
object if the debugger cannot determine its path name.

If you are debugging in screen mode, the following command causes changes
in the SHOW TASKdisplay (such as switches in task states) to be high-

lighted in reverse video:

DBG> SET DISPLAY/MARKCHANGE T AT Q2 DO (SHOW TASK/ALL)

Here, T is the display name; Q2 specifies window Q2, which occupies the

second quarter of the screen.

Note that you will receive an error message if you enter the SET

DISPLAY/MARK_CHANGE commandbefore the program has been elabo-
rated (before typing GO to get to the beginning of the main program). Also,
note that display T is updated only when the debugger gains control for
some reason, such as at a breakpoint.

Table 7-1: Task States

Task State Meaning

RUNNING Currently running on the processor. This is the active task.

READY Eligible to execute and waiting for the processor to be made
available.

SUSPENDED Suspended—thatis, waiting for an event rather than for the
availability of the processor. For example, when a taskis created,
it remains in the suspendedstate until it is activated.

TERMINATED Terminated.

7-14 Debugging VAX Ada Tasks

Figure 7-1: Task State Transitions

READY «—————® RUNNING ———— TERMINATED
f

|
SUSPENDED

ZK-3086-GE

Table 7—2: Task Substates

Task Substate Meaning

Abnormal

Accept

Activating

Activating tasks

Completed [abn]

Completed [exc]

Completed

Task has been aborted.

Task is waiting at an accept statement that is not inside a
select statement.

Task is elaborating its declarative part.

Task is waiting for tasks it has created to finish activating.

Task is completed due to an abort statement, but is not
yet terminated. In Ada, a completed task is one that is
waiting for dependent tasks at its end statement. After
the dependent tasks are terminated, the state changes to
terminated.

Task is completed due to an unhandled exception,’ but is
not yet terminated. In Ada, a completed task is one that
is waiting for dependent tasks at its end statement. After
the dependent tasks are terminated, the state changes to
terminated.

Task is completed. No abort statement was issued, and no
unhandled exception! occurred.

1An unhandled exception is one for which there is no handler, or for which there is a handler
that executes a raise statement and propagates the exception to an outer scope.

(continued on next page)

Debugging VAX Ada Tasks 7-15

Table 7-2 (Cont.): Task Substates

Task Substate Meaning

Delay

Dependents

Dependents [exc]

Entry call

Invalid state

I/O or AST

Not yet activated

Select or delay

Select or terminate

Select

Shared resource

Terminated [abn]

Terminated [exc]

Terminated

Timed entry call

Task is waiting at a delay statement.

Task is waiting for dependent tasks to terminate.

Task is waiting for dependent tasks to allow an unhandled
exception’ to propagate.

Task is waiting for its entry call to be accepted.

There is an error in the VAX Ada run-timelibrary.

Task is waiting for input-output completion or some AST.

Task is waiting to be activated by the task that created it.

Task is waiting at a select statement with a delay
alternative.

Task is waiting at a select statement with a terminate
alternative.

Task is waiting at a select statement with no else, delay, or
terminate alternative.

Task is waiting for an internal shared resource.

Task was terminated by an abort statement.

Task was terminated because of an unhandled exception.’

Task terminated normally.

Task is waiting in a timedentry call.

1An unhandled exception is one for which there is no handler, or for which there is a handler
that executes a raise statement and propagates the exception to an outer scope.

7.3.2 Selecting Tasks for Display

You can select tasks for display with the debugger SHOW TASK command
by specifying any of the following:

e A task list (a list of task expressions)

e Task selection qualifiers

e Both a task list and task selection qualifiers

If no parameters or task selection qualifiers are given, the SHOW TASK
commanddisplays summary information about the visible task.

The following sections discuss task lists and task selection qualifiers in more
detail.

7-16 Debugging VAX Ada Tasks

7.3.2.1 TaskList

You specify a task list of one or more tasks with a series of task expressions

separated by commas. For example, the following commandselects the
active task, %TASK 3, and task MOTHERfor display:

DBG> SHOW TASK %ACTIVETASK, tTASK 3,MOTHER

Task expressions are defined in Section 7.2.

7.3.2.2 Task-Selection Qualifiers

You can use the task selection qualifiers listed in Table 7-3 with the debug-
ger SHOW TASK commandto select any tasks that satisfy all of a specified
set of criteria. For example, the following commandselectsall tasks with
priority 6:

DBG> SHOW TASK/PRIORITY=6

The following commandselects all tasks that are either running
or suspended:

DBG> SHOW TASK/STATE= (RUNNING, SUSPENDED)

When two or more task-selection qualifiers are used in the same SHOW
TASK command, only those tasks that satisfy all specified criteria are
selected for display. For example, the following commandselects all tasks
that are suspended and not on hold:

DBG> SHOW TASK/STATE=SUSPENDED/NOHOLD

Table 7-3: SHOW TASK Command Qualifiers for Task Selection

Qualifier Meaning

/ALL Selects all tasks that currently exist in the program

for display. When you specify /ALL, you cannot
specify a task list.

/HOLD If you do not specify a task list, selects all tasks that
are on HOLD.If you specify a task list, selects the
tasks in the task list that are on HOLD.

(continued on next page)

Debugging VAX Ada Tasks 7-17

Table 7-3 (Cont.): SHOW TASK Command Qualifiers for Task Selection

Qualifier Meaning

/NOHOLD If you do not specify a task list, selects all tasks that
are not on HOLD.If you specify a task list, selects
the tasks in the task list that are not on HOLD.

/PRIORITY=(1{....]) If you do not specify a task list, selects all tasks that
have any of the specified priorities, n, where n is a
decimal integer from 0 to 15 inclusive. If you specify
a task list, selects the tasks in the task list that

have any of the priorities specified.

/STATE=(state[,...]) If you do not specify a task list, selects all tasks
that are in any of the specified states (the possible
states are RUNNING, READY, SUSPENDED,or
TERMINATED). If you specify a task list, selects
the tasks in the task list that are in any of the
states specified.

7.3.2.3 task List and Task Selection Qualifiers

Whenyou specify both a task list and multiple task-selection qualifiers with
the debugger SHOW TASK command,only the tasks that satisfy all specified
criteria are selected for display. For example, the following commandselects
those tasks amongthe visible task, TASK 3, and MOTHERthat are in the

RUNNING or SUSPENDED STATE,and havepriority 7:

DBG> SHOW TASK/STATE= (RUN, SUSP) /PRIORITY=7 %VISIBLETASK, -

_DBG> $TASK 3,MOTHER

7.3.3 Obtaining Additional Information

You can use the information-selection qualifiers listed in Table 7-4 with the
debugger SHOW TASK commandto obtain specific information aboutall of
the tasks in your program. You can use the information-selection qualifiers
in conjunction with the task-selection techniques described in Sections
7.3.2.1 through 7.3.2.3.

7-18 Debugging VAX Ada Tasks

Table 7—4: SHOW TASK Command Qualifiers for Information Selection

Qualifier Meaning

/CALLS[=n] Performs a SHOW CALLS commandfor each task

selected for display (see Chapter 6 for a description
of the SHOW CALLS command). You can use the

SHOW CALLS commandto obtain the current PC
(program counter) of a task.

/FULL Displays additional information about each task
selected for display. /FULL provides additional
information if used either byitself, or with the
/CALLS or /STATISTICS qualifier.

STATISTICS Displays tasking statistics for the entire tasking
system. When you specify /STATISTICS, the only
other permissible qualifier is /FULL.

/TIME_SLICE Displays the current value of the pragma TIME_
SLICE.

The SHOW TASK/FULL commandprovides detailed information about each
task selected for display. For example:

@ task id pri hold state substate task object
* STASK 2 7 RUN TASKEXAMPLE .MOTHER+4

@ Waiting entry callers:
Waiters for entry BOGUS:

STASK 4, type: CHILD

© Task type: FATHERTYPE
Created at PC: TASKEXAMPLE.cLINE 14+22

Parent task: S6TASK 1
Start PC: TASK_EXAMPLE.FATHERTYPESTASKBODY

0 Task control block: @ stack storage (bytes):

Task value: 490816 RESERVEDBYTES: 10640
Entries: 3 TOPGUARDSIZE: 5120
Size: 1488 STORAGESIZE: 30720

© Stack addresses: Bytes in use: 456
Top address: OO0O1EB600

Base address: OO1LF2DFC @ Total storage: 47968

The following notes are keyed to this example:

@ Identifying information about the task.

@ Rendezvous information. If the task is a caller task, lists the entries for

which it is queued. If the task is to be called, gives information about
the kind of rendezvous that will take place and lists the callers that are
currently queued for any of the task’s entries.

Debugging VAX Ada Tasks 7-19

Task context information.

Task control block information. The task value is the address, in decimal

notation, of the task control block.

Stack storage information:

¢ RESERVED_BYTESgives the storage allocated by the Ada run-time
library for handling stack overflow.

¢ TOP_GUARD_SIZEgives the storage allocated for guard pages,
which provide protection against storage overflow during task

execution. You can specify the number of bytes to be allocated

as guard pages with the VAX Ada pragmas TASK_STORAGE
and MAIN_STORAGE; the number shown by the debuggeris the
numberof bytes allocated (the pragma value is rounded up to an
integral number of pages, as necessary). See the VAXAda Language
Reference Manual and VAXAda Run-Time Reference Manual for
more information about these pragmasandthe top guard storage

area.

e STORAGE_SIZE gives the storage allocated for the task activa-
tion. You can specify the numberof bytes to be allocated with
the T’STORAGE_SIZE representation clause or in the VAX Ada
pragma MAIN_STORAGE;the number shownby the debuggeris the
numberof bytes allocated (the value specified is rounded up to an
integral number of pages, as necessary). See the VAXAda Language
Reference Manual and VAXAda Run-Time Reference Manual for
more information about this representation clause and pragma and
about the task activation (working) storage area.

e “Bytes in use:” gives the size of the task stack.

Stack addresses of the task stack.

The total storage used by the task. Adds together the task control block
size, the numberof reserved bytes, the top guard size, and the storage

s1ze.

Q
o

Figure 7—2 showsthe task stack for task FATHER.

7-20 Debugging VAX Ada Tasks

Figure 7-2: Diagram of a Task Stack

low address

pee guard (10 pages)

reserved bytes (~21 pages)

001EB600: ‘top ™
address

storage
> size

001F2C38: sp
bytes
inuse _/

address

00077D40: }task control block
(490816)

high address

ZK-6742-GE

Debugging VAX Ada Tasks 7-21

The SHOW TASK/STATISTICS commandreports somestatistics about all of
the tasks in your program. The SHOW TASK/STATISTICS/FULL command
reports more of them. For example:

DBG> SHOW TASK/STATISTICS/FULL

task statistics

Entry calls = 4 Accepts = 1 Selects = 2

Tasks activated = 3 Tasks terminated = 0

ASTs delivered = 4 Hibernations = 0

Total schedulings = 15
Due to readying a higher priority task
Due to task activations
Due to suspended entry calls

Due to suspended accepts

Due to suspended selects

Due to waiting for a DELAY
Due to scope exit awaiting dependents
Due to exception awaiting dependents
Due to waiting for I/O to complete
Due to delivery of an AST
Due to task terminations

Due to shared resource lock contention o
u
d

ut
n
p
o
e
e
w

f
Wt

tv
t
o
g

O
O
P

O
O
D
O
O
O
N
E
F
A

W
W

H
L

You can use this statistics information to measure the performance of your
tasking program. The larger the numberof total schedulings (also known as
context switches), the more tasking overhead thereis.

7.4 Examining and Manipulating Tasks

The debugger EXAMINE command (or EXAMINE/TASK command), applied
to a task object, displays the task ID. For example:

DBG> EXAMINE FATHER

TASKEXAMPLE.FATHER: 6TASK 2

DBG>

You can use the EXAMINE/HEXADECIMAL command(or the

EXAMINE/TASK/HEXADECIMAL command) to determine the 8-digit
hexadecimal task value. (In VAX Ada, the task value is the address of the

task control block of a specified task.) For example:

DBG> EXAMINE/HEXADECIMAL FATHER

TASKEXAMPLE.FATHER: QO15AD00

DBG>

7-22 Debugging VAX Ada Tasks

7.5 Changing Task Characteristics (SET TASK)

You use the debugger SET TASK commandto change a task’s characteristics
as you debug your program. The command formatis as follows:

SET TASK[/qualifier[...]] [task-expression[,...]]

Table 7-5 defines the SET TASK command qualifiers. Section 7.2 defines
task expressions. Note that if no qualifier is specified, the /VISIBLE
qualifier is assumed by default.

Table 7-5: SET TASK Command Qualifiers

Qualifier Meaning

Task Selection Qualifiers

/ALL Applies the SET TASK commandto all tasks. When you
specify /ALL, you cannot specify a task list, nor can you
specify the /ACTIVE, /VISIBLE, or /TIME_SLICE qualifiers.

Attribute Qualifiers

/ABORT Aborts the specified tasks. If no task list is specified, aborts
the visible task. Note that the task is marked for termination
but is not immediately terminated. The effect is identical to
executing the Ada statement abort task-name, and causes the
specified tasks to become abnormal.

/ACTIVE Makesthe specified task the active task. Causes a task switch
to the new active task and resets the visible task to be the
new active task. The specified task must be in either the
RUNNINGor READYstate. You must specify only one task.

(continued on next page)

Debugging VAX Ada Tasks 7-23

Table 7-5 (Cont.): SET TASK Command Qualifiers

Qualifier Meaning

Attribute Qualifiers

/HOLD Places the specified tasks on HOLD.If no task list is specified,
places the visible task on HOLD.

Placing a task on HOLD prevents a task from entering the
RUNNINGstate. A task placed on HOLDis allowed to make
other state transitions; in particular, it may change from the
SUSPENDEDto the READYstate.

A task that is already in the RUNNINGstate (the active
task) can continue to execute as long as it remains in the
RUNNINGstate, even though it is placed on HOLD.If the
task leaves the RUNNINGstate for any reason (including
expiration of a timeslice, if time slicing is enabled), it may not
return to the RUNNINGstate until the HOLD is removed.
You can force a task into the RUNNINGstate with the SET
TASK/ACTIVE commandevenif the task is on HOLD.

/NOHOLD Removesthe specified tasks from HOLD.If no task list is
specified, removes the visible task from HOLD.

/PRIORITY=n Sets the priority of the specified tasks to n, where n is a
decimal integer from 0 to 15, inclusive. If no task list is
specified, sets the priority of the visible task to n. Note that
this does not prevent the task’s priority from later changing
in the course of execution, for example, while executing a
rendezvous.

/RESTORE Causes the priority of the specified tasks to be restored to
the value specified in a pragma PRIORITY. If a pragma
PRIORITY wasnot specified, the default value of 7 is used. If
no task list is specified, causes the priority of the visible task
to be restored.

/TIME_SLICE=t Sets the duration otherwise specified by the pragma TIME_
SLICE to the value t, where t is a decimal integer or fixed-
point value representing seconds (see Section 7.7.2). The SET
TASK/TIME_SLICE=0.0 commanddisables timeslicing.

/VISIBLE Makesthe specified task the visible task. You must specify
only onetask.

Most of the qualifiers provide a meansof controlling the tasking environ-
ment by directly or indirectly causing task state transitions. In contrast, the
/VISIBLE qualifier is used to direct subsequent debugger commands, such as
EXAMINE,to an individual task. See Section 7.2.3.2 for more information

on the visible task.

7-24 Debugging VAX Ada Tasks

Task switching may be confusing when you are trying to debug a program.

The SET TASK/TIME_SLICE and SET TASK/HOLD commandsgive you
several waysof controlling task switching.

The SET TASK/HOLD/ALL commandfreezes the state of all tasks (except
the active task). You can use this command in combination with the
SET TASK/ACTIVE commandto observe the behavior of one or more
specified tasks in isolation, by executing the active task with the STEP
or GO command,then switching execution to another task with the SET
TASK/ACTIVE command. For example:

DBG> SET TASK/HOLD/ALL
DBG> SET TASK/ACTIVE %TASK1

DBG> GO

DBG> SET TASK/ACTIVE %TASK 3

DBG> STEP

7.6 Setting Breakpoints and Tracepoints

You can use the debugger SET BREAK and SET TRACE commands with
tasking programs just as you use them with nontasking programs. You can
also take advantage of the following task-related features:

e Task-specific and task-independent debugger eventpoints

e Task body, entry call, and accept statement breakpoints and tracepoints

e The /EVENT=event-name qualifier (which allows you to set a breakpoint
or tracepoint when a task makesa state transition)

The following sections explain how to use these features.

7.6.1 Task-Specific and Task-Independent Debugger Eventpoints

An eventpoint is an event that you can use to return control to the debugger.
An eventpoint is set by a debugger commandto instruct the debugger to
watch for the specified event, and is triggered when the debugger observes
the event. Breakpoints, tracepoints, watchpoints, and step commandsare
eventpoints.

Debugging VAX Ada Tasks 7-25

Task-independent eventpoints can be triggered by the execution of any task
in a program, regardless of which task is active when the eventpoint is
set. Task-independent eventpoints are generally specified by an address
expression such as a line number or a name. All watchpoints are task-
independent eventpoints. For example:

DBG> SET BREAK COUNTER

DBG> SET BREAK/NOSOURCE %LINE 42, CHILDSTASK_BODY

DBG> SET WATCH/AFTER=3 KEEPCOUNT

A task-specific eventpoint can be set only for the task that is active when
the commandis entered. A task-specific eventpoint is triggered only when
that same task is active. For example, the STEP/LINE commandis a task-

specific eventpoint: other tasks may execute the same Ada source line and
not trigger the event.

The following eventpoints are task specific. Any other eventpoints, including
all those set with the SET WATCH command,are task independent.

STEP/BRANCH
STEP/CALL
STEP/INSTRUCTION[=opcode]
STEP/LINE
STEP/RETURN

SET BREAK/BRANCH
SET BREAK/CALL
SET BREAK/INSTRUCTION|[=opcode]
SET BREAK/LINE

SET TRACE/BRANCH
SET TRACE/CALL
SET TRACE/INSTRUCTION[=opcode]
SET TRACE/LINE

For example, the following eventpoints are task specific:

DBG> SET BREAK/INSTRUCTION

DBG> SET TRACE/INSTRUCTION/SILENT DO (EXAMINE KEEPCOUNT)
DBG> STEP/CALL/NOSOURCE

To work aroundthis restriction, you can use a WHENclause. For example:

DBG> SET BREAK %LINE 10 WHEN (%SACTIVETASK=FATHER)

7-26 Debugging VAX Ada Tasks

7.6.2 Task Bodies, Entry Calls, and Accept Statements

You can always use line numbers whensetting breakpoints or tracepoints.
However, names, if they exist, are preferable as address expressions because

they are more stable as you modify your program.

As discussed in Section 7.2.1, you can use oneof the following two forms
whenreferring to a task body in a debugger command:

task-type-identifierSTASKBODY
task-identifierSTASKBODY

For example, the following commandsets a breakpoint on the body of task
CHILD. This breakpoint is triggered just before the elaboration of the task’s
declarative part (also called the task’s activation):

DBG> SET BREAK CHILDSTASK_BODY

DBG>

Note that CHILD$TASK_BODYis a namefor the address ofthefirst
instruction the task will execute. It is meaningful to set a breakpoint on an
instruction, and hence on this name. However, you must not namethe task

object (for example, CHILD) in a SET BREAK command. The task-object
namedesignates the address of a data item (the 32-bit task value). Just as
it is erroneous to set a breakpoint on an integer object, it is erroneous to set

a breakpoint on a task object.

You can monitor the execution of communicating tasks by setting break-
points or tracepoints on entry calls and accept statements. There are
several points in and around an accept statement where you may want
to set a breakpoint or tracepoint. For example, consider the following
program segment, which has two accept statements for the same entry,

RENDEZVOUS:

8 task body TWOACCEPTS is

9 begin
10 for I in 1..2 loop
11 select

12 accept RENDEZVOUS do.

13 PUT_LINE("This is the first accept statement");
14 end RENDEZVOUS;

15 or

16 terminate;
17 end select;
18 end loop;

19 accept RENDEZVOUS do

20 PUTLINE("This is the second accept statement");
21 end RENDEZVOUS;

22 end TWO_ACCEPTS;

Debugging VAX Ada Tasks 7-27

You can set a breakpoint or tracepoint in the following places in this
example:

1. At the start of an accept statement (line 12 or 19). By setting a break-
point or tracepoint here, you can monitor when execution reaches the

start of the accept statement, where the accepting task may become
suspended before a rendezvous actually occurs.

2. At the start of the body (sequence of statements) of an accept statement

(line 13 or 20). By setting a breakpoint or tracepoint here, you can

monitor when a rendezvous has been initiated—that is, when the accept
statement actually begins execution.

3. At the end of an accept statement (line 14 or 21). By setting a break-
point or tracepoint here, you can monitor when the rendezvous has
completed, and execution is about to switch back to the caller task.

To set a breakpoint or tracepoint in and around an accept statement, you

can specify the associated line number. For example, the following command
sets a breakpoint on the start and also on the body ofthe first accept
statement in the preceding example:

DBG> SET BREAK %SLINE 12, %LINE 13

To set a breakpoint or a tracepoint on an accept statement body, you can

also use the entry name(specifying its expanded nameto identify the task
body where the entry is declared). For example:

DBG> SET BREAK TWO_ACCEPTSSTASK_BODY.RENDEZVOUS

If there is more than one accept statement for an entry, the debugger treats
the entry as an overloaded name. In other words, the debugger issues a

message indicating that the symbol is overloaded, and you must use the
SHOW SYMBOL commandtoidentify the overloaded names that have been
assigned by the debugger. For example:

DBG> SHOW SYMBOL RENDEZVOUS
overloaded symbol TEST.TWO_ACCEPTSSTASKBODY.RENDEZVOUS

overloaded instance TEST.TWOACCEPTSSTASKBODY.RENDEZVOUS1
overloaded instance TEST.TWOACCEPTSSTASKBODY.RENDEZVOUS2

Note that overloaded names have an integer suffix preceded by two under-
scores; see Chapter 6 for more information on overloaded names.

You can use the EXAMINE/SOURCE command to determine which nameis

associated with a particular accept statement. For example:

7-28 Debugging VAX Ada Tasks

DBG> EXAMINE/SOURCE TWO_ACCEPTSSTASK_BODY.RENDEZVOUS1
module TESTACCEPTS

12: accept RENDEZVOUS do

DBG> EXAMINE/SOURCE TWO_ACCEPTSSTASKBODY.RENDEZVOUS2
module TESTACCEPTS

19: accept RENDEZVOUS do

In the following example, when the breakpointis triggered, the caller task is
evaluated:

DBG> SET BREAK TWO_ACCEPTSSTASK_BODY.RENDEZVOUS_2 -

_DBG> DO (EVALUATE %CALLER_TASK)

You can cause a breakpoint to trigger only under some circumstances. For

example, the following commandtriggers a breakpoint only when the calling

task is TASK 2:

DBG> SET BREAK TWO_ACCEPTSSTASKBODY.RENDEZVOUS2 -
_DBG> (WHEN (%CALLER_TASK = %TASK 2))

If the calling task has more than one entry call to the same accept state-
ment, you can use the SHOW TASK/CALLS commandto identify the source
line where the entry call was issued. For example:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS2 -
_DBG> DO (SHOW TASK/CALLS %CALLER_TASK)

7.6.3 Monitoring Ada Task Events

The debugger SET BREAK and SET TRACE commandseach have an
/EVENT=event-namequalifier. You can use this qualifier to set breakpoints

or tracepoints that will be triggered by Ada exception and tasking events;
the tasking events are discussed in this section (see Chapter 6 for more

information on the exception events). When a breakpoint or tracepoint is
triggered as a result of an event namequalifier, the debugger identifies the
Ada event that caused it to be triggered and gives additional information.

The general command syntax for the SET BREAK/EVENT=event-name

commandis as follows (see Chapter 6 for more information on setting
breakpoints and tracepoints; see the VMS Debugger Manual for more
information on debugger syntax):

SET BREAK/EVENT=event-name [task-expr[,...

SET TRACE/EVENT=event-name [task-expr[,...

Debugging VAX Ada Tasks 7-29

7-30

The events specified with the /EVENT=event-name qualifier are language
dependent. When you run a program under debugger control, the appro-
priate set of events is defined during theinitialization of language-specific

parameters. (The SET EVENT_FACILITY commandallows youto initialize
the debugger for events pertinent to any language.)

Table 7-6 defines the set of events (event-name keyword values) that apply
to VAX Ada (the exception-related events are included for completeness).
You can obtain a list of these events from the debugger by entering the
SHOW EVENT_FACILITY command, which also identifies the currently set

event facility.

You can abbreviate an event name to the minimum numberof characters

that makeit unique.

Table 7-6: VAX Ada Event Names

Event Name Description

Exception-Related Events

HANDLED Triggers when an exception is about to be han-
dled in some Ada exception handler, including an
others handler (see Chapter 6).

HANDLED_OTHERS Triggers only when an exception is about to be
handled in an others Ada exception handler (see
Chapter6).

Task Exception-Related Events

RENDEZVOUS_EXCEPTION Triggers when an exception begins to propagate
out of a rendezvous.

DEPENDENTS_EXCEPTION Triggers when an exception causes a task to
wait for dependent tasks in some scope (includes
unhandled exceptions,’ which, in turn, include
special exceptions internal to the VAX Ada
run-time library; see the VAXAda Run-Time
Reference Manual for more information). Often
immediately precedes a deadlock.

1An unhandled exception is an exception that either has no handler in the current frame, or
that has a handler which executes a raise statement and propagates the exception to an outer
scope.

(continued on next page)

Debugging VAX Ada Tasks

Table 7-6 (Cont.): VAX Ada Event Names

Event Name Description

Task Termination Events

TERMINATED Triggers when a task is terminating, whether
normally, by an abort statement, or by an
exception.

EXCEPTION_TERMINATED Triggers when a task is terminating due to an
unhandled exception.!

ABORT_TERMINATED Triggers when a task is terminating due to an
abort statement.

Low-Level Task Scheduling Events

RUN Triggers when a task is about to run.

PREEMPTED Triggers when a task is being preempted from
the RUN state and its state changes to READY.
(See Figure 7-1.)

ACTIVATING Triggers when a task is about to begin its
activation (that is, at the beginning of the
elaboration of the declarative part of its task
body).

SUSPENDED Triggers when a task is about to be suspended.

1An unhandled exception is an exception that either has no handler in the current frame, or
that has a handler which executes a raise statement and propagates the exception to an outer
scope.

The following examples show the use of the /EVENT=event-name qualifier.

DBG> SET TRACE/EVENT=RUN CHILD, %TASK 2

This commandsets tracepoints on the tasks CHILD and %TASK 2. Each
tracepoint is triggered wheneverits associated task makes a transition to
the RUN state.

The next commandsets a breakpoint that is triggered whenever a task
enters the TERMINATED state. A SHOW TASK/ALL commandis entered
at each breakpoint:

DBG> SET BREAK/EVENT=TERMINATED DO (SHOW TASK/ALL)

Debugging VAX Ada Tasks 7-31

Breakpoints for the EXCEPTION_TERMINATED and DEPENDENTS_
EXCEPTIONevents are automatically set for you when you invoke the
debugger with a VAX Ada program (or with a program in a supported
language that is linked with a VAX Ada compilation unit). You can see that
these breakpoints are set when you enter a SHOW BREAK command.

The EXCEPTION_TERMINATEDevent triggers when a task is being
terminated because of an exception. That condition usually indicates an
unanticipated program error. In the following example, the SET BREAK
commandis shown only for emphasis, as the debugger automatically breaks
on EXCEPTION_TERMINATEDevents:

DBG> SET BREAK/EVENT=EXCEPTIONTERMINATED

DBG> GO

break on ADA event EXCEPTIONTERMINATED
Task STASK 2 is terminating because of an exception

SADA-F-EXCCOP, Exception was copied at a "raise;" or "accept"
-ADA-F-EXCEPTION, Exception SOMEERROR

-ADA-F-EXCRAIPRI, Exception raised prior to PC = Q0Q000B61

DBG>

The DEPENDENTS_EXCEPTION event often unexpectedly precedes a
deadlock. For example (again, the SET BREAK commandis shown only for
emphasis): |

DBG> SET BREAK/EVENT=DEPENDENTSEXCEPTION

DBG> GO

break on ADA event DEPENDENTSEXCEPTION

Task STASK 2 may await dependent tasks because of this exception:
SADA-F-EXCCOP, Exception was copied at a "raise;" or "accept"
-ADA-F-EXCEPTION, Exception SOMEERROR

-ADA-F-EXCRAIPRI, Exception raised prior to PC = 00000Bé6él1

DBG>

The RENDEZVOUS_EXCEPTION event allows you to see an exception
before it leaves a rendezvous (before exception information has been lost due
to copying the exception into the calling task). For example:

7-32 Debugging VAX Ada Tasks

DBG> SET BREAK/EVENT=RENDEZVOUS_EXCEPTION

DBG> GO

break on ADA event RENDEZVOUSEXCEPTION
Exception is propagating out of a rendezvous in task %STASK 2

SADA-F-CONSTRAINTERRO, CONSTRAINTERROR

-ADA-I-EXCRAIPRI, Exception raised prior to PC = QOQQOOBA6

DBG>

You can use the SHOW BREAK and SHOW TRACE commandsto identify

the event breakpoints or tracepoints that are currently set.

To cancel breakpoints or tracepoints set with the /EVENT=event-name

qualifier, you use the CANCEL BREAK/EVENT=event-name or CANCEL
TRACE/EVENT=event-name command,respectively.

The CANCEL BREAK/EVENT=event-name (or TRACE) command cancels
a breakpoint (or tracepoint) set by the SET BREAK/EVENT=event-name
(or TRACE) command. To cancel a breakpoint or tracepoint associated

with an event name, you must specify the event qualifier and optional

task expression in the CANCEL command exactly as you did with the
SET command, excluding any WHEN and DO clauses. For example,

if you enter the CANCEL BREAK/EVENT=TERMINATED command

without a parameter, it will not cancel a breakpoint that was set with
a parameter;it will cancel only a breakpoint that was set with the SET

BREAK/EVENT=TERMINATED command, with no parameterspecified.

You may want to set certain event breakpoints and tracepoints in a debugger
initialization file for tasking programs (the general useofinitialization files
is explained in Chapter 6). The sample initialization file in Example 7-2
may be useful in helping you to locate task-related errors.

Debugging VAX Ada Tasks 7-33

Example 7-2: Sample DebuggerInitialization File for VAX Ada Tasking
Programs

SET OUTPUT VERIFY

SET OUTPUT LOG
!

SET BREAK/EVENT=ACTIVATING

! Break on any task activations
I

SET BREAK/EVENT=HANDLED DO (SHOW CALLS)

! Traceback on any exception handling
1

SET BREAK/EVENT=HANDLEDOTHERS DO (SHOW CALLS)

! Traceback on any ’when others’ handlers
1

‘SET BREAK/EVENT=DEPENDENTSEXCEPTION DO (SHOW CALLS)

! Traceback on any exceptions awaiting the termination
! of dependent tasks
|

SET BREAK/EVENT=RENDEZVOUSEXCEPTION

! Break on any rendezvous involving exceptions
|

SET BREAK/EVENT=ABORTTERMINATED DO (SHOW CALLS)

! Traceback on all task terminations caused by

! abort statements
!

SET BREAK/EVENT=EXCEPTIONTERM DO (SHOW CALLS)

! Traceback on any task terminations caused by

! unhandled exceptions
{

SET BREAK/EVENT=TERMINATED
! Break on any task terminations
1

DEFINE/COMMAND sta="SHOW TASK/ALL"

! Define a shorter command for displaying task statistics
|

DEFINE/COMMAND stf="SHOW TASK/FULL"
! Define a shorter command for displaying full
! information about one or more particular tasks
!

DEFINE/COMMAND noslice="SET TASK/TIME=0.0"

! Define a shorter command for disabling time slicing
i

DEFINE/COMMAND slice="SET TASK/TIME="

! Define a shorter command for enabling time slicing

7-34 Debugging VAX Ada Tasks

7./ Additional Task-Debugging Topics

The following sections discuss additional topics related to task debugging:

e Deadlock

e Timeslicing

e Using CTRL/Y

e Automatic stack checking

e Highlighting task state changes

7.7.1 Debugging Programswith Deadlock

Deadlock is an error condition in which each task in a group of tasksis
suspended and no task in the group can resumeexecution until some other
task in the group executes. Deadlock is a typical error in tasking programs
(in much the same way that infinite loops are typical errors in programs
that use while statements).

Deadlock is easy to detect: it causes your program to appear to suspend, or
hang, in midexecution. When deadlock occurs in a program that is running

under the control of the debugger, you must first press CTRL/Y to interrupt
the deadlock. Then, after entering the DCL DEBUG command, you can
resume debugging.

In general, the debugger command SHOW TASK/ALLor
SHOW TASK/STATE=SUSPENDEDis useful because it shows which

tasks are suspended in your program and why. The SHOW TASK/FULL

commandis useful because it gives detailed task state information, including
information about rendezvous, entry calls, and entry index values. The

/EVENT=event-name qualifier is useful because it allows you to trace or
set breakpoints at or near locations that may lead to deadlock. The SET
TASK/PRIORITY and SET TASK/RESTORE commandsare useful because
they allow you to see if a low-priority task that never runs is causing the
deadlock.

Table 7—7 lists a numberof kinds of deadlock and suggests debugger
commandsthat are useful in diagnosing the cause of the deadlock. Previous
sections of this chapter describe each of the task debugging commands in
detail.

Debugging VAX Ada Tasks 7-35

Table 7~7: Kinds of Deadlock and Debugger Commandsfor Diagnosing
Them

Kind of Deadlock Debugger Commands

Self-calling deadlock (a task calls one

of its own entries)

Circular-calling deadlock (a task calls
another task, which calls thefirst
task)

Dynamic-calling deadlock (a circular
series of entry calls exists, and at
least one of the calls is a timed or
conditional entry call in a loop)

Exception-induced deadlock (an
exception prevents a task from
answering one of its entry calls, or
the propagation of an exception must
wait for dependent tasks)

Deadlock due to incorrect run-time
calculations for entry indexes, when
conditions, and delay statements
within select statements

Deadlock due to entries being called
in the wrong order

Deadlock due to busy-waiting on
a variable used as a flag that is to
be set by a lower priority task, and
the lower priority task never runs
because a higherpriority task is
always ready to execute

SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL

SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL
SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL

SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL,
SET BREAK/EVENT=DEPENDENTS_
EXCEPTION,
SET TRACE/EVENT=DEPENDENTS_
EXCEPTION

SHOW TASK/ALL,
SHOW TASK/STATE=SUSPENDED,
SHOW TASK/FULL,
EXAMINE

SHOW TASK/ALL,
SHOW TASK/STATE=SUSPENDED,
SHOW TASK/FULL

SHOW TASK/ALL,
SHOW TASK/STATE=SUSPENDED,
SHOW TASK/FULL,
SET TASK/PRIORITY,
SET TASK/RESTORE

7.1.2 Debugging Programsthat Use TimeSlicing

Tasking programs that use timeslicing (as specified in the program with
the pragma TIME_SLICE)are difficult to debug because time slicing makes
the relative behavior of tasks asynchronous. In other words, without time
slicing, task execution is determined solely by task priority; task switches
are predictable and the behavior of the program is repeatable from one run

7-36 Debugging VAX Ada Tasks

to the next. With timeslicing, task priorities still govern task switches, but
tasks of the same priority also take turns executing for a specified period of
time. Timeslicing thus causes tasks to execute more independently from
each other, and the behavior of a program that uses time slicing may not be
repeatable from one run of the program to the next.

The debugger SET TASK/TIME_SLICE=t commandallows you to disable
time slicing (SET TASK/TIME_SLICE=0.0) or specify a new value for
a pragma TIME_SLICE. Thus, you can use this commandto tune the
execution of your tasking programs, or to diagnose problems that may be
maskedby the useof timeslicing.

Note that there is an interaction between VAX Ada’s timeslicing and the
debugger watchpoint implementation. When you set watchpoints, the
debugger may automatically increase the value of the pragma TIME_SLICE
to 10.0. Slowing down the time-slice rate prevents these problems from
occurring.

For more information on the effect of time slicing on task switching, see the
VAXAda Run-Time Reference Manual; for more information on the pragma
TIME_SLICE, see the VAXAda Language Reference Manual.

7./.3 Using CTRL/Y when Debugging Tasks

You may experience some problems invoking the debugger with the DCL
DEBUG commandafter interrupting a task debugging session with CTRL/Y.
In such cases, you should insert the following two lines in the source code
at the beginning of your main program to name the VAX Ada predefined

package CONTROL_C_INTERCEPTION:

with CONTROLC_INTERCEPTION;

pragma ELABORATE (CONTROLC_INTERCEPTION);

Then, you should use CTRL/C instead of CTRL/Y to interrupt your task
debugging session. See the VAX Ada Run-Time Reference Manual for
information on this package.

7.7.4 Automatic Stack Checking in the Debugger

In tasking programs, an undetected stack overflow can occur in certain

circumstances, and can lead to unpredictable execution (see the VAXAda
Run-Time Reference Manual for more information on task stack overflow).

The debugger automatically performs the following stack checks to help you
detect the source of stack overflow problems:

Debugging VAX Ada Tasks 7-37

7-38

e Ifthe stack pointer is out of bounds, the debugger displays an error
message.

e A stack check is performed for the active task after a STEP or break-
point eventpoint triggers (see Section 7.6.1). (This check is not per-

formed if you have used the /SILENT qualifier with the STEP or SET
BREAKPOINT command.)

e A stack check is performed for each task whosestate is displayed
in a SHOW TASK command. Thus, a SHOW TASK/ALL command

automatically causes the stacks of all tasks to be checked.

The following examples show the kinds of error messages displayed by the
debugger when a stack check fails. Note that a warning is issued when most
of the stack has been used up, even if the stack has not yet overflowed.

warning: %TASK 2 has used up over 90% of its stack

SP: 0011194C Stack top at: 00111200 Remaining bytes: 1868

error: *TASK 2 has overflowed its stack

SP: OOLOE93C Stack top at: 00111200 Remaining bytes: -10436

error: *TASK 2 has underflowed its stack

SP: 7FF363A4 Stack base at: OO1189FC Stack top at: 00111200

One of the unpredictable events that can happen after a stack overflowsis
that the stack can then underflow. For example, if a task stack overflows
and the stack pointer remains in the top guard area, the VMS operating

system will attempt to signal an ACCVIO condition. However, because the
top guard area is not a writable area of the stack, the VMS operating system
cannot write the signal arguments for the ACCVIO. When this happens, the
VMSoperating system cuts back the stack: it causes the frame pointer and
stack pointer to point to the base of the main program stack area, writes
the signal arguments, and then modifies the program counter to force an
image exit. If a time-slice AST or other AST occursat this instant, execution
can resume in a different task, and for a while, the program may continue
to execute, although not normally (the task whose stack overflowed may
use—and overwrite—the main program stack). The debugger stack checks
help you to detect this situation. If you step into a task whose stack has
been cut back by the VMSsystem, or if you use SHOW TASK/ALLat that
time, the debugger will issue its stack underflow message.

Debugging VAX Ada Tasks

Appendix A

ACS CommandDictionary

This appendix is a dictionary ofall of the ACS commands, plus the DCL
ADA command. The commandsare organized alphabetically, with full
descriptions of their format, parameters, and qualifiers, and with examples
of their use. See Chapter 1 for general information on using ACS commands.
See Chapter 2 for the conventions on specifying unit names.

In this appendix, qualifiers are categorized according to the VMS DCL
qualifier conventions (see the VMS DCL Concepts Manual). In other words,
a qualifier may belong to one of three types:

¢ Acommandqualifier has the sameeffect, regardless of where it appears
in the commandstring (whetherit is appended to the command verb or
to a parameter).

e A positional qualifier has a different effect depending on where it
appears in the commandstring. A positional qualifier appended to the
commandverbaffects the entire commandstring. A positional qualifier
appended to a parameter affects only that parameter.

e A parameter qualifier can be used only with a specified parameter. It
cannot be appended to the commandverb.

Qualifiers remain unique when truncatedto their first four characters,
not including the NO of the negative form. In commandprocedures,to
guarantee compatibility with future releases of VAX Ada, you should not use
fewer than four characters.

ACS Command Dictionary A-1

The examples in this appendix, as those throughout the manual, use the
file-name conventions described in Chapter 1. Also, examples of messages
issued by the compiler, program library manager, and so on display only
the severity level and the message text. No facility name or message ID is
shown.

A-2 ACS CommandDictionary

($) ADA

($) ADA
Invokes the VAX Ada compiler to compile one or more VAX Adasourcefiles.

NOTE

The ADA command is a DCL command, not an ACS command.

Format

ADA _file-specy,...]

Command Qualifiers Defaults

/LIBRARY=directory-spec /LIBRARY=ADA$LIB

Positional Qualifiers Defaults

/[NOJANALYSIS_DATA[=file-spec] /INOANALYSIS_DATA

/[NO]JCHECK See text.

/[NO]JCOPY_SOURCE /COPY_SOURCE

/[NO]DEBUG[=(option],...])] /DEBUG=ALL

/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS

/[NOJERROR_LIMIT[=n] /ERROR_LIMIT=30

/[NO]LIST[=file-spec] /NOLIST

/[NO]LOAD[=option] /LOAD=REPLACE

/[NO]JMACHINE_CODE /NOMACHINE_CODE

/[NO]JNOTE_SOURCE /NOTE_SOURCE

/[NOJOPTIMIZE[=(option{,...])] Seetext.

/[NO|SHOW[=option] /SHOW=PORTABILITY

/[NO]SYNTAX_ONLY INOSYNTAX_ONLY

/[NOJWARNINGS[=(option{,...])] Seetext.

Prompts

_File:

ACS Command Dictionary A-3

($) ADA

Command Parameters

file-specf,...]
Specifies one or more VAX Ada sourcefiles to be compiled. If you do not
specify a file type, the compiler uses the default file type of .ADA. No
wildcard characters are allowedin the file specifications.

If you specify more than one inputfile, you must separate the file speci-
fications with commas (,). You cannot use plus signs (+) to separatefile
specifications.

Description

The DCL ADA commandis one of four VAX Ada compilation commands.
The other three compilation commands are the ACS LOAD, COMPILE, and
-RECOMPILE commands.

The ADA commandcan be used at any time to compile one or more source
files (ADA). VAX Ada source files are compiled in the order in which they
appear in the commandline. If a source file contains more than one VAX
Ada compilation unit, the units are compiled in the order in which they
appear in a sourcefile. The Ada rules governing compilation order are
summarized in Chapter1.

The ADA command compiles units in the context of the current program
library. Whenevera compilation unit is compiled without error, the current
program library is updated with the object module and other products of
compilation. : |

See Chapters 2 and 3 for more information on VAX Ada programlibraries,
sublibraries, and compilation.

Command Qualifiers

/LIBRARY=directory-spec
Specifies the program library that is to be the current program library
for the duration of the compilation. The directory specified must be an
existing VAX Ada program library. No wildcard characters are allowed in
the directory specification.

A-4 ACS CommandDictionary

($) ADA

By default, the current program library is the program librarylast specified
in an ACS SET LIBRARY command. Thelogical name ADA$LIBis assigned

to the program library specified in an ACS SET LIBRARY command.

Positional Qualifiers

/ANALYSIS_DATA[=file-spec]
/NOANALYSIS_DATA (D) |
Controls whether a data analysis file containing source code cross-reference
and static analysis information is created. The data analysis file is sup-
ported only for use with Digital layered products, such as the VAX Source
Code Analyzer. |

One data analysis file is created for each sourcefile that is compiled. The
default directory for data analysis files is the current default directory. The

_ default file name is the nameofthe source file being compiled. The default
file type is .ANA. No wildcard characters are allowed in thefile specilication.

By default, no data analysis file is created.

/CHECK
/NOCHECK
Controls whether all run-time checks are suppressed. The /NOCHECK
qualifier is equivalent to havingall possible SUPPRESS pragmas in| the
source code.

Explicit use of the /CHECKqualifier overrides any occurrencesof the
-pragmas SUPPRESS and SUPPRESS_ALLin the source code, without the

. need to edit the source code.

By default, run-time checks are suppressed only in cases where a pragma
‘SUPPRESS or SUPPRESS_ALL appearsin the source code.

See theVAXAda Language Reference Manual for more informationon the
pragmas SUPPRESS and SUPPRESS_ALL. |

/COPY_SOURCE (D)
/NOCOPY_SOURCE
Controls whether a copied sourcefile is created in the current program
library when a compilation unit is compiled without error. The ACS
RECOMPILE commandrequires that a copied sourcefile exist in the

| current program library; the ACS COMPILE command usesthe copied

ACSCommand Dictionary A-S

($) ADA

source file if it cannot find an external source file when it is recompiling

an obsolete unit or completing an incomplete generic instantiation (see
Chapter 3). Copied sourcefiles may also be used by the VMS Debugger(see
Chapter6).

By default, a copied source file is created in the current program library

when a unit is compiled withouterror.

/DEBUG[=(option{,...])] (D)
/NODEBUG
Controls which compiler debugging options are provided. You can debug
VAX Ada programs with the VMS Debugger (see Chapters 6 and 7). You can
request the following options:

ALL Provides both SYMBOLS and TRACEBACK.

NONE Provides neither SYMBOLS nor TRACEBACK.

[NO]JSYMBOLS Controls whether debugger symbol records are included in
the object file.

[NOJTRACEBACK Controls whether traceback information (a subset of the

debugger symbol information) is included in the objectfile.

By default, both debugger symbol records and traceback information are

included in the object file (DEBUG=ALL,or equivalently: /DEBUG).

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with Digital layered products, such as the VAX Language-Sensitive
Editor.

One diagnosticsfile is created for each source file that is compiled. The
default directory for diagnostics files is the current default directory. The
default file name is the nameofthe sourcefile being compiled. The default
file type is .DIA. No wildcard characters are allowed in thefile specification.

By default, no diagnostics file is created.

A-6 ACS CommandDictionary

($) ADA

/ERROR_LIMIT[=n] (D)
/NOERROR_LIMIT
Controls whether execution of the ADA commandfor a given compilation
unit is terminated upon the occurrence of the nth E-level error within that
unit.

Error counts are not accumulated across a sequence of compilation units.
If the /ERROR_LIMIT=n option is specified, each compilation unit may
have up to n — 1 errors without terminating the compilation. When the
error limit is reached within a compilation unit, compilation of that unit is
terminated, but compilation of subsequent units continues.

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the ADA commandis terminated for a given

compilation unit upon the occurrence of the 30th E-level error within that
unit (equivalent to /ERROR_LIMIT=30).

/LIST[=file-spec]
/NOLIST(D)
Controls whethera listing file is created. One listing file is created for each
source file compiled. The default directory for listing files is the current
default directory. The default file name is the nameof the source file being
compiled. The default file type is .LIS. No wildcard characters are allowed
in the file specification.

By default, the ADA command does notcreate listingfile.

/LOAD[= option]
/NOLOAD
Controls whether the current program library is updated with the success-
fully processed units contained in the specified source files. Depending on
other qualifiers specified (or not specified) with the ADA command,pro-
cessing can involve full compilation, syntax checking only, and so on. The
/NOLOAD qualifier causes the units in the specified sourcefiles to be pro-
cessed, but prevents the current program library from being updated. For
example, this effect allows you to obtain a machinecode listing for a unit
that has already been compiled into the program library without affecting
the library.

ACS CommandDictionary A—7

($) ADA

You can specify the following option:

[NOJREPLACE Controls whether a unit added to the current program
library replaces an existing unit with the same name. If
you specify the NOREPLACEoption, the unit will be added
to the current program library only if no existing unit has
the same name,exceptif the new unit is the missing body
of an existing specification, or vice versa.

By default, the current program library is updated with the successfully
processed units, and a unit added to the current program library will replace
an existing unit with the same name (/LOAD=REPLACE).

/MACHINE_CODE
/NOMACHINE_CODE(D)
Controls whether generated machine code (approximating assembler
notation) is includedin thelistingfile.

By default, generated machine code is not included inthe listingfile.

/NOTE_SOURCE(D)
/NONOTE_SOURCE
Controls whetherthe file specification of the sourcefile is noted in the
program library when a unit is compiled without error. The ACS COMPILE
commandusesthis information to locate revised sourcefiles.

By default, the file specification of the source file is noted in the program
library when a unit is compiled withouterror.

/OPTIMIZE[=(option|{,...])]
/NOOPTIMIZE
Controls the level of optimization that is applied in producing the compiled
code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary op-
timization criterion. Overrides any occurrences of the
pragma OPTIMIZE(SPACE)in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(TIME)in the source code.

A-8 ACS Command Dictionary

($) ADA

DEVELOPMENT Suggested when active development of a program is in
progress.: Provides some optimization, but development
considerations and ease of debugging take preference
over optimization. This option overrides pragmas that
establish a dependence on a subprogram or generic body
(the pragmas INLINE and INLINE_GENERIC), and thus
reduces the need for recompilations when such bodies are
modified. This option also disables generic code sharing.

NONE Provides no optimization. Suppresses inline expansions
of subprogramsandgenerics, including those specified by
the pragmas INLINE and INLINE_GENERIC. Suppresses
occurrences of the pragma SHARE_GENERIC and disables
generic code sharing.

The /NOOPTIMIZEqualifier is equivalent to /OPTIMIZE=NONE.

By default, the ADA commandapplies full optimization with time as the
primary optimization criterion (like /OPTIMIZE=TIME,but observing uses
of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you can
use separately or together with the primary options to override the default
behavior for inline expansion (generic and subprogram) and generic code
sharing.

The INLINE secondary option can havethe following values (see the
VAXAda Run-Time Reference Manual for more information about inline
expansion):

NONE Disables subprogram and generic inline expansion.
This option overrides any occurrences of the pragmas
INLINE or INLINE_GENERIC in the source code,
without your havingto edit the sourcefile. It also
disables implicit inline expansion of subprograms.
(Implicit inline expansion means that the compiler
assumes a pragma INLINEfor certain subprograms
as an optimization.) A call to a subprogram or an
instance of a generic in another unit is not expanded
inline, regardless of the /OPTIMIZEoptions in effect
when that unit was compiled.

ACS Command Dictionary A-9

($) ADA

NORMAL

SUBPROGRAMS

GENERICS

A-10 ACS CommandDictionary

Provides normal subprogram and generic inline
expansion.

Subprograms to which an explicit pragma INLINEap-
plies are expandedinline under certain conditions. In
addition, some subprogramsare implicitly expanded
inline. The compiler assumes a pragma INLINEfor
calls to some small local subprograms (subprograms
that are declared in the same unit as the unit in
which thecall occurs).

Instances are compiled separately from the unit in
which the instantiation occurred unless a pragma
INLINE_GENERIC applies to the instance. If a
pragma INLINE_GENERIC applies and the generic
body has been compiled, the generic is expanded
inline at the point of instantiation.

Provides maximal subprogram inline expansion and
normal generic inline expansion.

In addition to the normal subprogram inline expan-
sion that occurs when INLINE:NORMAL isspecified,
this option results in implicit inline expansion of some
small subprograms declared in other units. The com-
piler assumes a pragma INLINEfor any subprogram
if it improves execution speed and reducescodesize.
This option may establish a dependence on the body
of another unit, as would be the case if a pragma
INLINEwerespecified explicitly in the source code.

With this option, generic inline expansion occurs in
the same manneras for INLINE:NORMAL.

Provides normal subprogram inline expansion and
maximal generic inline expansion.

With this option, subprogram inline expansion occurs
in the same manneras for INLINE:NORMAL.

The compiler assumes a pragma INLINE_GENERIC
for every instantiation in the unit being compiled
unless an explicit pragma SHARE_GENERIC applies
or a generic body is not available. This option may
establish a dependence on the body of another unit,
as would be thecase if a pragma INLINE_GENERIC
were specified explicitly in the source code.

($) ADA

MAXIMAL Provides maximal subprogram and genericinline
expansion.

Maximal subprogram inline expansion occurs as
for INLINE:SUBPROGRAMS,and maximal generic
inline expansion occurs as for INLINE:GENERICS.

The SHAREsecondary option can havethe following values:

NONE Disables generic sharing. This option overrides theeffect
of any occurrences of the pragma SHARE_GENERICin
the source code, without your having to edit the source
file. In addition, instances do not share code from previous
instantiations.

NORMAL Provides normal generic sharing. Normally, the compiler
will not attempt to generate shareable code for an instance
(code that can be shared by subsequent instantiations)
unless an explicit pragma SHARE_GENERIC applies to
that instance. However, an instance will attempt to share
code that resulted from a previous instantiation to which
the pragma SHARE_GENERICapplied.

MAXIMAL Provides maximal generic sharing. The compiler as-
sumes that a pragma SHARE_GENERIC applies to every
instance in the unit being compiled unless an explicit
pragma INLINE_GENERIC applies. Thus, an instance
will attempt to share code that resulted from a previous
instantiation or to generate code that can be shared by
subsequentinstantiations.

SHARE:MAXIMAL cannot be used in combination with

INLINE:GENERICSor INLINE:MAXIMAL.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

/OPTIMIZE=TIME =(INLINE:NORMAL, SHARE:NORMAL)

/OPTIMIZE=SPACE =(INLINE:NORMAL, SHARE:NORMAL)

/OPTIMIZE=DEVELOPMENT =(INLINE:NONE, SHARE:NONE)

/OPTIMIZE=NONE =(INLINE:NONE, SHARE:NONE)

See Chapter 3 for more information of the /OPTIMIZE qualifier and its
options.

ACS Command Dictionary A-—11

($) ADA

/SHOW[=option] (D)
/NOSHOW
Controls thelisting file options included whena listing file is provided. You

can specify one of the following options:

ALL Providesall listing file options.

[NOJPORTABILITY Controls whether a program portability summary is
included in thelisting file (see Chapter5).

NONE Provides none of the listing file options (same as
/NOSHOW).

By default, the ADA commandprovides a portability summary
(//SHOW=PORTABILITY).

/SYNTAX_ONLY
/NOSYNTAX_ONLY(D)
Controls whether the sourcefile is to be checked only for correct syntax.

If you specify the /SYNTAX_ONLY qualifier, other compiler checks are not
performed (for example, semantic analysis, type checking, and so on).

In the presence of the /LOAD=REPLACEqualifier (the default), the
/SYNTAX_ONLY qualifier updates the current program library with syntax-
checked-only units. The units are considered to be obsolete and must be
subsequently recompiled.

In the presence of the /NOLOADqualifier, the /SYNTAX_ONLY qualifier
checks the syntax of the specified units but does not update the library.

By default, the compiler performs all compiler checks.

/WARNINGS[=(option{,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can
specify any combination of the following message options:

WARNINGS:(destination|,...])

NOWARNINGS

WEAK_WARNINGS:(destination|,...])
NOWEAK_WARNINGS

A-12 ACS Command Dictionary

($) ADA

SUPPLEMENTAL:(destination|[,...])

NOSUPPLEMENTAL

COMPILATION_NOTES:(destination|...D

NOCOMPILATION_NOTES

STATUS:(destination...

NOSTATUS
)

The possible values of destination are ALL, NONE, or any combination of
TERMINAL (terminal device), LISTING (listing file), and DIAGNOSTICS

(diagnostics file). The message categories are summarized as follows (see
Chapter 3 for more information):

WARNINGS

WEAK_WARNINGS

SUPPLEMENTAL

COMPILATION_NOTES

STATUS

The defaults are as follows:

W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERRORat run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

I-level: Additional information associated with pre-

ceding E-level or W-level diagnostics.

I-level: Information about how the compiler trans-
lated a program, such as record layout, parameter-
passing mechanisms, or decisions madefor the prag-
mas INLINE, INTERFACE,or the import-subprogram
pragmas.

I-level: End-of-compilation statistics and other
messages.

/WARNINGS= (WARN: ALL, WEAK: ALL, SUPP : ALL, COMP : NONE, STAT: LIST)

If you specify only some of the message categories with the /WARNINGS
qualifier, the default values for other categories are used.

ACS Command Dictionary A-—-13

($) ADA

Examples

$ ADA RESERVATIONS, RESERVATIONS_CANCEL

Compiles the compilation units contained in the two files
RESERVATIONS.ADA and RESERVATIONS__CANCEL.ADA,in the
order given.

$ ADA/LIST/SHOW=ALL SCREENIO_,SCREENIO

Compiles the compilation units contained in the two files SCREEN_
IO_.ADA and SCREEN_IO.ADA,in the order given. The /LIST qualifier
creates thelisting files SCREEN_IO_.LIS and SCREEN_IO.LISin the

current default directory. The /SHOW=ALLqualifier causesall listing
file options to be provided inthelistingfiles.

$ ADA/OPT=INLINE:MAX/WARN=COMPILATIONNOTES SCREENIO_, SCREEN_IO

Compiles the compilation units contained in the files SCREEN_IO_.ADA

and SCREEN_IO.ADA,in the order given. The /OPTIMIZE qualifier
_ specifies maximal subprogram and generic inline expansion. The

/WARN=COMPILATION_NOTES qualifier gives information about how
the compiler translated the program, including the decisions madefor
inline expansions.

$ ADA/NOLOAD/LIST/MACHINECODE HOTEL

Compiles the compilation units contained in the file HOTEL.ADA and
generates a machine codelisting, but does not update the current
program library.

- § ADA/WARNINGS=COMPILATIONNOTES/LIST STACKS, SUM

Compiles the compilation units contained in the files STACKS.ADA and

SUM.ADA,giving information about record layout, parameter-passing
mechanisms, inline expansions, and so on.

A-14 ACS CommandDictionary

ATTACH

ATTACH

Enables you to switch control of your terminal from your current process
running the program library manager to another process in your job. See
also the ACS SPAWN commandand the VMS DCL Dictionary.

Format

ATTACH process-name

Prompts

_Process:

Command Parameters

process-name
Specifies the name of the process to which the connection is to be made.
Process names can contain from 1 to 15 alphanumeric characters. Ifa
connection to the specified process cannot be made, an error message
is displayed. You cannot connect to the process if any of the following
conditions apply:

e The process is your current process.

e The processis not part of your current job.

e The process does not exist.

Description

The ACS ATTACH commandallows you to connect your input stream to
another process. You can use the ATTACH commandto changecontrol from
one subprocess to another subprocessor to the parent process.

When you enter the ATTACH command, the parent or “source” process is
put into a hibernation state, and your input stream is connected to the
specified destination process. You can use the ATTACH commandto connect
to a subprocess that is part of a current job left hibernating as a result of an

ACS Command Dictionary A-15

ATTACH

ACS SPAWN or DCL SPAWN/WAIT command, or of another ACS or DCL

ATTACH command, as long as the connection is valid. (No connection can
be madeto the current process, to a process that is not part of the current
job, or to a process that does not exist.)

You can also use the ATTACH commandin conjunction with the ACS

SPAWN or DCL SPAWN/WAIT commandto return to a parent process
without terminating the created subprocess. See the description of the ACS
SPAWN commandfor more details.

Example

ACS> ATTACH JONES1

$

Switches control of the terminal to the process JONES_1.

A-16 ACS CommandDictionary

CHECK

CHECK

Forms the execution closure of one or more specified units and checks
whether the set of units in the closure is complete and current. The ACS
CHECK command searches the current program library (and all parent
libraries, in the case of a sublibrary) for all units in the closure.

Format

CHECK unit-namef....]

Command Qualifiers Defaults

/[NO]LOG /NOLOG

/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT

Prompts

_Unit:

Command Parameters

unit-namef,...]
Specifies one or more units in the current program library whose closureis
to be checked. You must express subunit names using selected component
notation as follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-—name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

ACS CommandDictionary A-17

CHECK

Description

The ACS CHECK commandgoes through the following steps:

1. Forms the execution closure of the specified units.

2. Determines whether each unit in the closure is in the program library
and is current. Units entered from other program libraries, as well as
those compiled or copied into the current program library, are checked.

3. Identifies any unit in the closure that is not in the program library.

4. Identifies any unit in the closure that is obsolete and must be
recompiled.

5. If all of the units in the closure are in the program library and are
current, issues an informational message.

Command Qualifiers

/LOG
/NOLOG (D)
Controls whethera list of all the units in the closure is displayed in addition
to a message indicating the result of the CHECK command.

By default, only a message indicating the result of the CHECK commandis
displayed.

/OUTPUT=file-spec
Requests that the CHECK command output be written to the file specified
rather than to SYS$OUTPUT. Any diagnostic messages are written to both
SYS$OUTPUTandthefile.

The default directory is the current default directory. If you specify a file
type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowed in thefile specification.

By default, the CHECK commandoutput is written to SYS$OUTPUT.

A-18 ACS CommandDictionary

CHECK

Examples

1. ACS> CHECK SCREENIO

6I, All units current, no recompilations required

Showsthat all the units in the closure of SCREEN_IO are defined in the

current program library and are current.

2. ACS> CHECK RESERVATIONS

SE, Separate procedure body SCREEN_IO.OUTPUT not found in library
SE, Obsolete units are detected

SE, The following units need to be recompiled:
RESERVATIONS

package body 16-Apr-1989 13:34
RESERVATIONS .RESERVE

procedure body 16-Apr-1989 13:34

RESERVATIONS .RESERVE.BILL

procedure body 16-Apr-1989 13:35

RESERVATIONS . CANCEL

procedure body 16-Apr-1989 13:36

Checks the closure of RESERVATIONSandfinds that subunit SCREEN_
IO.OUTPUTis missing from the current program library, and the body
and subunits of RESERVATIONSare obsolete (they must be recompiled).

ACS CommandDictionary A-19

COMPILE

COMPILE

Forms the closure of one or more specified units. Compiles, from exter-

nal sourcefiles, any unit in the closure (except entered units) that was
revised since that unit was last compiled into the current program library.

Recompiles, from external or copied source files, any unit in the closure that

needs to be made current. Completes any incomplete generic instantiations.

Format

COMPILE unit-namef....]

Command Qualifiers

/AFTER=time

/[NOJANALYSIS_DATA|=file-spec]

/BATCH_LOG=sfile-spec

/[NO]JCHECK

/CLOSURE

/COMMAND/[=file-spec]

/[NO]JCONFIRM

/[NO|COPY_SOURCE

/[NO]DEBUG[=(option],...])]

/[NO]DIAGNOSTICS[=file-spec]

/[NO]JERROR_LIMIT[=n]

/[NO]KEEP

/[NO]LIST[=file-spec]

/[NO]LOG

/[NOJMACHINE_CODE

/NAME=job-name

/[NOJNOTE_SOURCE

/[NO]NOTIFY

/[NO]OPTIMIZE[=(option],...])]

/OUTPUT=file-spec

/[NO]PRELOAD

/[NO]PRINTER[=queue-name]

A-20 ACS CommandDictionary

Defaults

Seetext.

/INOANALYSIS_DATA

Seetext.

See text.

See text.

See text.

/NOCONFIRM

/COPY_SOURCE

/DEBUG=ALL

/NODIAGNOSTICS

/ERROR_LIMIT=30

/KEEP

/NOLIST

/NOLOG

/NOMACHINE_CODE

See text.

/INOTE_SOURCE

INOTIFY

See text.

/OUTPUT=SYS$OUTPUT

/NOPRELOAD

/NOPRINTER

COMPILE

/QUEUE=queue-name /QUEUE=ADA$BATCH

/[NO]|SHOWJ[=option] /SHOW=PORTABILITY

/SPECIFICATION_ONLY See text.

/SUBMIT /SUBMIT

/[NO]JSYNTAX_ONLY /NOSYNTAX_ONLY

WAIT See text.

/[NOJWARNINGS[=(option],...])] Seetext.

Positional Qualifiers Defaults

/[NO]DATE_CHECK /DATE_CHECK

/FORCE_BODY See text.

Prompts

_Unit:

Command Parameters

unit-name{,...]
Specifies one or more units in the current program library whose closure

is to be processed with the ACS COMPILE command. You must express
subunit names using selected component notation as follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

The unit names mayinclude percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

Description

The ACS COMPILE commandis useful for compiling and recompiling units
as you revise the source files of an existing Ada program.

For each set of units specified, the COMPILE commandgoes through the
following steps:

1. Forms the execution closure of the specified units.

ACS Command Dictionary A-21

COMPILE

2. Looks up the source file for each unit in the closure that has been
compiled or copied (not entered) into the current program library.
Unless otherwise specified with the SET SOURCE command, the
source-file-directory search orderis as follows:

a. SYS$DISK:[] (the current default directory)

b. ;0 (the directory that contained the file when it was last compiled),
or node::;0 Gif the file specification of the source file being compiled
contains a node name)

The search order takes precedence over the version numberor creation
date-time if different versions of a sourcefile exist in two or more
directories. Within any one directory, the version of a particular file that
has the highest numberis considered for compilation.

Comparesthe creation date-time of each source file with that of the
version last noted in the program library by the /NOTE_SOURCE
compiler qualifier (the qualifier is used with the DCL ADA and ACS
COMPILE and RECOMPILE commands).

Processes external source files to account for new compilation units or
unit dependencesif the /PRELOAD qualifier is in effect.

Notes for compilation any source file whose creation date-timeis later
than that noted in the program library.

Identifies any obsolete or incomplete units in the closure.

Note that if the program library manager cannot find external source
files for recompilation, recompilation is done from copied sourcefiles.
If a needed copied source file is missing, the file is identified and no
recompilations or completions are done. Copied source files are created
when the /COPY_SOURCE qualifier is in effect during compilation (the
default for the DCL ADA and ACS LOAD and COMPILE commands).

If the closure you are recompiling includes an obsolete entered unit,
that unit is not affected by the COMPILE command; an error diagnostic
is issued and the COMPILE commandis not executed. You should

recompile an obsolete entered unit in its own program library and then
reenter it into the current program library before you try to recompile
its dependent units in the current library.

A-22 ACS Command Dictionary

COMPILE

7. Creates a DCL commandfile for the compiler. The file contains com-
mands to compile the appropriate units from external sourcefiles and
to recompile any obsolete units from external or copied sourcefiles,
in the proper order. Entered units are not considered for compilation
or recompilation. If you did not specify the /COMMANDqualifier, the
commandfile is deleted after the COMPILE commandis terminated, or

the batch job finishes. If you did specify the /COMMANDqualifier, the
commandfile is retained for future use, and the compiler is not invoked.

8. If you did not specify the /COMMAND qualifier, the VAX Ada compiler is
invoked as follows:

a. By default (COMPILE/SUBMIT), the compiler commandfile gener-
ated in step 7 is submitted as a batch job.

b. If you specified the /WAIT qualifier, the commandfile is executed in
a subprocess. You must wait for the compilation to terminate before
entering another command. Whenyou specify the COMPILE/WAIT
command, process logical names are propagated to the subprocess
generated to execute the commandfile.

Program library manager output originating before the compiler is invoked
is reported to your terminal by default, or to a file specified with the
/OUTPUTqualifier. Compiler diagnostics are reported to a log file by
default, or to the terminal if the COMPILE commandis executed in a

subprocess (by way of the COMPILE/WAIT command).

See Chapter 3 for more information on the COMPILE command.

Command Qualifiers

/AFTER=time
Requests that the batch job be held until after a specific time when the
COMPILE commandis executed in batch mode (the default mode). If the
specified time has already passed,or if the /AFTER qualifier is not specified,

the job is queued for immediate processing.

You can specify either an absolute time or a combination of absolute and
delta time. See the VMS DCL Concepts Manual (or type HELP Specify
Date_Time at the DCL prompt) for complete information on specifying time
values.

ACS Command Dictionary A-23

COMPILE

/ANALYSIS_DATA[=file-spec]
/NOANALYSIS_DATA (D)
Controls whether a data analysis file containing source code cross-reference
and static analysis information is created. The data analysis file is sup-
ported only for use with Digital layered products, such as the VAX Source
Code Analyzer.

One data analysis file is created for each source file that is compiled and for
each unit that is recompiled. The default directory for data analysisfiles is
the current default directory. The default file name is the name of the source
file being compiled. The default file type is .ANA. No wildcard characters
are allowed in thefile specification. |

By default, no data analysisfile is created.

/BATCH_LOG=file-spec
Provides a file specification for the batch log file when the COMPILE
commandis executed in batch mode (the default mode).

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If you do
not give a file specification with the file-spec option, the default file name
is the job namespecified with the /NAME=job-name qualifier. If no job |
namehasbeen specified, the program library managercreates a file name

comprising upto thefirst 39 characters of the first unit name specified.
If no job name hasbeen specified and there is a wildcard character in the
first unit specified, the program library manager uses the default file name
ACS_COMPILE. The default file type is .LOG. No wildcard characters are
allowed in the file specification.

/CHECK
/NOCHECK
Controls whether all run-time checks are suppressed. The /NOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmasin the
source code.

Explicit use of the /CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESS_ALLin the source code, without the
need to edit the source code.

By default, run-time checks are only suppressed in cases where a pragma
SUPPRESS or SUPPRESS_ALL appearsin the source code.

A-24 ACS CommandDictionary

COMPILE

See the VAXAda Language Reference Manual for more information on the
pragmas SUPPRESS and SUPPRESS_ALL.

/CLOSURE
Causes the /SPECIFICATION_ONLY, /NODATE_CHECK,and /FORCE_
BODYqualifiers to apply to all units in the closure of units named in the
COMPILE command. (Without the /CLOSURE qualifier, these qualifiers
apply only to the units named in the command.)

See the description of the /SPECIFICATION_ONLY qualifier in the list of
command qualifiers; see the description of the /[NOJDATE_CHECKand
/FORCE_BODYqualifiers in the list of positional qualifiers.

/COMMAND[=file-spec]
Controls whether the compiler is invoked as a result of the COMPILE
command, and determines whether the commandfile generated to invoke
the compiler is saved. If you specify the /COMMAND qualifier, the program
library manager does not invoke the compiler, and the generated command
file is saved for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the generated
commandfile. The default directory for the commandfile is the current
default directory. By default, the program library manager provides a
file name comprising up to thefirst 39 characters of the first unit name
specified. If you use a wildcard character in thefirst unit name specified,
the compiler uses the default name ACS_COMPILE. The default file type
is .COM. No wildcard characters are allowed in thefile specification.

By default, if you do not specify the file-spec option, the program library
manager deletes the generated commandfile when the COMPILE command
completes normally or is terminated.

/CONFIRM
/NOCONFIRM (D)
Controls whether the COMPILE commandasksyou for confirmation before
performing a possibly lengthy operation. If you specify the /CONFIRM
qualifier, the possible responses are as follows:

e Affirmative responses are YES, TRUE,and1.

e Negative responses are NO, FALSE, 0, and the RETURN key.

ACS Command Dictionary A-25

COMPILE

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in
the list, the prompt is reissued.

By default, no confirmation is requested.

/COPY_SOURCE(D)
/NOCOPY_SOURCE
Controls whether a copied source file is created in the current program
library when a compilation unit is compiled without error. The ACS
RECOMPILE command requires that a copied source file exist in the
current program library; the ACS COMPILE command usesthe copied
source file if it cannot find an external source file when it is recompiling
an obsolete unit or completing an incomplete generic instantiation (see
Chapter 3). Copied source files may also be used by the VMS Debugger(see
Chapter6).

By default, a copied source file is created in the current program library
whena unit is compiled without error.

/DEBUG[=(option{,...])] (D)
/NODEBUG
Controls which debugger compiler options are provided. You can debug VAX
Ada programs with the VMS Debugger (see Chapters 6 and 7). You can

request the following options:

ALL Provides both SYMBOLS and TRACEBACK

NONE Provides neither SYMBOLS nor TRACEBACK

[LNOJSYMBOLS Controls whether debugger symbol records are included in
the objectfile

[NO]JTRACEBACK Controls whether traceback information (a subset of the
debugger symbol information) is included in the objectfile

By default, both debugger symbol records and traceback information are
included in the object files /DEBUG=ALL,or equivalently: /DEBUG)

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only

A-26 ACS CommandDictionary

COMPILE

for use with Digital layered products, such as the VAX Language-Sensitive
Editor.

One diagnostics file is created for each source file that is compiled and for
each unit that is recompiled. The default directory for diagnosticsfiles is the
current default directory. The default file name is the nameof the source
file being compiled. The default file type of a diagnostics file is .DIA. No
wildcard characters are allowed in thefile specification.

By default, no diagnostics file is created.

/ERROR_LIMIT[=n] (D)
/NOERROR_LIMIT
Controls whether execution of the COMPILE commandfor a given compila-
tion unit is terminated upon the occurrence of the nth E-level error within
that unit.

Error counts are not accumulated across a sequence of compilation units.
If the /ERROR_LIMIT=noption is specified, each compilation unit may
have up to n — 1 errors without terminating the compilation. When the
error limit is reached within a compilation unit, compilation of that unit is
terminated, but compilation of subsequent units continues.

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the COMPILE commandis terminated for a given
compilation unit upon the occurrence of the 30th E-level error within that
unit (equivalent to /ERROR_LIMIT=30).

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it is printed
when the COMPILE commandis executed in batch mode (the default mode).

By default, the log file is not deleted.

/LIST[=file-spec]
/NOLIST(D)
Controls whethera listing file is created. One listing file is created for
each compilation unit (not file) compiled or recompiled by the COMPILE
command.

ACS Command Dictionary A-27

COMPILE

A-28

The default directory for listing files is the current default directory. The
default file nameof a listing file corresponds to the nameof its compilation
unit and uses the VAX Ada file-name conventions described in Chapter 1.
The default file type of a listing file is .LIS. No wildcard characters are
allowed in the file specification.

By default, the COMPILE command does not create a listingfile.

/LOG
/NOLOG(D)
Controls whethera list of all the units that must be compiled or recompiled
is displayed.

By default, a list of the units that must be compiled or recompiled is not
displayed.

/MACHINE_CODE
/NOMACHINE_CODE(D)
Controls whether generated machine code (approximating assembler
notation) is includedin thelistingfile.

By default, generated machinecodeis not included in thelistingfile.

/NAME=job-name
Specifies a string to be used as the job name andasthefile namefor the
batch log file when the COMPILE commandis executed in batch mode (the
default mode). The job name can have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising upto thefirst 39 characters of the
first unit namespecified. If you do not specify the /NAME qualifier, but use
a wildcard characterin the first unit name specified, the compiler uses the
default name ACS_COMPILE.In these cases, the job nameis also the file

nameof the batch logfile.

/NOTE_SOURCE(D)
/NONOTE_SOURCE
Controls whetherthe file specification of the source file is noted in the
program library when a unit is compiled without error. The COMPILE
command usesthis information to locate revised source files.

By default, the file specification of the source file is noted in the current
program library when a unit is compiled withouterror.

ACS CommandDictionary

COMPILE

/NOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the COMPILE commandis
executed in batch mode (the default mode). The messageis broadcast to any
terminal at which you are logged in, notifying you that your job has been
completed or terminated.

By default, a message is broadcast.

/OPTIMIZE[=(option{,...])]
/NOOPTIMIZE
Controls the level of optimization that is applied in producing the compiled
code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary op-
timization criterion. Overrides any occurrences of the
pragma OPTIMIZE(SPACE)in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(TIME)in the sourcecode.

DEVELOPMENT Suggested when active development of a program is in
progress. Provides some optimization, but development
considerations and ease of debugging take preference
over optimization. This option overrides pragmas that
establish a dependence on a subprogram or generic body
(the pragmas INLINE and INLINE_GENERIC), and thus
reduces the need for recompilations when such bodies are
modified. This option also disables generic code sharing.

NONE Provides no optimization. Suppresses inline expansions
of subprograms and generics, including those specified by
the pragmas INLINE and INLINE_GENERIC. Suppresses
occurrences of the pragma SHARE_GENERICanddisables
generic code sharing.

The /NOOPTIMIZE qualifier is equivalent to /OPTIMIZE=NONE.

By default, the COMPILE commandapplies full optimization with time as
the primary optimization criterion (like /OPTIMIZE=TIME,but observing
uses of the pragma OPTIMIZE).

ACS CommandDictionary A-29

COMPILE

A-30

The /OPTIMIZE qualifier also has a set of secondary options that you can
use separately or together with the primary options to override the default
behavior for inline expansion (generic and subprogram) and generic code
sharing.

The INLINE secondary option can have the following values (see the
VAXAda Run-Time Reference Manual for more information about inline
expansion):

NONE

NORMAL

ACS CommandDictionary

Disables subprogram and generic inline expansion.
Thisoption overrides any occurrences of the pragmas
INLINE or INLINE_GENERIC in the source code,

without your having to edit the source file. It also
disables implicit inline expansion of subprograms.
(Implicit inline expansion means that the compiler
assumes a pragma INLINEfor certain subprograms
as an optimization.) A call to a subprogram or an
instance of a generic in another unit is not expanded
inline, regardless of the /OPTIMIZE options in effect
when that unit was compiled.

Provides normal subprogram and generic inline
expansion.

Subprograms to which an explicit pragma INLINEap-
plies are expandedinline undercertain conditions. In
addition, some subprogramsare implicitly expanded
inline. The compiler assumes a pragma INLINEfor
calls to some small local subprograms (subprograms
that are declared in the same unit as the unit in
which the call occurs).

Instances are compiled separately from the unit in
which the instantiation occurred unless a pragma
INLINE_GENERICapplies to the instance. Ifa
pragma INLINE_GENERIC applies and the generic
body has been compiled, the generic is expanded
inline at the point of instantiation.

SUBPROGRAMS

GENERICS

MAXIMAL

COMPILE

Provides maximal subprogram inline expansion and
normal generic inline expansion.

In addition to the normal subprogram inline expan-
sion that occurs when INLINE:NORMAL isspecified,
this option results in implicit inline expansion of some
small subprogramsdeclared in other units. The com-
piler assumes a pragma INLINE for any subprogram
if it improves execution speed and reducescodesize.
This option may establish a dependence on the body
of another unit, as would be the case if a pragma
INLINEwerespecified explicitly in the source code.

With this option, generic inline expansion occurs in
the same manner as for INLINE:NORMAL.

Provides normal subprogram inline expansion and
maximal generic inline expansion.

With this option, subprogram inline expansion occurs
in the same manner as for INLINE:NORMAL.

The compiler assumes a pragma INLINE_GENERIC
for every instantiation in the unit being compiled
unless an explicit pragma SHARE_GENERICapplies
or a generic body is not available. This option may
establish a dependence on the body of another unit,
as would be the case if a pragma INLINE_GENERIC
were specified explicitly in the source code.

Provides maximal subprogram and generic inline
expansion.

Maximal subprogram inline expansion occurs as
for INLINE:SUBPROGRAMS,and maximal generic
inline expansion occurs as for INLINE:GENERICS.

The SHARE secondary option can havethe following values:

NONE Disables generic sharing. This option overrides the effect
of any occurrences of the pragma SHARE_GENERICin
the source code, without your having to edit the source
file. In addition, instances do not share code from previous
instantiations.

ACS Command Dictionary A-31

COMPILE

NORMAL Provides normal generic sharing. Normally, the compiler
will not attempt to generate shareable code for an instance
(code that can shared by subsequentinstantiations) unless
an explicit pragma SHARE_GENERIC applies to that
instance. However, an instance will attempt to share code
that resulted from a previous instantiation to which the
pragma SHARE_GENERICapplied.

MAXIMAL Provides maximal generic sharing. The compileras-
sumes that a pragma SHARE_GENERICapplies to every
instance in the unit being compiled unless an explicit
pragma INLINE_GENERIC applies. Thus, an instance
will attempt to share code that resulted from a previous
instantiation or to generate code that can be shared by
subsequent instantiations.

SHARE:MAXIMAL cannot be used in combination with

INLINE:GENERICSor INLINE:MAXIMAL.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

/OPTIMIZE=TIME =(INLINE:NORMAL, SHARE:NORMAL)

/OPTIMIZE=SPACE =(INLINE:NORMAL, SHARE:NORMAL)

/OPTIMIZE=DEVELOPMENT =(INLINE:NONE, SHARE:NONE)

/OPTIMIZE=NONE =(INLINE:NONE, SHARE:NONE)

See Chapter 3 for more information about the /OPTIMIZE qualifier and its
options. :

/OUTPUT=file-spec
_ Requests that any program library manager output generated before
the compiler is invoked be written to the file specified rather than to
SYS$OUTPUT. Any diagnostic messages are written to both SYS$OUTPUT
andthefile.

The default directory is the current default directory. If you specify a file
type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowedin the file specification.

By default, the COMPILE commandoutputis written to SYS$OUTPUT.

A-32 ACS CommandDictionary

COMPILE

/PRELOAD
/NOPRELOAD(D)
Controls whether the COMPILE commandprocesses external sourcefiles
so that new compilation units or unit dependences introduced in those
files—or any new sourcefiles previously processed by the ACS LOAD or
DCL ADA command—are accounted for. Preload processing involves the
partial compilation and syntax checking of the followingfiles:

e Any external source file whose creation date-time is later than that
noted in the program library

e Any new units introducedinto the closure of units specified by way of
modifications to the known external source files (preload processing does
not include new external source files that are not already accounted for
in the program library)

Preload processing is done immediately, after the creation date-time of each
external source file is checked, and before the usual COMPILE compilations
and recompilations are performed. If you havealso specified the /CONFIRM
qualifier, you are prompted for confirmation for each external file to be
preloaded.

By default, the COMPILE command does not process external sourcefiles to
account for new compilation units or unit dependences.

/PRINTER[=queue-name]
/NOPRINTER(D)
Controls whether the batch job log file is queued for printing when the
COMPILE commandis executed in batch mode (the default mode).

The /PRINTER qualifier allows you to specify a particular print queue. The
default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify the
/NOPRINTER qualifier, the /KEEP qualifier is assumed.

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the COMPILE
commandis executed in batch mode (the default mode).

ACS Command Dictionary A-33

COMPILE

By default, if the /QUEUE qualifier is not specified, the program library
managerfirst checks whetherthe logical name ADA$BATCHis defined.
If it is, the program library managerenters the job in the queue speci-
fied. Otherwise the job is placed in the default system batch job queue,

SYS$BATCH.

/SHOW[=option] (D)
/NOSHOW
Controls the listing file options included when listing file is provided. You
can specify one of the following options:

ALL Providesall listing file options.

[NO]JPORTABILITY Controls whether a program portability summary is
| includedin thelisting file (see Chapter5).

NONE Provides none of the listing file options (same as

/NOSHOW).

By default, the COMPILE commandprovides a portability summary

(/SHOW=PORTABILITY).

/SPECIFICATION_ONLY
Causes only the specifications of the units specified to be considered for com-
pilation. You can use the /CLOSURE qualifier with the /SPECIFICATION_
ONLY qualifier to force only the specifications in the execution closure of the
specified units to be considered for compilation.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, all of the
specifications, bodies, and subunits in the execution closure of the units

specified are considered for compilation.

/SUBMIT |
Directs the program library manager to submit the commandfile generated
for the compiler to a batch queue. You can continue to enter commands
in your current process without waiting for the batch job to complete. The
compiler output is written to a logfile.

By default, the program library manager submits the commandfile gener-
ated for the compiler to a batch queue.

A-34 ACS CommandDictionary

COMPILE

/SYNTAX_ONLY
/NOSYNTAX_ONLY(D)
Controls whether the sourcefile is to be checked only for correct syntax.
If you specify the /SYNTAX_ONLYqualifier, other compiler checks are not
performed (for example, semantic analysis, type checking, and so on), and
the program library is not updated.

By default, the compiler performsall checks.

/WAIT
Directs the program library manager to execute the commandfile generated
for the compiler in a subprocess. Execution of your current processis
suspended until the subprocess completes. The compiler output is written
directly to your terminal. Note that process logical names are propagated to
the subprocess generated to execute the commandfile.

By default, the program library manager submits the commandfile gener-
ated for the compiler to a batch queue (by way of the COMPILE/SUBMIT
command).

/WARNINGS[=(option[{,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can
specify any combination of the following message options:

WARNINGS:(destination|,...])

NOWARNINGS

WEAK_WARNINGS:(destination|,...])
NOWEAKWARNINGS

SUPPLEMENTAL:(destination[,...])

NOSUPPLEMENTAL

COMPILATION_NOTES:(destination[,...])

NOCOMPILATION_NOTES

STATUS:(destination[....])

NOSTATUS

ACS CommandDictionary A-35

COMPILE

The possible values of destination are ALL, NONE, or any combination of

TERMINAL(terminal device), LISTING (listing file), and DIAGNOSTICS

(diagnostics file). The message categories are summarized as follows (see
Chapter 3 for more information):

WARNINGS W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

WEAK_WARNINGS I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERROR at run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

SUPPLEMENTAL I-level: Additional information associated with pre-
ceding E-level or W-level diagnostics.

COMPILATION_NOTES I-level: Information about how the compiler trans-

lated a program, such as record layout, parameter-
passing mechanisms,or decisions madefor the prag-
mas INLINE, INTERFACE,or the import-subprogram
pragmas.

STATUS I-level: End of compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS= (WARN: ALL, WEAK: ALL, SUPP: ALL, COMP : NONE, STAT: LIST)

If you specify only some of the message categories with the /WARNINGS
qualifier, the default values for the other categories are used.

Positional Qualifiers

A-36

/DATE_CHECK (D)
/NODATE_CHECK
Controls whether the COMPILE commandchecksthe creation date and time
of source files to determine whether any source files have been revised but
not compiled into the current program library. If you specify the /NODATE_
CHECKqualifier, the COMPILE commandforces the compilation of every
unit specified, even though the sourcefile has not been revised since the
unit was last compiled; bodies and subunits of the specified units are also
recompiled as necessary, to make them current. Entered units are not

ACS CommandDictionary

COMPILE

considered for compilation or recompilation when the /NODATE_CHECK
qualifier is in effect.

If you specify the /NODATE_CHECK/CLOSUREqualifier, the COMPILE
commandforces the compilation of every unit in the execution closure of the
units specified.

You can use the /NODATE_CHECKqualifier to force the compilation of a set
of units using a particular combination of compiler qualifiers.

By default, the COMPILE commandchecksthe creation date and time of

source files (DATE_CHECK), and compiles only the sourcefiles that were
revised but not compiled into the current program library.

/FORCE_BODY
Forces the compilation or recompilation of the bodies of the specified
compilation units, regardless of whether or not the external sourcefiles have
been modified or the bodies are obsolete.

The /FORCE_BODY qualifier can have different effects depending onits
position in the commandline andits interaction with other qualifiers:

e Ifyou append the /FORCE_BODY qualifier to the COMPILE command
string (as opposed to appending it to an individual unit parameter), the
COMPILE commandforces the compilation of the bodies of each unit
specified on the commandline.

e If you append the /FORCE_BODY qualifier to an individual unit
parameter, the COMPILE commandforces the compilation of the body of
only that unit.

e Ifyou specify the /FORCE_BODYqualifier with the /CLOSURE qualifier,

the COMPILE commandforces the compilation of the bodiesof all of the
units in the execution closure of the units specified.

By default, if the /FORCE_BODY qualifier is omitted, the specifications,
bodies, and subunits of all of the units in the execution closure of the units

specified are considered for compilation or recompilation.

ACS CommandDictionary A-37

COMPILE

Examples

1. ACS> COMPILE/LOG RESERVATIONS
$I, The following units will be compiled from source files
RESERVATIONS

package specification — 16-Apr-1989 12:37
USER: [JONES .HOTEL] RESERVATIONS.ADA

package body 16-Apr-1989 12:37
USER: [JONES . HOTEL] RESERVATIONS .ADA

$I, The following units will be recompiled:
RESERVATIONS . RESERVE

procedure body 16-Apr-1989 12:37

RESERVATIONS .RESERVE.BILL

procedure body 16-Apr-1989 12:37

RESERVATIONS .RESERVE. CANCEL

procedure body 16-Apr-1989 12:37

sl, Job RESERVATIONS (queue ALLBATCH, entry 218) started
on FASTBATCH

Lists all units in the closure of unit RESERVATIONSthat need to
be compiled and recompiled, then submits the compiler commandfile
generated by ACS as a batch job.

ACS> COMPILE/NODATECHECK/CLOSURE/OPTIMIZE=DEVELOPMENT HOTEL

Forces (/NODATE_CHECK) the compilation (from external sourcefiles)
of all of the units in the execution closure (/CLOSURE)of the unit

HOTEL with the /OPTIMIZE=DEVELOPMENTqualifier.

ACS> COMPILE/PRELOAD QUEUEMANAGER

Determines the compilation order for the units in the execution closure
of QUEUE_MANAGER,and compiles from external source files any

units that have been modified.

A-38 ACS CommandDictionary

CONVERT LIBRARY

CONVERT LIBRARY

Converts VAX Ada Version 1.n program libraries and sublibraries into VAX
Ada Version 2.0 program libraries and sublibraries.

Format

CONVERT LIBRARY dilrectory-speci [directory-spec2]

Command Qualifiers Defaults

/PARENT_LIBRARY=directory-spec See text.

Prompts

_Library:

Command Parameters

directory-spec1
Specifies a VAX Ada Version 1.n program library. The directory specification

must contain a VMSdirectory name and, optionally, a device name(see the
VMS DCL Dictionary for VMSdirectory naming conventions). The directory
may be a subdirectory or a main (top-level) directory. No wildcard characters
are allowed in the directory specification. |

If this is the only parameterspecified, then thefiles in the VAX Ada
Version 1.n program library are converted in place (as opposed to being
converted and copied to a second VMSdirectory).

directory-spec2
Specifies an empty VMSdirectory that will hold the converted files from
the VAX Ada Version 1.n program library. The directory specification must
contain a VMSdirectory nameand,optionally, a device name (see the VMS
DCL Dictionary for VMS directory naming conventions). The directory may
be a subdirectory or a main (top-level) directory. No wildcard characters are
allowed in the directory specification.

ACS Command Dictionary A-39

CONVERT LIBRARY

Whenyou specify this parameter, the Version 1.n program library is
converted to this directory, resulting in two libraries: an intact Version l.n
program library and a new Version 2.0 library.

Description

A-—40

The format of VAX Ada Version2.0 program libraries and sublibraries is
different from the format of previous VAX Ada Version 1.n program libraries
and sublibraries. The ACS CONVERT LIBRARY commandconverts a
Version 1.n library to a Version 2.0 library.

NOTE

Before converting a library, make sure that the library is in
a valid, consistent state by first entering an ACS VERIFY or
ACS VERIFY/REPAIR command with the VAX Ada Version 1.n

program library manager.

After the conversion (either in place or into another VMSdirectory), the
Version 2.0 library contains the same units as the Version 1.n library.
However, the Version 2.0 units are obsolete and must be recompiled using
either the ACS COMPILE or RECOMPILE command.

If the conversion is interrupted, you can restart it. Restarting means that
the conversion starts at the beginning, rather than starting where the
interruption took place. If you are converting into another VMSdirectory,

you must delete the contents of that directory or otherwise make sure that
you specify an empty directory as the second parameter to the CONVERT
LIBRARY command.

NOTE

If you are converting a library in place, you cannot revert back
to the Version 1.n format once you have started converting the
library to Version 2.0 format, and you cannot use the Version 2.0
format with a Version 1.n program library manager. If you expect
that you will need to use Version 1.n of VAX Ada with a Version
1.n program library, be sure to back up the Version 1.n program
library before converting it.

ACS CommandDictionary

CONVERTLIBRARY

To convert a sublibrary, you must be sure that the parent library is a
Version 2.0 library. If you are converting a tree of libraries and subli-
braries, you should convert from the top down. To perform the necessary
recompilations, the entire tree must have been converted.

When you convert a library that has entered units, note that the ACS

CONVERT LIBRARY commandhandles entered units differently from
nonentered units. You may need to manually enter or reenter units depend-
ing on how you convert the library into which the entered units are compiled
and depending on how you makethe entered units current.

For example, consider the following situation:

¢ The unit QUEUE_MANAGERis compiled into the Version 1.n program
library DISK:[SHARE.ADALIBI.

e The unit QUEUE_MANAGERis entered from the Version 1.n

library DISK:[SHARE.ADALIB] into the Version 1.n library
USER:[HOTEL.ADALIB].

The following series of commandsrequires no manual entering or reentering
of QUEUE_MANAGERwhenthe two libraries are converted:

ACS> CONVERT LIBRARY DISK: [SHARE.ADALIB]
ACS> SET LIBRARY DISK: [SHARE.ADALIB]
ACS> COMPILE *
ACS> CONVERT LIBRARY USER: [HOTEL.ADALIB] USER: [HOTEL.NEWLIB]
ACS> aCS SET LIBRARY USER: [HOTEL.NEWLIB] |
ACS> ACS COMPILE *

Whenthe library USER:[HOTEL.ADALIB] is converted, the library
DISK:[SHARE.ADALIB] has already been converted to Version 2.0
format, and the unit QUEUE_MANAGER has been made current

by the ACS COMPILEoperation. Thus, during the conversion of
USER:[HOTEL.ADALIB], the ACS CONVERT LIBRARY commanden-

ters the unit QUEUE_MANAGERinto USER:[HOTEL.NEWLIB] in a

current state, so that it is available to users of USER:[HOTEL.NEWLIB]

without any more operations.

In the following series of commands, the unit QUEUE_MANAGER must be

manually reentered:

ACS CommandDictionary A—41

CONVERTLIBRARY

ACS> CONVERT LIBRARY DISK: [SHARE.ADALIB] DISK: [SHARE.NEWLIB]

ACS> CONVERT LIBRARY USER: [HOTEL.ADALIB] USER: [HOTEL.NEWLIB]

ACS> SET LIBRARY DISK: [SHARE.NEWLIB]

ACS> COMPILE *

ACS> SET LIBRARY USER: [HOTEL.NEWLIB]

ACS> ENTER UNIT DISK: [SHARE.NEWLIB] QUEUE_MANAGER/REPLACE

ACS> COMPILE *

During the conversion of the library USER:[HOTEL.ADALIB], the unit

QUEUE_MANAGERin library DISK:[SHARE.ADALIB]is still in a
Version 1.n state. The ACS CONVERT LIBRARY commandenters the
unit QUEUE_MANAGERinto the library USER:[HOTEL.NEWLIB]
in an obsolete state. After QUEUE_MANAGERis made current in

DISK:[SHARE.NEWLIB] with the ACS COMPILEoperation, it is man-
ually reentered into USER:[HOTEL.NEWLIB]. Note that because QUEUE_
MANAGERalready exists in the library USER:[HOTEL.NEWLIB], you
must enter the ACS ENTER UNIT command with the /REPLACE qualifier.
Alternatively, you can use the ACS REENTER command.

In the following series of comands, the unit QUEUE_MANAGERmust be
manually entered:

ACS> CONVERT LIBRARY DISK: [SHARE.ADALIB]

ACS> CONVERT LIBRARY USER: [HOTEL.ADALIB] USER: [HOTEL.NEWLIB]

ACS> SET LIBRARY DISK: [SHARE.ADALIB]

ACS> COMPILE *

ACS> SET LIBRARY USER: [HOTEL.NEWLIB]

ACS> ENTER UNIT DISK: [SHARE.ADALIB] QUEUEMANAGER

ACS> ACS COMPILE *

During the conversion of the library USER:[HOTEL.ADALIB], the unit
QUEUE_MANAGERin library DISK:[SHARE.ADALIB]is in an obsolete,
Version 2.0 state. The ACS CONVERT LIBRARY commanddoes not enter
the unit QUEUE_MANAGERinto the library USER:[HOTEL.NEWLIB].
After QUEUE_MANAGERis made current in DISK:[SHARE.ADALIB]

with the ACS COMPILEoperation, it must be manually entered into
USER:[HOTEL.NEWLIB]. Because QUEUE_MANAGERdid not previously

exist in USER:[HOTEL.NEWLIB], you do not need to enter the ACS ENTER
UNIT commandwith the /REPLACE qualifier. Also, you cannot use the ACS
REENTER commandin this situation.

A-42 ACS CommandDictionary

CONVERT LIBRARY

Command Qualifiers

/PARENT_LIBRARY=directory-spec
Specifies the parent library if the library being converted is a sublibrary.
The directory specification must contain a VMSdirectory name and,
optionally, a device name (see the VMS DCL Dictionary for VMSdirectory
naming conventions). The directory may be a subdirectory or a main
(top-level) directory. No wildcard characters are allowed in the directory
specification. |

The parent library (the library specified by this qualifier) must be a
Version 2.0 library.

Examples

1. ACS> CONVERT LIBRARY USER: [JONES.V15LIB] USER: [JONES.V2LIB]

ACS> SET LIBRARY USER: [JONES .V2LIB]

ACS> COMPILE *

Converts a VAX Ada Version 1.5 library to a VAX Ada Version 2.0 library.

Because a separate directory specification is given for the Version 2.0
library, the Version 1.5 library remainsintact.

The ACS COMPILEoperation makes the units in USER:[JONES.V2LIB]
current. Note that entered units may need to be manually entered or
reentered during a series of library conversion operations, depending
on when the units are converted and made current in their original

libraries.

2. ACS> CONVERT LIBRARY DISK: [SMITH.ADALIB]

ACS> SET LIBRARY DISK: [SMITH.ADALIB]

ACS> RECOMPILE *

This set of commands shows the conversion of a library in place. After
the library is converted, its contents are made current by recompilation
of everything in the library.

ACS CommandDictionary A-43

COPY FOREIGN

COPY FOREIGN

Copies a foreign (non-Ada)object file into the current program library. The
file is used as a library body (body of a package, procedure, or function).

Format

COPY FOREIGN file-spec unit-name

Command Qualifiers Defaults

/[NO]LOG /NOLOG

/[NO]REPLACE /NOREPLACE

Prompts

_File:

_Unit:

Command Parameters

file-spec
Specifies the object file containing the foreign body to be copied into the
current program library. The default directory is the current default
directory. The default file type is .OBJ. No wildcard characters are allowed
in the file specification.

unit-name
Specifies the unit whose body is to be copied into the current program
library with the ACS COPY FOREIGN command.

A-44 ACS CommandDictionary

COPY FOREIGN

Description

The ACS COPY FOREIGN commandcopies a foreign (non-Ada) object file
into the current program library. Because thefile is used as a library body,

the program library must contain a library specification for the unit, and

the specification must contain the pragma INTERFACEand (if appropriate)
a pragma IMPORT_FUNCTION, IMPORT_PROCEDURE,or IMPORT_
VALUED_PROCEDUREfor any procedure or function that the specification

requires.

Once you supply a foreign body for a unit, the program library manager

assumesthat the body is current until you supply a new (Adaor foreign)
definition of the body. Compiling the specification of the unit does not cause

the body to becomeobsolete.

Command Qualifiers

/LOG
/NOLOG (D)
Controls whether the unit name andobject-file name are displayed after the
object file is copied.

By default, the unit nameor object-file name is not displayed.

/REPLACE
/NOREPLACE(D)
Controls whether the specified file replaces a body that is already defined in
the current program library for the unit name specified.

By default, the specified file does not replace a body that is already defined
in the current program library for the unit namespecified.

Example

ACS> COPY FOREIGN USER: [JONES .WORK] SQUARE SQR

Copies the object file SQUARE.OBJ from the directory USER:[JONES.WORK]
into the current program library as the body of unit SQR. The specification
of SQR must already be defined in the current program library.

ACS Command Dictionary A-45

COPY UNIT

Copies one or more units from another program library into the current
program library.

Format

COPY UNIT from-directory-spec unit-namef,...]

Command Qualifiers Defaults

/[NO]CLOSURE /NOCLOSURE

/[NO]JCONFIRM /NOCONFIRM

/[NOJENTERED[=library] /ENTERED

/[NO]JLOCAL /LOCAL

/[NO]JLOG /NOLOG

/[NO]REPLACE /NOREPLACE

Positional Qualifiers Defaults

/BODY_ONLY See text.

/SPECIFICATION_ONLY See text.

Prompts

_Library:
_Unit:

Command Parameters

from-directory-spec
Specifies the program library or program sublibrary that contains the units
to be copied into the current program library.

unit-name

Specifies one or more units to be copied into the current program library.
You must express subunit names using selected component notation as
follows:

ancestor-unit-—name[.parent-unit-name[...]].subunit-name

A-46 ACS CommandDictionary

COPY UNIT

The unit names mayincludepercent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

Description

The ACS COPY UNIT commandcopies, into the current program library,
each specified unit’s specification and body (if any). If the specified unit is
a subunit, the COPY UNIT commandcopies the subunit and any nested
subunits. If you specify the /CLOSURE qualifier, the COPY UNIT command

copies the closure of the set of units specified.

For each unit copied, the COPY UNIT command updates the current
program library as follows:

1. Creates local copies of all associated files

2. Updates the library indexfile of the current program library to account
for the new files, and notes the date and time the unit was last compiled
into its original program library

Copying a unit that was entered into a program library produces a local copy

of that unit.

The COPY UNIT commanddoesnot affect the program library from which
a unit is copied. Modifying the unit in the original program library does not
affect the copied unit.

Once a unit is copied to a given program library, it can be usedas if it had
been compiled locally.

Command Qualifiers

/CLOSURE
/NOCLOSURE (D) _
Controls whether the COPY UNIT commandcopiesthe closure of the set of
units specified into the current program library.

By default, only the specification and body of the units specified are copied.

ACS Command Dictionary A-47

COPY UNIT

A-—48

/CONFIRM
/NOCONFIRM (D)
Controls whether the COPY UNIT commanddisplays the nameof each unit
before copying, and requests you to confirm whetheror not the unit should
be copied. If you specify the /CONFIRM qualifier, the possible responses are
as follows:

e Affirmative responses are YES, TRUE,and 1.

e Negative responses are NO, FALSE, 0, and the RETURN key.

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-
mand at that point.

e ALL indicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in
the list, the confirmation prompt is reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are copied. You can use the library option
to copy units that were entered from a particular library. When you specify
the /NOENTEREDqualifier, only units that have been compiled or copied
into the current program library are copied. Note that when you specify
the /ENTERED qualifier, local units are copied unless the /NOLOCAL
qualifier is also in effect (the defaults for these qualifiers are /LOCAL and
/ENTERED).

By default, all units specified, including entered units, are copied.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were addedto the library
by a compilation or a COPY UNIT command) are copied. Note that when
you specify the /LOCAL qualifier, entered units are copied unless the
/NOENTEREDqualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified, including local units, are copied.

ACS Command Dictionary

COPY UNIT

/LOG
/NOLOG (D)
Controls whether the nameof a unit is displayed after it has been copied.

By default, the namesof copied units are not displayed.

/REPLACE
/NOREPLACE(D)
Controls whether the unit to be copied replaces a unit of the same name
that is already defined in the current program library.

By default, the unit to be copied does not replace a unit of the same name
that is already defined in the current program library.

Positional Qualifiers

/BODY_ONLY
Copies only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the COPY UNIT command
string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the commandline override the /BODY_ONLYqualifier for
those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLY qualifier to the COPY UNIT
commandstring or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as
well as the body, is copied.

/SPECIFICATION_ONLY
Copies only the specification of the specified unit.

Whenyou append the /SPECIFICATION_ONLY qualifier to the COPY UNIT
commandstring, any /BODY_ONLY qualifiers that are appended to parame-
ters in the commandline override the /BODY_ONLYqualifier for those par-
ticular parameters. You cannot append both the /SPECIFICATION_ONLY
qualifier and the /BODY_ONLYqualifier to the COPY UNIT commandstring
or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as

well as the specification, is copied.

ACS Command Dictionary A-49

COPY UNIT

Examples

1. ACS> COPY UNIT [SMITH.WORK.ADALIB] STACKS, SUM

Copies the units STACKS and SUM,located in the program library
[SMITH.WORK.ADALIB], into the current program library.

2. ACS> COPY UNIT/CLOSURE DISK: {SMITH.SHARE.ADALIB] QUEUEMANAGER

Copies the closure of unit QUEUE_MANAGERfrom
DISK:[SMITH.SHARE.ADALIB] into the current program library.

3. ACS> COPY UNIT DISK: [PROJ.ADALIB] STACKS*

Copies the specification, body, andall of the subunits of the unit STACKS
from the program library DISK:[PROJ.ADALIB] to the current program
library. |

A-50 ACS Command Dictionary

CREATE LIBRARY

CREATE LIBRARY

Creates a new VAX Ada program library. To create a program sublibrary,
use the ACS CREATE SUBLIBRARY command.

Note that you cannot create a program library across DECnetif a corre-
sponding VMS directory does not already exist.

Format

CREATE LIBRARY dlrectory-spec

Command Qualifiers Defaults

/[NO]LOG /LOG

/LONG_FLOAT=option /LONG_FLOAT=G_FLOAT

/MEMORY_SIZE=n /MEMORY_SIZE=2147483647

/[INO]JPREDEFINED /PREDEFINED

/PROTECTION=(code) Seetext.

/SYSTEM_NAMEssystem /SYSTEM_NAME=VAX_VMS

Prompts

_Library:

Command Parameters

directory-spec
Specifies the program library to be created. The directory specification
must contain a VMSdirectory name and, optionally, a device name(see the
VMS DCL Concepts Manual for VMSdirectory naming conventions). The
directory may be a subdirectory or a main (top-level) directory. No wildcard
characters are allowed in the directory specification.

The program libraries you create will typically be subdirectories of your
main (top-level) directory. To create a program library as a top-level
directory, you must have the necessary privileges. To create a subdirectory,
you must have write access to the lowest level directory that currently
exists.

ACS Command Dictionary A-51

CREATE LIBRARY

The directory specified to be a program library may be an existing empty
directory, to allow you to use special ACL (access control list) options for that
directory. See the VMS DCL Concepts Manual and the VMS Access Control
List Editor Manual for more information on directory protection and ACL
options.

Description

The AC CREATE LIBRARY commandcreates and initializes a new program
library by performing the following steps:

1. Creates the specified VMSdirectory, unless it already exists. If the
directory already exists before the CREATE LIBRARY commandis
entered, the original directory protection attributes are maintained. If
the directory does not exist when the commandis entered, the command
creates the specified directory with default protection attributes (see the
description of the /PROTECTION qualifier).

Creates a library index file (ADALIB.ALB) and a library version control
file (ADA$LIB.DAT)in the program library.

Initializes the program library to the following system characteristics: —

LONG_FLOAT = G_FLOAT
MEMORY_SIZE = 2147483647
SYSTEM_NAME = VAX_VMS

You change these characteristics with the ACS SET PRAGMA command
or with the /SYSTEM_NAME qualifier that applies to the ACS CREATE
LIBRARY, CREATE SUBLIBRARY, EXPORT, and LINK commands.

If the /(PREDEFINED qualifier is specified (the default), enters into the
newly created program library the VAX Ada predefined units (such as
SYSTEM and TEXT_IO)that are located in the ADA$PREDEFINED
program library on your system. This is equivalent to entering an ACS
ENTER UNIT commandfor those predefined units. You can use the
/NOPREDEFINED qualifier to change this default.

The CREATE LIBRARY commanddoes not define a new program library
to be the current program library. You must use the ACS SET LIBRARY
commandto define the current program library.

A-52 ACS CommandDictionary

CREATE LIBRARY

Command Qualifiers

/LOG (D)
/NOLOG |
Controls whether the program library directory specification is displayed
after the library has been created.

By default, the program library directory specification is displayed.

/LONG_FLOAT=option
Initializes the program library to a particular value of LONG_FLOAT. The
possible values are D_FLOAT and G_FLOAT. Theeffect of this qualifier is

equivalent to compiling a pragma LONG_FLOAT.

By default, if the /(LONG_FLOATqualifier is not specified, the program
sublibrary is initialized to the value G_FLOAT.

/MEMORY_SIZE=n
Initializes the memorysize of the program library to the value n. The effect
of this qualifier is equivalent to compiling a pragma MEMORY_SIZE.

By default, if the (MEMORY_SIZE qualifier is not specified, the initial
memory size of the program library is 2,147,483,647 bytes.

/PREDEFINED(D)
/NOPREDEFINED
Controls whether the VAX Ada predefined units located in the program
library denoted by the logical name ADA$PREDEFINEDare entered into

the specified program library.

By default, the VAX Ada predefined units are entered into the specified
program library.

/PROTECTION=(code)
Definesthe file protection to be applied to the program library. File protec-
tion is specified as follows:

/PROTECTION= (SYSTEM: rwed, OWNER: rwed, GROUP : rwed, WORLD: rwed)

Refer to the VMS DCL Concepts Manual for complete information on the
form and meaningoffile protection codes.

ACS CommandDictionary A-53

CREATE LIBRARY

If you want to denyall access to a category, you must specify the category
name without a colon. For example:

/PROTECTION= (OWNER: RWE, GROUP, WORLD)

If you do not specify.a value for each access category, or if you omit the
/PROTECTION qualifier when you create the program library, standard
VMSdirectory andfile protection defaults are applied as follows:

e The directory protection defaults from the next-higher-level directory,

less any delete access.

¢ Protection for the library index file (ADALIB.ALB) andlibrary version
control file (ADA$LIB.DAT) defaults from the process default protection
(see theDCL SET PROTECTION/DEFAULT command).

See Chapter 5 for more information on program library protection.

/SYSTEM_NAME=system
Determines the target operating system for the program library. The
possible system values are VAX_VMS and VAXELN.

By default, if the /SYSTEM_NAME qualifier is not specified, the initial
target operating system is VAX_VMS.

Examples

1. ACS> CREATE LIBRARY [JONES.HOTEL.ADALIB]

$I, Library USER: [JONES.HOTEL.ADALIB] created

Creates the program library [JONES.HOTEL.ADALIB] on the default
device, USER:.

2. ACS> CREATE LIBRARY/PROTECTION=(S:RWE,O:RWED,G:RW,W) -

_ACS> [PROJ.ADALIB]

6I, Program library USER: [PROJ.ADALIB] created

Creates the program library [PROJ.ADALIB] on the default device,
USER. The /PROTECTION qualifier assigns the specified program
library protection. This protection is applied to the library indexfile, the
library version control file, and the directory file for the newly created
program library.

A-54 ACS CommandDictionary

CREATE SUBLIBRARY

CREATE SUBLIBRARY

Creates a new VAX Ada program sublibrary and establishes its parent
program library.

Note that you cannot create a program sublibrary across DECnet if the

corresponding VMSdirectory does not already exist.

Format

CREATE SUBLIBRARY directory-spec

Command Qualifiers Defaults

/[NO]LOG /LOG

/LONG_FLOAT=option /LONG_FLOAT=G_FLOAT

/MEMORY_SIZE=n /MEMORY_SIZE=21 47483647

/PARENT=directory-spec /PARENT=current-program-library

/PROTECTION=(code) See text.

/SYSTEM_NAME=system /SYSTEM_NAME=VAX_VMS

Prompts

_Sublibrary:

Command Parameters

directory-spec
Specifies the program sublibrary to be created. The directory specification
must contain a VMS directory name and, optionally, a device name(see the
VMS DCL Concepts Manual for VMS directory naming conventions). No
wildcard characters are allowed in the directory specification.

You may use any valid VMSdirectory specification when creating a program
sublibrary; however, the program sublibraries you create will typically be
subdirectories of your main (top-level) directory.

The specified program sublibrary directory may be, but need not be, a

subdirectory of the parent library directory.

ACS CommandDictionary A—-55

CREATE SUBLIBRARY

The directory specified to be a program sublibrary may be an existing empty
directory. This allows you to use special ACL (access control list) options for
that directory. In that case, the CREATE SUBLIBRARY command makes
the directory a program library. See the VMS DCL Concepts Manual and the

VMS Access Control List Editor Manual for more information on directory
protection and ACL options.

Description

The ACS CREATE SUBLIBRARY commandcreates andinitializes a new

program sublibrary by performing the following steps:

1. Checks that the parent library exists and is write accessible.

2. Creates the specified VMS directory, unless it already exists. If the
directory already existed before the CREATE SUBLIBRARY command
was entered, the original directory protection attributes are maintained.
If the directory did not exist before the command was entered, the com-
mand creates the specified directory with default protection attributes

(see the description of the /PROTECTION qualifier).

3. Creates a library index file (ADALIB.ALB) and a library version control
file (ADA$LIB.DAT)in the program sublibrary.

4. Initializes the library indexfile to reference the parent program library
as specified with the /PARENT qualifier. If the /PARENT qualifier is not
used, the parent program library is the current program library.

5. Initializes the program sublibrary to the parent library’s current values
for LONG_FLOAT, MEMORY_SIZE, and SYSTEM_NAME.

Program sublibraries may be nested several levels deep. However, you

should limit nesting to three or four levels for best performance. Note

that the VMS operating system imposes limits on how deeply directories
and subdirectories can be nested. This limit has an effect only if you

use Increasingly subordinate subdirectories for each sublibrary in your
sublibrary tree. :

The CREATE SUBLIBRARY command doesnot affect the definition of your
current program library. If you want to define the newly created program
sublibrary to be the current program library, you must use the ACS SET
LIBRARY command.

A-56 ACS CommandDictionary

CREATE SUBLIBRARY

Command Qualifiers

/LOG (D)
/NOLOG
Controls whether the program sublibrary directory specification is displayed
after the sublibrary has been created.

By default, the program sublibrary directory specification is displayed.

/LONG_FLOAT=option
Initializes the program library to a particular value of LONG_FLOAT. The
possible values are D_FLOAT and G_FLOAT.

By default, if the /LONG_FLOAT qualifier is not specified, the program
sublibrary is initialized to the parent library’s current value of LONG_
FLOAT.

/MEMORY_SIZE=n
Initializes the memory size of the created program sublibrary.

By default, if the (MEMORY_SIZE qualifier is not specified, the initial
memory size of the program sublibrary is the parent library’s current value
of MEMORY_SIZE.

/PARENT=directory-spec
Specifies the program library or program sublibrary that is the immediate
parent of the program sublibrary to be created.

By default, if the /PARENT qualifier is not specified, the parent is the
current program library as established by the last ACS SET LIBRARY
command.

/PROTECTION=(code)
Defines the file protection to be applied to the program sublibrary. File
protection is specified as follows:

/PROTECTION= (SYSTEM: rwed, OWNER: rwed, GROUP: rwed, WORLD: rwed)

Refer to the VMS DCL Concepts Manual for complete information on the
form and meaning offile protection codes.

ACS Command Dictionary A-57

CREATE SUBLIBRARY

If you want to deny all access to a category, you must specify the category

name without a colon. For example:

/PROTECTION= (OWNER: RWE, GROUP, WORLD)

If you do not specify a value for each access category, or if you omit the
/PROTECTION qualifier when you create the program library, standard
VMSdirectory andfile protection defaults are applied as follows:

¢ The directory protection defaults from the next-higher-level directory,
less any delete access.

¢ Protection for the library index file (ADALIB.ALB) and library version
control file (ADA$LIB.DAT) defaults from the process default protection
(see the DCL SET PROTECTION/DEFAULT command in the VMS DCL
Dictionary). | a

See Chapter 5 for more information on program library protection.

/SYSTEM_NAME=system
Initializes the target operating system of the program sublibrary. The

possible system values are VAX_VMS and VAXELN.

By default, if the /SYSTEM_NAMEqualifier is not specified, the initial
target operating system is the parent library’s current value of SYSTEM_
NAME.

Examples

1. ACS> CREATE SUBLIBRARY [JONES.TEMP.SUBLIB]

$I, Sublibrary USER: [JONES.TEMP.SUBLIB] created

Creates the program sublibrary [JONES.TEMP.SUBLIB] on the current

default device. The parent library is the current program library.

Z. ACS> CREATE SUBLIBRARY/PARENT=[(HOTEL.ADALIB] [JONES.LISTS.SUBLIB]

6I, Sublibrary USER: [JONES.LISTS.SUBLIB] created

Creates the program sublibrary [JONES.LISTS.SUBLIB] on the current
default device. The commanddefines [HOTEL.ADALIB] to be the parent
library.

A-58 ACS CommandDictionary

DELETE LIBRARY

DELETE LIBRARY

Deletes a VAX Ada program library andall its units. To delete a program
sublibrary, you must use the ACS DELETE SUBLIBRARY command.

NOTE

A program library does not contain any references to program
sublibraries. When you enter the ACS DELETE LIBRARY com-
mand, you are not warnedof the possible existence of any program
sublibraries.

Format

DELETE LIBRARY dlrectory-spec

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]JLOG /LOG

Prompts

_Library:

Command Parameters

directory-spec
Specifies the program library directory to be deleted. The directory must be
a VAX Ada program library; that is, it must have been created with the ACS
CREATE LIBRARY command.

ACS Command Dictionary A-59

DELETE LIBRARY

Description

The ACS DELETE LIBRARY commandperformsthe following steps:

1. Checks whether the directory specified to be deleted is a VAX Ada
program library (has a valid library index file, ADALIB.ALB). If not, a
message is issued and there is no further action.

2. Ifthe specified directory is a VAX Ada program library, deletes the files

needed for program library operations. For example, the library index
file (ADALIB.ALB), library version control file (ADA$LIB.DAT), andall

object (.OBJ), compilation unit (.ACU), and copied source (.ADC)files are

deleted.

3. Ifthe program library is empty after step 2 and has the appropriate
protection, deletes the directory. If the directory is not empty, it is

preserved and a messageis issued. To delete the files and directory in
that case, you must exit from the program library manager and use the
DCL DELETE command.

Note that, when a program library is created, the directory inherits
the protection of its parent directory less any delete access by default.
Before attempting to delete a program library that is delete protected
against the owner, you must change the directory protection of the
library with the DCL SET PROTECTION command. See Chapter 5 for
more information on program library protection.

The DELETE LIBRARY commanddoes not delete any program sublibraries
of the specified program library.

You cannot use the DELETE LIBRARY commandto delete a sublibrary.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the DELETE LIBRARY commanddisplays the nameof
the program library before deleting it and requests you to confirm whether

or not the program library should be deleted. If you specify the /CONFIRM

qualifier, the possible responses are as follows:

A-60 ACS CommandDictionary

DELETE LIBRARY

e Affirmative responses are YES, TRUE,and 1.

e Negative responses are NO, FALSE, 0, and the RETURNkey.

You can use any combination of upper- and lowercase letters for word

responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in

the list, the prompt is reissued.

By default, no confirmation is requested.

/LOG (D)
/NOLOG
Controls whether the program library directory specification is displayed
after the library has been deleted.

By default, the program library directory specification is displayed.

Example

ACS> DELETE LIBRARY/CONFIRM [JONES.TEMP.ADALIB]

USER: [JONES.TEMP.ADALIB], delete library? [N]: Y

$I, Library USER: [JONES.SCRATCH.ADALIB] deleted

Requests confirmation to delete the program library [JONES.TEMP.ADALIB].
After confirmation, the command deletes the library indexfile, library ver-
sion control file, and all object, compilation unit, and copied sourcefiles.
Because no other files remain in the program library directory, and the
directory protection allows delete access, the directory is deleted and the
nameof the deleted program library is displayed.

ACS Command Dictionary A-61

DELETE SUBLIBRARY

DELETE SUBLIBRARY

Deletes a VAX Ada program sublibrary andall its units. To delete a program
library, you must use the ACS DELETE LIBRARY command.

NOTE

A program sublibrary does not contain any references to nested
program sublibraries. When you enter the ACS DELETE

SUBLIBRARY command, you are not warned of the possible
existence of any nested program sublibraries.

Format

DELETE SUBLIBRARY dlrectory-spec

Command Qualifiers Defaults

/[NO]JCONFIRM /NOCONFIRM

/[NO]JLOG /LOG

Prompts

_Sublibrary: |

Command Parameters

directory-spec

Specifies the program sublibrary directory to be deleted. The directory must
be a VAX Ada program sublibrary; that is, it must have been created with
the ACS CREATE SUBLIBRARY command.

A-62 ACS Command Dictionary

DELETE SUBLIBRARY

Description

The ACS DELETE SUBLIBRARY commandperformsthe following steps:

1. Checks whether the directory specified to be deleted is a VAX Ada
program sublibrary. If not, a message is issued and there is no further
action.

2. Ifthe specified directory is a VAX Ada program sublibrary, deletes the
files needed for sublibrary operations. For example, the library index
file (ADALIB.ALB), library version control file (ADA$LIB.DAT), and all
object (.OBJ), compilation unit (.ACU), and copied source (.ADC)files are
deleted.

3. Ifthe program sublibrary is empty after step 2 and has the appropriate
protection, deletes the directory. If the directory is not empty, it is
preserved and a messageis issued. To delete the files and directory in
that case, you must exit from the program library manager and use the
DCL DELETE command.

Note that, when a program sublibrary is created, the directory inherits ©
the protection of its parent directory less any delete access by default
(note that the parent directory may not necessarily be the sublibrary’s
parent library). Before attempting to delete a program sublibrary that
is delete protected against the owner, you must change the directory
protection of the sublibrary with the DCL SET PROTECTION command.
See Chapter 5 for more information on sublibrary protection.

The DELETE SUBLIBRARY commanddoes not delete any nested program
sublibraries of the specified program sublibrary.

The DELETE SUBLIBRARY commanddoes not delete a program library.

Command Qualifiers

/CONFIRM
/NOCONFIRM(D)
Controls whether the DELETE SUBLIBRARY commanddisplays the name
of the program sublibrary before deleting it and requests you to confirm
whether or not the program sublibrary should be deleted. If you specify the
/CONFIRM qualifier, the possible responses are as follows:

ACS CommandDictionary A-63

DELETE SUBLIBRARY

¢ Affirmative responses are YES, TRUE,and1.

¢ Negative responses are NO, FALSE,0, and the RETURNkey.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or moreletters (for
example, Y, YE, or YES). If you type a response other than one of those in
the list, the promptis reissued.

By default, no confirmation is requested.

/LOG (D)
/NOLOG
Controls whether the program sublibrary directory specification is displayed
after the sublibrary has been deleted.

By default, the program sublibrary directory specification is displayed.

Example

ACS> DELETE SUBLIBRARY/CONFIRM [JONES.LISTS.SUBLIB]

USER: [JONES.LISTS.SUBLIB], delete sublibrary? [N]: y

$1, Sublibrary USER: [JONES.LISTS.SUBLIB] deleted

Requests confirmation to delete the sublibrary [JONES.LISTS.SUBLIB].
After confirmation, the commanddeletes the library index file and all object,
compilation unit, and copied sourcefiles in [JONES.LISTS.SUBLIB]; it then
deletes the program sublibrary.

A-64 ACS Command Dictionary

DELETE UNIT

DELETE UNIT

Deletes one or more units from the current program library, including
references to units entered from another program library.

Format

DELETE UNIT unit-namef....]

Command Qualifiers Defaults

/[NO]JCONFIRM /INOCONFIRM

/[NOJENTERED[=library] /ENTERED

/[NO]LOCAL /LOCAL

/[NO]LOG /INOLOG

Positional Qualifiers Defaults

/BODY_ONLY See text.

/SPECIFICATIONONLY See text.

Prompts

_Unit:

Command Parameters

unit-name{,...]
Specifies one or more units to be deleted from the current program library.
You must express subunit names using selected component notation as
follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

ACS CommandDictionary A-65

DELETE UNIT

Description

The ACS DELETE UNIT commanddeletes, from the current program
library, the specified unit’s specification and body (if any). If you specify a

subunit name, the DELETE UNIT commanddeletes the subunit and any
nested subunits. The DELETE UNIT commanddeletes units that have been
compiled, copied, or entered into the current program library.

NOTE

An ACS DELETE UNIT SYSTEM commanddeletes any unit
called SYSTEM,be it predefined or user defined. Deleting the pre-
defined unit SYSTEM can have majoreffects, such as not allowing
you to use the predefined package TEXT_IO. If you accidentally
delete the predefined package SYSTEM, you can restore it by
entering the ACS ENTER UNIT command, andspecifying the
library denoted by the logical name ADA$PREDEFINED(see the
ACS ENTER UNIT commandfor more information on entering
units). ,

For each unit specified, the DELETE UNIT command updates the current
program library as follows:

e Deletes the associated index entries in the library indexfile

¢ Deletes any associated files from the current program library

The DELETE UNIT command doesnot affect any files or index entries in

program libraries other than the current program library.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the DELETE UNIT commanddisplays the unit name of
each unit before deleting it, and requests you to confirm whether or not the
unit should be deleted. If you specify the /CONFIRM qualifier, the possible
responses are as follows:

e Affirmative responses are YES, TRUE,and 1.

¢ Negative responses are NO, FALSE, 0, and the RETURNkey.

A-66 ACS CommandDictionary

DELETE UNIT

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-
mandat that point.

¢ ALL indicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or moreletters (for
example, Y, YE, or YES). If you type a response other than one of those in
the list, the promptis reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are deleted. You can use the library option
to delete units that were entered from a particular library. When you specify
the /NOENTEREDqualifier, only units that have been compiled or copied
into the currentprogram library are deleted. Note that when you specify
the /ENTERED qualifier, local units are deleted unless the /NOLOCAL
qualifier is also in effect (the defaults for these qualifiers are /LOCAL and
/ENTERED).

By default, all units specified, including entered units, are deleted.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were addedto the library
by a compilation or a COPY UNIT command)are deleted. Note that when
you specify the /LOCAL qualifier, entered units are deleted unless the
/NOENTERED qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and ENTERED).

By default, all units specified, including local units, are deleted.

/LOG
/NOLOG (D) |
Controls whether the nameof a unit is displayed after it has been deleted.

By default, the namesof deleted units are not displayed.

ACS Command Dictionary A-67

DELETE UNIT

Positional Qualifiers

/BODY_ONLY
Deletes only the body of the specified unit.

When you append the /BODY_ONLYqualifier to the DELETE UNIT
commandstring, any /SPECIFICATION_ONLYqualifiers that are appended
to parameters in the commandline override the /BODY_ONLY qualifier for
those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLY qualifier to the DELETE UNIT
commandstring or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as
well as the body, is deleted.

/SPECIFICATION_ONLY
Deletes only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the DELETE
UNIT commandstring, any /BODY_ONLY qualifiers that are appended
to parameters in the commandline override the /BODY_ONLY qual-
ifier for those particular parameters. You cannot append both the
/SPECIFICATION_ONLY qualifier and the /BODY_ONLY qualifier to
the DELETE UNIT commandstring or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is deleted.

Examples

1. ACS> DELETE UNIT/LOG SCREENIO

sI, Package specification SCREENIO deleted

sl, Package body SCREEN_IO deleted

Deletes from the current program library the specification and body of
SCREEN_IO, and displays the names of the components deleted.

2. ACS> DELETE/BODYONLY/CONFIRM RESERVATIONS

RESERVATIONS, delete? [N]:Y

Deletes the body of RESERVATIONSfrom the current program library.

A-68 ACS CommandDictionary

DELETE UNIT

3. ACS> DELETE UNIT STACKS*

Deletes the specification, body, and all of the subunits of the unit
STACKS.

ACS Command Dictionary A-69

DIRECTORY

DIRECTORY

Displays information about one or more units in the current program library.

Format

DIRECTORY [unit-namef...]]

Command Qualifiers Defaults

/BRIEF See text.

/[NOJENTEREDf[s=library] /ENTERED

/[NO]LOCAL /LOCAL

/FULL See text.

/OUTPUT=file-spec /OUTPUT=SYS$0UTPUT

Positional Qualifiers Defaults

/BODY_ONLY See text.

/SPECIFICATIONONLY See text.

Prompts

None.

Command Parameters

[unit-namef,...]]
Specifies one or more units in the current program library for which
information is to be shown. You must express subunit names using selected
component notation as follows:

ancestor-unit-—name[.parent-unit-name[...]].subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

A-70 ACS CommandDictionary

DIRECTORY

Description

If you specify a unit name, the ACS DIRECTORY commanddisplays
information about the unit’s specification and body, if the latter exists. If

you specify a subunit name, the DIRECTORY commanddisplays information
about the subunit.

If you do not specify a unit name, the DIRECTORY commanddisplays
information aboutall of the units in the current program library, including
entered units.

Units are listed by namein alphabetical order. Subunit names are shown
using selected component notation.

The output of the DIRECTORY command depends on whether you specify
the /BRIEF, /FULL, or no formatting qualifier. If you do not specify a
qualifier, the DIRECTORY commanddisplays (for each unit specified) the
unit name, the kind of unit (for example, procedure body, generic package
declaration, and so on), and the compilation date andtime.

Command Qualifiers

/BRIEF
Lists only the namesof the units specified.

/ENTERED[=library] (D)
/NOENTERED |
Controls whether entered units are displayed. You can use the library
option to display units that were entered from a particular library. When
you specify the /(NOENTEREDqualifier, only units that have been compiled
or copied into the current program library are displayed. Note that when
you specify the /ENTERED qualifier, local units are displayed unless the
/NOLOCAL qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units, including entered units, are displayed.

/FULL
Lists (for each unit specified) the unit name, kind, compilation date and
time, and thefile specifications of the associated files. The file specifications
of entered units are shown preceded with an at character (@).

ACS CommandDictionary A-71

DIRECTORY

/LOCAL(D)
/NOLOCAL
Controls whether local units (those units that were addedto the library by
a compilation or a COPY UNIT command) are displayed. Note that when
you specify the /LOCAL qualifier, entered units are displayed unless the

/NOENTEREDqualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified, including local units, are displayed.

/OUTPUT=file-spec
Requests that the DIRECTORY command output be written to thefile
specified rather than to SYS$OUTPUT. Any diagnostic messages are written
to both SYS$OUTPUTandthefile.

The default directory is the current default directory. If you specify a file
type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowedin thefile specification.

By default, the DIRECTORY commandoutput is written to SYS$OUTPUT.

Positional Qualifiers

/BODY_ONLY
Displays only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the DIRECTORY command
string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the command line override the /BODY_ONLYqualifier for
those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLY qualifier to the DIRECTORY
commandstring or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as
well as the body, is displayed.

/SPECIFICATION_ONLY
Displays only the specification of the specified unit.

A-72 ACS Command Dictionary

DIRECTORY

When you append the /SPECIFICATION_ONLY qualifier to the
DIRECTORY commandstring, any /BODY_ONLYqualifiers that are ap-
pended to parameters in the commandline override the /BODY_ONLY
qualifier for those particular parameters. You cannot append both the
/SPECIFICATION_ONLY qualifier and the /BODY_ONLY qualifier to the
DIRECTORY commandstring or to the same unit nare parameter.

By default, if the /SPECIFICATION_ONLYqualifier is omitted, the body, as

well as the specification, is displayed.

Examples

1, ACS> DIRECTORY/NOENTERED/BRIEF *

HOTEL

RESERVATIONS

RESERVATIONS . CANCEL

RESERVATIONS .RESERVE

RESERVATIONS .RESERVE.BILL

Total of 13 units.

Lists the namesof all units and subunits that have been compiled or
copied into the current program library.

2. ACS> DIRECTORY SCREENIO*

SCREENIO
package specification 16-Apr-1989 13:04

package body 16-Apr-1989 13:03

SCREENIO.INPUT

procedure body 16-Apr-1989 12:43

SCREENI0O.INPUT.BUFFER

function body 16-Apr-1989 12:43

SCREENIO.OUTPUT

procedure body 16-Apr-1989 12:43

Total of 5 units.

ACS Command Dictionary A-73

DIRECTORY

Displays the unit name, unit kind, and date-time of the last compilation
for all units in the current program library whose namesstart with

SCREEN_IO.

3. ACS> DIRECTORY/FULL SCREENI0.INPUT*

SCREENIO.INPUT

procedure body 16-Apr-1989 13:06

SCREENIOINPUT.ACU;4
SCREENTO INPUT.OBJ; 4

SCREENIO INPUT.ADC;3
@ USER: [JONES.HOTEL]SCREENIOINPUT.ADA;2

SCREENIO.INPUT.BUFFER

function body 16-Apr-1989 13:06
SCREENIOBUFFER.ACU; 4

SCREENIO BUFFER.OBd; 4

SCREENIO BUFFER.ADC;3

@ USER: [JONES.HOTEL]SCREENIOBUFFER.ADA;2

Total of 2 units.

Displays the unit name, unit kind, associated file specifications, and
date-time of the last compilation for all of the units in the current
program library whose names start with SCREEN_IO.INPUT. Thefile
specifications listed are those for the compilation unit (.ACU), object
(.OBJ), copied source (.ADC), and source (.ADA)files.

A-74 ACS CommandDictionary

ENTER FOREIGN

ENTER FOREIGN

Enters a reference to an external file into the current program library.
The file is entered as a foreign (non-Ada) library body (the body of a pack-
age, procedure, or function). The file may be an object file, object library,
shareable imagelibrary, shareable image,or linkeroptionsfile.

Format

ENTER FOREIGN _file-spec unit-name

Command Qualifiers Defaults

/LIBRARY See text.

/[NO]LOG /NOLOG

/OBJECT See text.

/OPTIONS See text.

/[NOJREPLACE /NOREPLACE

/SHAREABLE See text.

Prompts

_File:

_Unit:

Command Parameters

file-spec

Specifies the file containing the foreign body to be entered into the current
program library. The file may be a VMSobject file, object library, shareable
image library, shareable image,or linker optionsfile.

The default directory is the current default directory. The default file type
is .OBJ, unless the /LIBRARY, /OPTIONS, or /SHAREABLE qualifier is
used. No wildcard characters are allowed in the file specification.

If the file is an object file, you can optionally use the /OBJECT qualifier. The
default file type is .OBJ.

ACS Command Dictionary A-75

ENTER FOREIGN

If the file is an object library or shareable image library, you must use the
/LIBRARY qualifier. The default file type is .OLB.

If the file is a linker optionsfile, you must use the /OPTIONS qualifier. The
default file type is .OPT.

If the file is a shareable image, you must use the /SHAREABLE qualifier.
The default file type is .EXE.

unit-name
Specifies the unit whose body is to be referenced with the ENTER FOREIGN
command.

Description

The ACS ENTER FOREIGN commandenters a reference to an externalfile,

which then serves as a foreign (non-Ada) library body for an Ada compilation
unit.

The program library must contain a library specification for the unit, and
the specification must contain the pragma INTERFACE and (if appropriate)
a pragma IMPORT_FUNCTION, IMPORT_PROCEDURE,or IMPORT_
VALUED_PROCEDURE.

Once you supply a foreign body for a unit, the program library manager
assumes that the body is current until you supply a new (Adaor foreign)

definition of the body. Compiling the specification of the unit does not cause
the body to becomeobsolete.

Command Qualifiers

/LIBRARY
Indicates that the associated input file is a VMS object library or shareable
image library. The default file type is .OLB.

By default, if you do not specify the /LIBRARY qualifier, the file is assumed
to be an object file with a default file type of .OBJ.

/LOG
/NOLOG (D)
Controls whether the unit name andassociated file name are displayed after
a foreign body has been entered.

A-76 ACS Command Dictionary

ENTER FOREIGN

By default, the unit name andassociated file name are not displayed.

/OBJECT
Indicates that the associated input file is an object file. The default file type
is .OBJ.

The /OBJECT qualifier is the default, if you do not specify a /LIBRARY,
/OPTIONS, or /SHAREABLE qualifier.

/OPTIONS :
Indicates that the associated input file is a VMSlinker options file. The
default file type is .OPT.

By default, if you do not specify the /OPTIONS qualifier, the file is assumed
to be an object file with a default file type of .OBJ.

/REPLACE
/NOREPLACE(D)
Controls whether the foreign body to be entered replaces a body that is
already defined in the current program library for the unit namespecified.

By default, the foreign body to be entered does not replace a body thatis
already defined in the current program library for the unit namespecified.

/SHAREABLE
Indicates that the associated input file is a VMS shareable image. The
default file type is .EXE.

By default, if you do not specify the /SHAREABLEqualifier, the file is
assumedto be an object file with a default file type of .OBJ.

Example

ACS> ENTER FOREIGN DISK: [SMITH.MATH] SQUARE SQR

Enters the object file SQUARE.OBJ from DISK:[SMITH.MATH] into the
current program library, as the body of unit SQR. The specification of SQR
is (as required) already defined in the program library.

ACS Command Dictionary A-77

ENTER UNIT

ENTER UNIT

Enters references in the current program library to one or more units located
in another program library.

Format

ENTER UNIT from-directory-spec unit-name[....]

Command Qualifiers Defaults

/[NO]JCLOSURE /NOCLOSURE

/[NOJCONFIRM /NOCONFIRM

/[NOJENTERED[slibrary] /ENTERED

/[NO]LOCAL /LOCAL

/[NO]LOG /INOLOG

/[NOJREPLACE /NOREPLACE

Positional Qualifiers Defaults

/BODY_ONLY See text.

/SPECIFICATIONONLY See text.

Prompts

_Library:

_Unit:

Command Parameters

A-78

from-directory-spec
Specifies the program library that contains the units to be referenced.

unit-namef,...]
Specifies one or more units to be entered into the current program library.
You must express subunit names using selected component notation as
follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

ACS CommandDictionary

ENTER UNIT

The unit names may include percent signs (%) and asterisks (*) as
wildcard characters. (See the VMS DCL Concepts Manual for more detailed
information on wildcard characters.)

Description

The ACS ENTER UNIT commandentersinto the current progam library
each specified unit’s specification and body (if any). If the specified unit
is a subunit, the ENTER UNIT commandenters the subunit and any
nested subunits. If the /CLOSURE qualifier is specified, the ENTER UNIT
commandenters the closure of the set of units specified.

For each unit entered, the ENTER UNIT command updatesthe library index
file of the current program library to refer to the unit and its associatedfiles,
and to include the date and time the unit was last compiled into its original
program library.

An entered unit can be used as if had been compiled locally. In other words,
a unit entered into a program library can be namedin a with clause by a
unit that has been compiled into that program library.

The ENTER UNIT commanddoesnot affect the program library from which
a unit is entered. However, if an entered unit is subsequently compiled in
its original program library, all references to that unit from other program
libraries are invalidated. You must enter the ACS REENTER command
to make the references current. (You may also need to then recompile any
units that depend on the entered unit.)

The ACS COMPILE and RECOMPILE commandshavenoeffect on entered

units. |

Command Qualifiers

/CLOSURE
/NOCLOSURE(D)
Controls whether the ENTER UNIT commandenters the closure of the set
of units specified into the current program library.

By default, only the specification and body of the units specified are entered.

ACS Command Dictionary A-79

ENTER UNIT

/CONFIRM
/NOCONFIRM (D) |
Controls whether the ENTER UNIT commanddisplays the name of each
unit before entering that unit into the current program library, and requests

that you confirm whether or not that unit should be entered. If you specify

the /CONFIRM qualifier, the possible responses are as follows:

e Affirmative responses are YES, TRUE, and 1.

¢ Negative responses are NO, FALSE, 0, and the RETURNkey.

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-
mand at that point.

e ALL indicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for

example, Y, YE, or YES). If you type a response other than one of those in
the list, the promptis reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are entered. You can use the library option
to enter units that were entered from a particular library. When you specify

the /NOENTEREDqualifier, only units that have been compiled or copied
into the other program library are entered. Note that when you specify

the /ENTERED qualifier, local units are entered unless the /NOLOCAL
qualifier is also in effect (the defaults for these qualifiers are /LOCAL and
/ENTERED).

By default, all units, including entered units, are entered.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were addedto the library
by a compilation or a COPY UNIT command) are entered. Note that when
you specify the /LOCAL qualifier, entered units are entered unless the
/NOENTEREDqualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified, including local units, are entered.

A-80 ACS CommandDictionary

ENTER UNIT

/LOG
/NOLOG (D)
Controls whether the nameof a unit is displayed after it has been entered.

By default, the names of entered units are not displayed.

/REPLACE
/NOREPLACE(D)
Controls whether the unit to be entered replaces a unit of the same name
that is already defined in the current program library.

By default, the unit to be entered does not replace a unit of the same name
that is already defined in the current program library.

Positional Qualifiers

/BODYONLY
Enters only the body of the specified unit.

When you append the /BODY_ONLYqualifier to the ENTER UNIT com-
mand string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the commandline override the /BODY_ONLYqualifier for
those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLYqualifier to the ENTER UNIT

commandstring or to the same unit name parameter.

By default, if the /BODY_ONLYqualifier is omitted, the specification, as

well as the body, is entered.

/SPECIFICATION_ONLY
Enters only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the ENTER
UNIT commandstring, any /BODY_ONLYqualifiers that are appended
to parameters in the commandline override the /BODY_ONLY qual-
ifier for those particular parameters. You cannot append both the
/SPECIFICATION_ONLY qualifier and the /BODY_ONLY qualifier to
the ENTER UNIT commandstring or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is entered.

ACS Command Dictionary A-81

ENTER UNIT

Examples

1, ACS> ENTER UNIT [PROJ.MAINLIB] *

Enters all of the units from the project library into the current program
library.

2. ACS> ENTER UNIT/REPLACE DISK: [SMITH.SHARE.ADALIB] QUEUEMANAGER

Enters the unit QUEUE_MANAGERinto the current program library
from the library DISK:[SMITH.SHARE.ADALIB], replacing any previous
index reference to that unit. If the /REPLACE qualifier had not been
used, a previously existing reference to QUEUE_MANAGERwould not
have been replaced.

A-82 ACS Command Dictionary

EXIT

EXIT

Exits from the program library manager and returns control to DCL.

Format

EXIT

Prompts

None.

Command Parameters

None.

Description

The EXIT commandallows you to exit from the program library manager
when you are using it interactively. You can also use CTRL/Z for the same
purpose.

Example

ACS> EXIT
$

Exits from the program library manager and returns control to DCL.

ACS Command Dictionary A-83

EXPORT

EXPORT

Creates an object file that contains the object codefor all units in the closure

of the list of units specified.

Format

EXPORT unit-namef,...]

Command Qualifiers Defaults

/[NO]LOG /NOLOG

/[NO]MAIN /NOMAIN

/OBJECT=file-spec See text.

/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT

/SYSTEM_NAMEssystem /SYSTEM_NAME=VAX_VMS

Prompts

_Unit:

Command Parameters

unit-namef{,...]

Specifies one or more units in the current program library whoseclosure will
be used to create an objectfile.

If you specify the /MAIN qualifier:

e You can specify only one unit name.

¢ The generated object file contains the image transfer address, and thus
can be used as a main program.

e The transfer address of the unit specified is used.

A-84 ACS CommandDictionary

EXPORT

By default (or if you specify the /NOMAIN qualifier):

¢ You can specify more than one unit name. The unit names may include
percent signs (%) and asterisks (*) as wildcard characters. (See
the VMS DCL Concepts Manual for more information on wildcard
characters.)

¢ The generated object file does not contain the image transfer address,
and thus cannot be used as a main program. The exported units can be
invoked by a non-Ada program.

Description

The ACS EXPORT commandcreates a concatenated object file for all the
units in the closure of the list of units specified. The object file always
contains code to elaborate any library packages that are exported.

Note that any exported units that will be called from a foreign module

must contain the appropriate export pragma in the source code: EXPORT_
FUNCTION, EXPORT_PROCEDURE, EXPORT_VALUED_PROCEDURE,
EXPORT_OBJECT, PSECT_OBJECT, or EXPORT_EXCEPTION (see the
VAXAda Language Reference Manual and VAXAda Run-Time Reference
Manualfor exact details).

Object files created by different invocations of the EXPORT command may
include some code that is common—for example, if each closure includes the
predefined unit TEXT_IO. In such cases, you will not be able to link those
files into the same image. Whenever you think that closures may include
units in common, you should specify all the units in a single EXPORT
commandline.

Command Qualifiers

/LOG
/NOLOG(D)
Controls whethera list of all the units included in the exported object file is
displayed. The display shows the units according to the order of elaboration
for the program.

By default, a list of the units included in the exported object file is not
displayed.

ACS Command Dictionary A-85

EXPORT

/MAIN
/NOMAIN(D)
Controls whether the generated object file is to contain the image transfer
address (of the first unit specified), and thus is to be a main program.

By default, the generated object file does not contain the image transfer

address, and thusis not to be a main program.

/OBJECT=file-spec
Provides a file specification for the generated object file that is to be
exported. The default directory is the current default directory. The default
file type is .OBJ. No wildcard characters are allowed in thefile specification.

By default, if you do not use the /OBJECT qualifier, a file name comprising
up to thefirst 39 characters of the first unit nameis provided.

/OUTPUT=file-spec
Requests that the EXPORT commandoutput be written to thefile specified
rather than to SYS$OUTPUT. Any diagnostic messages are written to both
SYS$OUTPUTand thefile.

The default directory is the current default directory. If you specify a file
type but omit thefile name, the file name is ACS. The default file type
is .LIS. No wildcard characters are allowed in thefile specification.

By default, the EXPORT commandoutput is written to SYSSOUTPUT.

/SYSTEM_NAME=system
Directs the program library manager to produce elaboration code for
execution on a particular operating system; the possible system values
are VAX_VMS and VAXELN. Note that when the value is VAXELN,the

execution of elaboration code by non-Adacallers is not automatic; your
program must take special action at run time to elaborate library packages.
See the VAXELNAda User’s Manual for more information.

By default, if the /SYSTEM_NAMEqualifier is not specified in the EXPORT
command,the setting of the pragma SYSTEM_NAMEfor the current
program library determines the target operating system environment.

A-86 ACS CommandDictionary

EXPORT

Examples

ACS> EXPORT/MAIN HOTEL/OBJECT=EXP_HOTEL

Creates the object file EXP_HOTEL.OBJ, which contains the code for

all of the units in the execution closure of unit HOTEL, including any
package elaboration code. Because the /MAIN qualifier is specified, the
file created also contains the image transfer address.

ACS> EXPORT/SYSTEMNAME=VAXELN HOTEL/OBJECT=VAXELN_HOTEL

Creates the object file VAXELN_HOTEL, which contains the code for
all of the units in the execution closureof unit HOTEL, including any
package elaboration code. The elaboration code created is for a VAXELN
target. See the VAXELN Ada User’s Manual for information on how to
prepare and run VAXELN Ada programs.

ACS Command Dictionary A-87

EXTRACT SOURCE

EXTRACT SOURCE

Creates a copy of the copied source files associated with the specified units.
The specified units must be defined in the current program library.

Format

EXTRACT SOURCE unit-namef....]

Command Qualifiers Defaults

/[NO|CONFIRM /NOCONFIRM

/[(NOJENTERED[=library] /ENTERED

/[NO]LOCAL /LOCAL

/[NO]LOG /LOG

Positional Qualifiers Defaults

/BODY_ONLY See text.

/SPECIFICATION_ONLY See text.

Prompts

Unit:

Command Parameters

unit-namef{,...]
Specifies one or more units in the current program library whose copied
source files are to be copied. You must express subunit names using selected
component notation as follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manualfor detailed information on
wildcard characters.)

A-88 ACS Command Dictionary

EXTRACT SOURCE

Description

For each unit specified, the ACS EXTRACT SOURCE commandcreates a
copy of the copied source files associated with the unit’s specification and
body. If a subunit nameis specified, the EXTRACT SOURCE command
creates a copy of the subunit’s copied sourcefile. The unit or subunit must

be defined in the current program library.

The files are created in the current default directory. If they have less
than or equal to 39 characters, the file names are the sameas those of the
corresponding copied source files in the current program library—thatis,file
names follow the file-name conventions defined in Chapter 1. If they have
more than 39 characters, the program library manager generates a name.
Thefile type of the created files isADA.

Command Qualifiers

/CONFIRM
/NOCONFIRM(D)
Controls whether the EXTRACT SOURCE command displays the name of
each unit before creating a copy of the copied source files and requests that
you confirm whether or not the unit should be copied. If you specify the
/CONFIRM qualifier, the possible responses are as follows:

e Affirmative responses are YES, TRUE,and1.

e Negative responses are NO, FALSE, 0, and the RETURNkey.

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-
mandat that point.

¢ ALL indicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or moreletters (for
example, Y, YE, or YES). If you type a response other than one of those in

the list, the promptis reissued.

By default, no confirmation is requested.

ACS Command Dictionary A-89

EXTRACT SOURCE

/ENTERED[=library] (D)
/NOENTERED
Controls whether the source files for entered units are extracted. You can
use the library option to extract units that were entered from a particular
library. When you specify the /NOENTEREDqualifier, only the sourcefiles
for units that have been compiled or copied into the current program library
are extracted. Note that when you specify the /ENTERED qualifier, local
units are extracted unless the /NOLOCAL qualifier is also in effect (the
defaults for these qualifiers are /LOCAL and /ENTERED).

By default, the sourcefile for all units, including entered units, are

extracted.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were addedto the library by a
compilation or a COPY UNIT command) are extracted. Note that when you
specify the /LOCAL qualifier, the source files for entered units are extracted
unless the /NOENTERED qualifier is also in effect (the defaults for these
qualifiers are /LOCAL and /ENTERED).

By default, the source files for all units specified, including local units, are
extracted.

/LOG (D)
/NOLOG
Controls whether the namesof units and extracted files are displayed after
each unit’s files are created.

By default, the namesof units andfiles are displayed.

PositionalQualifiers

/BODY_ONLY
Extracts the source file for only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the EXTRACT SOURCE
command string, any /SPECIFICATION_ONLY qualifiers that are appended
to parameters in the commandline override the /BODY_ONLY qualifier for
those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLY qualifier to the EXTRACT
SOURCE commandstring or to the same unit name parameter.

A-90 ACS Command Dictionary

EXTRACT SOURCE

By default, if the /BODY_ONLY qualifier is omitted, the sourcefile for the

specification, as well as the body, is extracted.

/SPECIFICATION_ONLY
Extracts the source file for only the specification of the specified unit.

When you append the /SPECIFICATION_ONLYqualifier to the EXTRACT
SOURCE commandstring, any /BODY_ONLYqualifiers that are ap-
pended to parameters in the commandline override the /BODY_ONLY
qualifier for those particular parameters. You cannot append both the
/SPECIFICATION_ONLY qualifier and the /BODY_ONLY qualifier to the
EXTRACT SOURCE commandstring or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the source

file for the body, as well as the specification, is extracted.

Example

ACS> EXTRACT SOURCE TEXT_IO, STARLET

Creates in the current default directory the files TEXT_IO_.ADA, TEXT_

IO.ADA, and STARLET_. Thesefiles are copies of the copied sourcefiles for,
respectively, the specification and body of the predefined unit TEXT_IO and
the specification of the predefined unit STARLET (TEXT_IO and STARLET

were previously entered into the current program library).

ACS CommandDictionary A-91

HELP

HELP

Displays information on ACS commands andqualifiers.

Format

HELP [keyword...]

Prompts

None.

Command Parameters

[keyword...]
Specifies zero or more keywords that indicate what information you want.
Information is located in a hierarchical manner, depending on thelevel of
information required. The levels are as follows:

1. None—Lists the ACS commands andselected topics.

2. Topic—Provides information about thetopic.

3. Command—Describes the command, its format, and parameters, and

lists its qualifiers.

4. Commandfollowed by a qualifier—Describes the use of the qualifier. For
example, CHECK/LOGdescribes the use of the /LOG qualifier.

If you specify an asterisk (*) in place of any keyword, the HELP command

displays all information available at that level.

You can specify percent signs (%) and asterisks (*) in the keywords as
wildcard characters.

A-92 ACS Command Dictionary

HELP

Example

ACS> HELP ENTER UNIT/CLOSURE

Displays information about the /CLOSURE qualifier to the ACS ENTER
UNIT command.

ACS Command Dictionary A—93

LINK

LINK

Creates an executable image file for the specified units.

Format

LINK unit-name[file-specf,...]]

LINK/NOMAIN unit-namef,...] file-specf,...]

Command Qualifiers

/AFTER=time

/BATCH_LOGsfile-spec

/BRIEF

/COMMAND[=file-spec]

/[NO]|CROSS_REFERENCE

/[NO]DEBUG[=file-spec]

/[NOJEXECUTABLE[=file-spec]

/FULL

/[NO]KEEP

/[NO]LOG

/[NO]MAIN

/[NO]MAP[=file-spec]

/NAME=job-name

/[NO]NOTIFY

/OBJECT=file-spec

/OUTPUT=file-spec

/[NO]PRINTER[=queue-name]

/QUEUE=queue-name

/SUBMIT

/[NO]|SYSLIB

/[NO]SYSSHR

/SYSTEM_NAMEssystem

/[NO]JTRACEBACK

/[NOJUSERLIBRARY|[=(tablef[,...])]

IWAIT

A-94 ACS CommandDictionary

Defaults

Seetext.

See text.

See text.

Seetext.

/NOCROSS_REFERENCE

/NODEBUG

/EXECUTABLE

Seetext.

/KEEP

/NOLOG

/MAIN

/NOMAP

See text.

/NOTIFY

See text.

/OUTPUT=SYS$OUTPUT

/NOPRINTER

/QUEUE=SYS$BATCH

/See text.

/ISYSLIB

ISYSSHR

ISYSTEM_NAME=VAX_VMS

/TRACEBACK

See text.

IWAIT

LINK

Parameter Qualifiers Defaults

/INCLUDE=(object-file,...) see text.

/LIBRARY See text.

/OPTIONS See text.

/SHAREABLE See text.

Prompts

_Unit:

_File:

Command Parameters

unit-name{,...]
By default (or if you specify the /MAIN qualifier):

¢ You can specify only one unit, whose source code is written in Ada.

¢ The Ada main program, which must be a procedure or function with no

parameters. If the main program is a function, it must return a value of
a discrete type; the function value is used as the VMS imageexit value.

If you specify the /NOMAIN qualifier:

¢ You can specify one or more units that are to be includedin the ex-
ecutable image. The unit names mayinclude percent signs (%) and
asterisks (*) as wildcard characters. (See the VMS DCL Concepts
Manual for more information on wildcard characters.)

e The image transfer address comes from one of the non-Adafiles specified.

file-specf,...]
Specifies a list of VMS object files, object libraries, shareable image libraries,
shareable images, and linker option files that are to be used in linking
the program. The default directory is the current default directory. The
default file type is .OBJ, unless the /LIBRARY, /OPTIONS, or /SHAREABLE

qualifier is used. No wildcard characters are allowedin a file specification.

If the file is an object library or shareable image library, you must use the
/LIBRARY qualifier. The default file type is .OLB.

ACS Command Dictionary A—95

LINK

If the file is a linker optionsfile, you must use the /OPTIONSqualifier. The
default file type is .OPT.

If the file is a shareable image, you must use the /SHAREABLEqualifier.
The default file type is .EXE.

If you specify the /NOMAINqualifier, the image transfer address will come
from one of the files (not units) specified.

Description

The ACS LINK commandgoes through the following steps:

1. If LINK/NOMAINis not specified, checks that only one unit is specified
and that it is an Ada main program.

2. Forms the execution closure of the main program (LINK/MAIN)orof the
specified units (LINK/NOMAIN)andverifies that all units in the closure
are present, current, and complete. If the program library manager
detects an error, the operation is terminated before the VMSLinkeris
invoked.

3. Creates a DCL commandfile for the VMS Linker. The commandfile
is deleted after the ACS LINK operation is completed or terminated,
unless LINK/COMMANDisspecified. If LINK/COMMANDisspecified,
the commandfile is retained for future use, and the linkeris not

invoked.

4. Creates an object file (to be linked with the program) that elaborates
the library units in proper order at run time. If the /NOMAINqualifier
is not specified, the object file also contains the image transfer address.
This object file is deleted after the ACS LINK operation is completed
or terminated, unless the /COMMANDqualifier is specified. If the
/COMMANDqualifier is specified, the object file is retained and the
linker is not invoked.

5. Unless the /COMMAND qualifier is specified, invokes the VMS Linker
as follows:

a. By default (LINK/WAIT), the linker commandfile generated in step
3 is executed in a subprocess. You must wait for the link operation
to terminate before entering another command. Note that when you
specify the /WAIT qualifier (the default), process logical names are
propagated to the subprocess generated to execute the commandfile.

A-96 ACS CommandDictionary

LINK

b. If you specify the /SUBMIT qualifier, the linker commandfile is
submitted as a batch job.

ACS output originating before the VMS Linkeris invoked is reported to your
terminal by default, or to a file specified with the /OUTPUT qualifier. Linker
diagnostics are reported to your terminal, by default, or to a log file if the
ACS LINK commandis executed in batch mode (ACS LINK/SUBMIT).

See Chapter 4 for more information on the ACS LINK command. The VMS
Linker is described in detail in the VMS Linker Utility Manual.

Command Qualifiers

/AFTER=time
Requests that the batch job be held until after a specific time, when the ACS
LINK commandis executed in batch mode (LINK/SUBMIT).If the specified
time has already passed, the job is queued for immediate processing.

You can specify either an absolute time or a combination of absolute and
delta time. See the VMS DCL Concepts Manual(or access the DCL HELP
SPECIFY topic) for complete information on specifying timevalues.

/BATCH_LOGs=file-spec
Provides a file specification for the batch log file when the ACS LINK
commandis executed in batch mode (LINK/SUBMIT).

If you do not give a directory specification with the file-spec option, the batch
log file is created by default in the current default directory. If you do not
give a file specification with the file-spec option, the default file nameis the
job namespecified with the /NAME=job-namequalifier. If no job name has
been specified, the program library managercreates a file name comprising
up to the first 39 characters of the first unit namespecified. If you specified
LINK/NOMAINand no job nameandthere is a wildcard character in the
first unit specified, the program library manager uses the default file name
ACS_LINK. The default file type is .LOG.

/BRIEF
Directs the linker to produce a brief image mapfile. The /BRIEF qualifier
is valid only if you also specify the /MAP qualifier with the ACS LINK
command. The /BRIEF qualifier is incompatible with the /FULL and
/CROSS_REFERENCEqualifiers.

ACS Command Dictionary A-97

LINK

A brief image mapfile contains only the following sections:

¢ Object module synopsis

¢ Image synopsis

e Link runstatistics

In contrast, the default image mapfile contains the preceding sections, as

well as the program section synopsis and symbol definition section. See also
the description of the /FULL qualifier.

/COMMAND[=file-spec]
Controls whether the linker is invoked as a result of the ACS LINK
command, and determines whether the commandfile generated to invoke
the linker is saved. If you specify the /COMMANDqualifier, the program
library manager does not invoke the linker, and the generated commandfile
is saved for you to invoke or submit as a batch job.

The file-spec option allows you to entera file specification for the generated
commandfile. The default directory for the commandfile is the current
default directory. By default, the program library manager provides a
file name comprising up to the first 39 characters of the first unit name
specified. If you specified LINK/NOMAIN and you used a wildcard character
in the first unit name specified, the compiler uses the default name ACS_
LINK. The default file type is .COM. No wildcard characters are allowed in
the file specification. |

By default, if the /COMMANDqualifier is not specified, the program library
manager deletes the generated commandfile when the ACS LINK command
completes normally or is terminated.

/CROSS_REFERENCE
/NOCROSS_REFERENCE(D)
Controls whether the image mapfile contains a symbol cross-reference. The
/CROSS_REFERENCEqualifier is valid only if you also specify the /MAP
qualifier in the ACS LINK command. The /CROSS_REFERENCEqualifier
is incompatible with the /BRIEF qualifier.

When youspecify the /CROSS_REFERENCE qualifier, the linker replaces
the symbol definition section of the image mapfile with the symbol cross-
reference section. The cross-reference section lists, in alphabetical order, the

nameof each global symbol, together with the following information about
each:

A-98 ACS CommandDictionary

LINK

e Its value

e The name of the first module in which it is defined

¢ The name of each module in which it is referenced

The number of symbolslisted in the cross-reference section depends on
whetherthe linker is generating a full image map or a default image map.
In a full image map,this section includes global symbols from all modules
in the image, including those extracted from all libraries. In a default
image map, this section does not include global symbols from modules
extracted from the default system libraries SYS$SSHARE:IMAGELIB.OLB
and SYS$SHARE:STARLET.OLB.

By default, the image mapfile does not contain a symbol cross-reference. In
this case, if the linker is generating a default map or a full map, the map
contains the symbol definition section instead of the symbol cross-reference
section.

/DEBUG[=file-spec]
/NODEBUG(D)
Controls whether a debugger symbol table is included in the executable

image file, and whether the VMS Debugger is invoked when the program is
run.

The /DEBUGqualifier optionally allows you to specify an alternate debugger
or dynamic performance analyzer. The default file type is .OBJ. See the

VMS Debugger Manual for more information. |

By default, no debugger symbol table is included in the executable image.

/EXECUTABLE[=file-spec] (D)
/NOEXECUTABLE
Controls whether the linker creates an executable imagefile and optionally
provides a file specification for the file. Thedefault file type is .EXE. No
wildcard characters are allowed in the file specification.

You can use the /NOEXECUTABLE or /EXECUTABLE=NL:qualifier to
test a set of qualifier options or input object modules without creating an

imagefile. Using /EXECUTABLE=NL:is recommended, however, because
the linker will not process certain qualifiers when the /NOEXECUTABLE
qualifier is in effect.

ACS Command Dictionary A-99

LINK

By default, an executable imagefile is created with a file name comprising
up to the first 39 characters of the first unit namespecified.

/FULL
Directs the linker to produce a full image mapfile, which is the most
complete image map. The /FULL qualifier is valid only if you also specify
the /MAP qualifier with the ACS LINK command. Also, the /FULL qualifier
is incompatible with the /BRIEF qualifier, but not with the /CROSS_
REFERENCEqualifier.

A full image mapfile contains the following sections:

e Object module synopsis

¢ Module relocatable reference synopsis

e Program section synopsis

¢ Symbol definitions

e Image section synopsis

¢ Symbols by value

¢ Module relocatable reference synopsis

In contrast, the default image mapfile does not contain the image section
synopsis, the symbols by value, or the module relocatable reference synopsis
sections.

Further, unlike the default image map, the full image map includesin-
formation about modules included from the system default libraries
SYS$SHARE:STARLET.OLB and SYS$SHARE:IMAGELIB.OLB. Thus,
the object module synopsis, program section synopsis, and symbols by name
sections of a default image map do not contain information about modules
included from these default libraries, whereas in a full image map they do.

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it is printed
when the ACS LINK commandis executed in batch mode (LINK/SUBMIT).

By default, the log file is not deleted.

A-100 ACS Command Dictionary

LINK

/LOG
/NOLOG(D)
Controls whethera list of all the units included in the executable image is
displayed. The display showsthe units according to the order of elaboration
for the program.

By default, a list of all the units included in the executable imageis not
displayed.

/MAIN(D)
/NOMAIN
Controls where the image transfer address is to be found.

The /MAIN qualifier indicates that the VAX Ada unit specified determines
the image transfer address and, hence, is to be a main program.

The /NOMAIN qualifier indicates that the image transfer address will
come from oneofthe files specified, and not from one of the VAX Ada units
specified.

By default (MAIN), only one VAX Ada unit may be specified, and that unit
must be a VAX Ada main program.

/MAP[=file-spec]
/NOMAP(D)
Controls whether the linker creates an image mapfile and optionally
providesa file specification for the file. The default directory for the image
mapfile is the current directory. The default file name comprises up to the
first 39 characters of the first unit name specified. The default file type
is .MAP. No wildcard characters are allowed in thefile specification.

By default, no image mapfile is created.

/NAME=job-name
Specifies a string to be used as the job nameandasthefile namefor the
batch log file when the ACS LINK commandis executed in batch mode
(LINK/SUBMIT). The job name can havefrom 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising upto thefirst 39 characters of the
first unit namespecified. If you specify LINK/NOMAINbut do not specify
the /NAME qualifier, and you use a wildcard characterin thefirst unit name
specified, the compiler uses the default name ACS_LINK.In these cases, the
job nameis also the file nameofthe batchlogfile.

ACS Command Dictionary A-101

LINK

/NOTIFY (D)
/NONOTIFY |
Controls whether a message is broadcast when the ACS LINK commandis
executed in batch mode (LINK/SUBMIT). The messageis broadcast to any.
terminal at which you are logged in, notifying you that your job has been
completed or terminated.

By default, a message is broadcast.

/OBJECT=file-spec
Provides a file specification for the object file generated by the ACS LINK
command. Thefile is retained by the program library manager only when
the /COMMANDqualifier is used—that is, when the result of the ACS LINK
operation is to produce a linker commandfile for future use, rather than to
invoke the linker immediately.

The generated object file contains the code that directs the elaboration of
library packages in the closure of the units specified. Unless you also specify

the /NOMAIN qualifier, the object file also contains the image transfer
address.

The default directory for the generated object file is the current default
directory. The default file type is .OBJ. No wildcard characters are allowed
in the file specification.

By default, if you do not specify the /OBJECT qualifier, the program library
manager provides a file name comprising up to the first 39 characters of the
first unit namespecified.

By default, if you do not specify the /COMMANDqualifier, the program
library manager deletes the generated object file when the ACS LINK
command completes normally or is terminated.

/OUTPUT=file-spec
Requests that any ACS output generated before the linker is invoked be
written to the file specified rather than to SYS$OUTPUT. Any diagnostic
messages are written to both SYS$OUTPUTandthefile.

The default directory is the current default directory. If you specify a file
type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowedin thefile specification.

By default, the ACS LINK commandoutput is written to SYS$OUTPUT.

A-102 ACS Command Dictionary

LINK

/PRINTER[=queue-name]
/NOPRINTER(D)
Controls whether the log file is queued for printing when the ACS LINK
commandis executed in batch mode (LINK/SUBMIT)andthe batch jobis

completed.

The /PRINTERqualifier allows you to specify a particular print queue. The

default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify
/NOPRINTER, /KEEPis assumed.

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the ACS
LINK commandis executed in batch mode (LINK/SUBMIT).

By default, if the /QUEUE qualifier is not specified, the job is placed in the
default system batch job queue, SYS$BATCH.

/SUBMIT |
Directs the program library manager to submit the commandfile generated
for the linker to a batch queue. You can continue to enter commandsin your
current process without waiting for the batch job to complete. Thelinker
output is written to a batchlogfile.

By default, the generated commandfile is executed in a subprocess
(LINK/WAIT).

/SYSLIB (D)
/NOSYSLIB
Controls whether the linker automatically searches the default system
library for unresolved references. The default system library consists of
the shareable image library SYS$LIBRARY:IMAGELIB.OLBandthe object
module library SYS$LIBRARY:STARLET.OLB.

By default, the default system library is automatically searched.

/SYSSHR(D)
/NOSYSSHR
Controls whether the linker automatically searches the default sys-
tem shareable image library SYS$LIBRARY:IMAGELIB.OLB for un-
resolved references. If you specify the /NOSYSSHR qualifier, only
SYS$LIBRARY:STARLET:OLBis searched for unresolved references.

ACS Command Dictionary A-103

LINK

By default, the default system shareable imagelibrary is searched.

/SYSTEM_NAME=system |
Directs the program library manager to produce an imagefor execution on a
particular operating system.

The possible system values are VAX_VMS and VAXELN.If VAX_VMSis
specified, VMS versions of the Ada run-time library routines are used,
and VMS-specific initialization code is generated. If VAXELNis specified,
VAXELNversions of the Ada run-time library routines are used, and
VAXELN-specific initialization code is generated. For more information on
VAXELN Ada, see the VAXELNAda User’s Manual.

If the /SYSTEM_NAMEqualifier is not specified in the ACS LINK command,
the setting of the pragma SYSTEM_NAMEfor the current program library
determines the target operating system environment.

/TRACEBACK(D)
/NOTRACEBACK
Controls whether the linker includes traceback information in the executable

image file for run-time error reporting.

By default, traceback information is included in the executable image.

/USERLIBRARY|[=(tablef,...])]
/NOUSERLIBRARY
Controls whether the linker searches any user-defined default libraries
after it has searched any specified user libraries. When you specify the
/USERLIBRARYqualifier, the linker searches the process, group, and
system logical nametablesto find thefile specifications of the user-defined
libraries. (The discussion of the linker in the VMS Linker Utility Manual
explains user-defined default libraries.) You can specify the following tables
for the linker to search:

ALL The linker searches the process, group, and system logical
: nametables for user-defined library definitions.

GROUP The linker searches the group logical name table for
user-defined library definitions.

NONE The linker does not search any logical nametable; this
specification is equivalent to /NOUSERLIBRARY.

A-104 ACS Command Dictionary

LINK

PROCESS The linker searches the process logical name table for
user-defined library definitions.

SYSTEM The linker searches the system logical name table for

user-defined library definitions.

By default, the linker assumes /USERLIBRARY=ALL.

/WAIT
Directs the program library manager to execute the commandfile generated
for the linker in a subprocess. Execution of your current process is sus-

pended until the subprocess completes. The linker output is written directly
to your terminal. Note that process logical names are propagated to the

subprocess generated to execute the commandfile.

By default, the program library manager executes the commandfile gen-
erated for the linker in a subprocess: you must wait for the subprocess to
terminate before you can enter another command.

Parameter Qualifiers

AINCLUDE=(object-file,...)
Indicates that the associated inputfile is a VMS object module library or
shareable image library with a default file type of .OLB, and that the named
elements from that library should be linked with the main program named
in the ACS LINK command.

/LIBRARY
Indicates that the associated inputfile is a VMS object module library or
shareable image library to be searched for modules to resolve any undefined
symbols in the inputfiles. The default file type is .OLB.

By default, if you do not specify the /LIBRARY qualifier, the file is assumed
to be an object file with a default file type of .OBJ.

/OPTIONS |
Indicates that the associated inputfile is a VMSlinkeroptionsfile. The
default file type is .OPT.

By default, if you do not specify the /OPTIONS qualifier, the file is assumed
to be an object file with a default file type of .OBJ.

ACS Command Dictionary A—105

LINK

/SHAREABLE
Indicates that the associated input file is a VMS shareable image. The
default file type is .EXE. |

By default, if you do not specify the /SHAREABLE qualifier, the file is

assumedto be an object file with a default file type of .OBJ.

Examples

1. ACS> LINK HOTEL

Forms the closure of the unit HOTEL, which is a VAX Ada main

program, creates a linker commandfile and package elaboration file,
then invokes the commandfile in a spawned subprocess.

2. ACS> LINK/SUBMIT HOTEL NETWORK.OLB/LIBRARY, NET.OPT/OPTIONS

$I, Job HOTEL (queue ALLBATCH, entry 134) started on FASTBATCH

Instructs the linkerto link the closure of the VAX Ada main program
HOTEL against the user library NETWORK.OLB,andto use the linker
options file NET.OPT. The /SUBMIT qualifier causes the program library
manager to submit the linker commandfile as a batch job.

3. ACS> LINK/NOMAIN FLUIDVOLUME, COUNTER MONITOR.OBJ

Links the VAX Ada units FLUID_VOLUME and COUNTERwith the
foreign object file MONITOR.OBJ. The /NOMAIN qualifier tells the
linker that the image transfer address is in the foreign file.

4, ACS> LINK HOTEL ELNS$:RTL/INCLUDE= (KERSMSGDEF)

Links the closure of the VAX Ada main program HOTELagainst the
message object file KER$MSGDEFfrom the VAXELN messagelibrary
ELN$:RTL.OLB.

A-106 ACS CommandDictionary

LOAD

LOAD

Processes the Ada units contained in one or more sourcefiles. Processing

involves determining the compilation order for the units in the files and
invoking the VAX Ada compiler to partially compile the units. The partial
compilation detects syntax errors and updates the current program library
with unit dependence and source-file information.

Loaded units are considered to be obsolete and must be subsequently
recompiled.

Format

LOAD _file-specy...]

Command Qualifiers

/AFTER=time

/BATCH_LOG=file-spec

/COMMAND[=file-spec]

/[NO]JCONFIRM

/[NO]KEEP

/[NO]LOG

/NAME=job-name

/[NO]NOTIFY

/OUTPUT=file-spec

/[NO]PRINTER[=queue-name]

/QUEUE=queue-name

/SUBMIT

WAIT

Positional Qualifiers

/BACKUP

/BEFORE[=time]

/BY_OWNER[=uic]

/[NO]JCOPY_SOURCE

/CREATED

/[NO]DIAGNOSTICS[=file-spec]

Defaults

See text.

See text.

See text.

/NOCONFIRM

/KEEP

/NOLOG

See text.

/NOTIFY

See text.

/NOPRINTER

See text.

/SUBMIT

Seetext.

Defaults

See text.

See text.

See text.

/COPY_SOURCE

See text.

/INODIAGNOSTICS

ACS CommandDictionary A-—107

LOAD

/[NOJERROR_LIMIT[=n]_ - see text.

/EXCLUDE=(file-spec{....]) Seetext.

/EXPIRED | see text.

/[NO]LIST[=file-spec] /NOLIST

/MODIFIED | See text.
/[NO]JNOTE_SOURCE /NOTE_SOURCE

/[NO]REPLACE /REPLACE

/SINCE See text.

/[NOJWARNINGS[=(option],...])] See text.

Prompts

_File:

Command Parameters

file-spec[,...]

Specifies one or more VAX Ada sourcefiles to be loaded. If you do not
specify a file type, the compiler uses the default file type of .ADA. Wildcard
characters are allowedin the file specifications. (See the VMS DCL Concepts
Manual for more information on wildcard characters.)

Description

The ACS LOAD commandinvokes the VAX Ada compiler to partially
compile the units contained in thespecified files in any order. The partial
compilation detects syntax errors and updates the current program library
with unit dependence and source-file information. Units that are loaded
into a program library are considered obsolete and must be subsequently
recompiled. See Chapter 3 for more information on recompilation.

The LOAD commandis useful for putting the units in a set of files into a
program library for the first time.

The LOAD commanddoes not check for missing or duplicate compilation

units. (Units that have the same nameare considered to be duplicates.) The
LOAD commandallows unit bodies to be loaded into the program library in

the absence of their corresponding specifications. Similarly, subunits may
be loaded into the library in the absence of their corresponding parent (or

A-108 ACS CommandDictionary

LOAD

ancestor) units. Because specifications, bodies, and subunits can be loaded
in any order, the program library can be incomplete after a LOAD command
has been executed. For example, the program library could contain a
package body without a specification or a subunit without its corresponding

parent unit.

For each set of files specified, the LOAD command goes through the
following steps:

1. Resolves any wildcards in the list of source files specified. Within any
one directory, the version of a particularfile that has the highest number
is considered for compilation.

2. Creates a DCL commandfile for the compiler. The file contains com-

mands to compile the units in the source files. The commandfile is
deleted after the LOAD commandis terminated, unless you specified the

/COMMANDqualifier. If you specified the (COMMAND qualifier, the
commandfile is retained for future use, and the compileris not invoked.

3. If you did not specify the /COMMAND qualifier, the VAX Ada compileris
invoked for syntax-only compilation as follows:

a. By default (LOAD/SUBMIT), the compiler commandfile generated in
step 2 is submitted as a batch job.

If you specified the /WAIT qualifier, the commandfile is executed
in a subprocess. You must wait for the compilation to terminate

before entering another command. Note that when you specify the
LOAD/WAIT command, process logical names are propagated to the

subprocess generated to execute the commandfile.

For each unit being compiled, the compiler checks to see if the
unit is of the same name and kind as an existing unit in the
current program library. If a unit has the same name and kind as

an existing unit, a check is performedto see if the two units are
identical; that is, to see if their source files have the same creation

date and full file specification. If the two units are identical, the
library is not updated with the new unit. If the two units are not
identical or if the new unit is unique, the compiler updates the

- program library with the new unit.

ACS Command Dictionary A-109

LOAD

Command Qualifiers

/AFTER=time
Requests that the batch job be held until after a specific time when the
LOAD commandis executed in batch mode (the default mode). If the
specified time has already passed, or if the /AFTER qualifier is not specified,
the job is queued for immediate processing.

You can specify either an absolute time or a combination of absolute and
delta time. See the VMS DCL Concepts Manual (or type HELP Specify
Date_Time at the DCL prompt) for complete information on specifying time
values. |

/BATCH_LOG=file-spec
Provides a file specification for the batch log file when the LOAD command
is executed in batch mode(the default mode).

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If you do
not give a file specification with the file-spec option, the default file name
is the job name specified with the /NAME=job-namequalifier. If no job
namehas been specified, the program library managercreates a file name
comprising up to the first 39 characters of the first unit name specified. If
no job namehas been specified and there is a wildcard character in the first
unit specified, the program library manager uses the default file name ACS_
LOAD The default file type is .LOG. No wildcard characters are allowed in
the file specification.

/COMMAND[=file-spec]
Controls whether the LOAD operations are performed as a result of the
LOAD command, and determines whether the commandfile generated to
perform the LOAD operationsis saved. If you specify the /COMMANDqual-
ifier, the program library manager does not perform the LOAD operations,
and the generated commandfile is saved for you to invoke or submit as a
batch job.

The file-spec option allows you to entera file specification for the generated
commandfile. The default directory for the commandfile is the current
default directory. By default, the program library manager provides a
file name comprising upto thefirst 39 characters of the first unit name
specified. If you use a wildcard character in the first unit name specified,

A-110 ACS CommandDictionary

LOAD

the compiler uses the default name ACS_LOAD.Thedefault file type

is .COM. No wildcard characters are allowed in thefile specification.

By default, if you do not specify the file-spec option, the program library

manager deletes the generated commandfile when the LOAD command
completes normally or is terminated.

/CONFIRM
/NOCONFIRM(D)
Controls whether the LOAD commanddisplays the nameof eachfile before
loading, and requests you to confirm whetheror not the file should be

processed. If you specify the /CONFIRM qualifier, the possible responses are
as follows:

e Affirmative responses are YES, TRUE,and1.

e Negative responses are NO, FALSE, 0, and the RETURN key.

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-
mand at that point.

e ALL indicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in

the list, the promptis reissued.

By default, no confirmation is requested.

/KEEP (D)

/NOKEEP

Controls whether the batch log file generated is deleted after it is printed
when the LOAD commandis executed in batch mode (the default mode).

By default, the log file is not deleted.

/LOG
/NOLOG
Controls whethera list of all the files that will be loaded is displayed.

By default, a list of the files that will be loaded is not displayed.

ACS CommandDictionary A-111

LOAD

/NAME=job-name
Specifies a string to be used as the job name andasthefile name for the
batch log file when the LOAD commandis executed in batch mode (the
default mode). The job name can have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising up tothe first 39 characters of the

first file name specified. If you do not specify the /NAME qualifier, but use
a wildcard character in thefirst file name specified, the compiler uses the

default name ACS_LOAD.In these cases, the job nameis also the file name
of the batch logfile.

/NOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the NOTIFY commandis
executed in batch mode (the default mode). The messageis broadcast to any
terminal at which you are logged in, notifying you that your job has been
completed or terminated.

By default, a message is broadcast.

/OUTPUT=file-spec
Requests that any program library manager output generated before

the compiler is invoked be written to the file specified rather than to
SYS$OUTPUT. Any diagnostic messages are written to both SYS$OUTPUT
andthefile.

The default directory is the current default directory. If you specify a file

type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowed in thefile specification.

By default, the LOAD command output is written to SYS$OUTPUT.

/PRINTER[=queue-name]
/NOPRINTER (D) |
Controls whether the batch job log file is queued for printing when the
LOAD commandisexecuted in batch mode (the default mode).

The /PRINTER qualifier allows you to specify a particular print queue. The
default print queuefor the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify the
/NOPRINTER qualifier, the /KEEP qualifier is assumed.

A-112 ACS Command Dictionary

LOAD

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the LOAD
commandis executed in batch mode (the default mode).

By default, if the /QUEUE qualifier is not specified, the program library
managerfirst checks whether the logical name ADA$BATCHis defined.

If it is, the program library manager enters the job in the queue speci-
fied. Otherwise, the job is placed in the default system batch job queue,
SYS$BATCH.

/SUBMIT
Directs the program library manager to submit the commandfile generated
for the compiler to a batch queue. You can continue to enter commands
in your current process without waiting for the batch job to complete. The
compiler output is written to a logfile.

By default, the program library manager submits the commandfile gener-
ated for the compiler to a batch queue.

/WAIT
Directs the program library manager to execute the commandfile generated
for the compiler in a subprocess. Execution of your current process is
suspended until the subprocess completes. The compiler output is written
directly to your terminal. Note that process logical names are propagated to
the subprocess generated to execute the commandfile.

By default, the program library manager submits the commandfile gener-
ated for the compiler to a batch queue (LOAD/SUBMIT).

Positional Qualifiers

/BACKUP
Selects files according to the dates of their most recent backups. Modifies
the time value specified with the /BEFOREor /SINCE qualifier.

This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /CREATED, /EXPIRED, and

/MODIFIED.If you specify none of these four time qualifiers, the default is
/CREATED.

ACS Command Dictionary A-113

LOAD

/BEFORE[=time]
Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times, or

as one of the following keywords: TODAY (the default), TOMORROW,or
YESTERDAY. See the VMS DCL Concepts Manual (or type HELP Specify
Date_Time at the DCL prompt) for complete information on specifying time
values.

You can specify one of the following qualifiers with the /BEFORE qualifier to
indicate the time attribute to be used as the basis for selection: /BACKUP,

/CREATED(the default), /EXPIRED, or /MODIFIED.

/BY_OWNER[=uic]
Selects only those files whose owner useridentification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

/COPY_SOURCE(D)
/NOCOPY_SOURCE
Controls whether a copied source file is created in the current pro-
gram library when a compilation unit is loaded without error. The ACS
RECOMPILE commandrequires that a copied sourcefile exist in the cur-
rent program library; the ACS COMPILE command uses the copied source
file if it cannot find an external source file when it is recompiling an obsolete
unit or completing an incomplete generic instantiation (see Chapter 3).
Copied source files may also be used by the VMS Debugger (see Chapter6).

By default, a copied source file is created in the current program library
when a unit is loaded without error.

/CREATED

Selects files based on their dates of creation. Modifies the time value

specified with the /BEFOREor /SINCE qualifier.

This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /BACKUP, /EXPIRED, and
/MODIFIED.If you specify none of these four time qualifiers, the default is
/CREATED.

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS(D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnosticsfile is supported only

A-114 ACS Command Dictionary

LOAD

for use with Digital layered products, such as the VAX Language-Sensitive
Editor.

One diagnostics file is created for each source file that is compiled. The
default directory for diagnostics files is the current default directory. The
default file name is the nameof the source file being compiled. The default
file type of a diagnostics file is .DIA. No wildcard characters are allowed in
the file specification.

By default, no diagnostics file is created.

/ERROR_LIMIT[=n]
/NOERROR_LIMIT
Controls whether execution of the LOAD commandfor a given compilation
unit is terminated upon the occurrence of the nth E-level error within that
unit.

Error counts are not accumulated across a sequence of compilation units.
If the /ERROR_LIMIT=noption is specified, each compilation unit may
have up to n — 1 errors without terminating the compilation. When the
error limit is reached within a compilation unit, compilation of that unit is
terminated, but compilation of subsequent units continues.

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the COMPILE commandis terminated for a given
compilation unit upon the occurrence of the 30th E-level error within that
unit (equivalent to /ERROR_LIMIT=30).

/EXCLUDE=(file-specf,...])
Excludes the specified files from the LOAD operation. You can include a
directory but not a device in thefile specification. Wildcard characters
are allowed in thefile specification. However, you cannot use relative
version numbers to exclude a specific version. If you provide only one file

specification, you can omit the parentheses.

/EXPIRED
Selects files according to their expiration dates. (The expiration date is set
with the DCL SET FILE/EXPIRATION_DATE command.) Modifies the time
value specified with the /BEFOREor /SINCE qualifier.

ACS Command Dictionary A—-115

LOAD

This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /BACKUP, /CREATED, and

/MODIFIED.If you specify none of these four time qualifiers, the default is
/CREATED.

/LIST[=file-spec]
/NOLIST(D)
Controls whethera listing file is created. One listing file is created for each
compilation unit (not file) compiled by the LOAD command.

The default directory for listing files is the current default directory. The
default file nameof a listing file corresponds to the nameof its compilation
unit and uses the VAX Ada file-name conventions described in Chapter1.
The default file type of a listing file is .LIS. No wildcard characters are
allowedin the file specification.

By default, the LOAD command doesnotcreate listingfile.

/MODIFIED
Selects files according to the dates on which they were last modified.
Modifies thetime value specified with the /BEFOREor /SINCE qualifier.

This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /BACKUP, /CREATED, and
/EXPIRED. If you specify none of these four time qualifiers, the default is
/CREATED.

/NOTE_SOURCE(D)
/NONOTE_SOURCE
Controls whetherthe file specification of the sourcefile is noted in the
program library when a unit is loaded without error. The COMPILE
commandusesthis information to locate revised sourcefiles.

By default, the file specification of the source file is noted in the current
program library when a unit is compiled withouterror.

/REPLACE(D)
/NOREPLACE
Controls whether the loaded unit replaces a unit with the same namethat
is already defined in the current program library. If the /NOREPLACE
qualifier is specified, and a unit already exists in the program library with
the same nameas a unit being loaded, a diagnostic message is issued, and
the existing unit is not replaced.

A-116 ACS Command Dictionary

LOAD

By default, the loaded unit replaces a unit with the same namethatis
already defined in the current program library.

/SINCE
Selects only those files dated after the specified time. You can specify
time as an absolute time, a combination of absolute and delta times, or

as one of the following keywords: TODAY (the default), TOMORROW,or
YESTERDAY. See the VMS DCL Concepts Manual (or type HELP Specify
Date_Time at the DCL prompt) for complete information on specifying time
values.

You can specify one of the following qualifiers with the /SINCE qualifier to
indicate the time attribute to be used as the basis for selection: /BACKUP,

/CREATED (the default), /EXPIRED, or /MODIFIED.

/WARNINGS[=(option{,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can
specify any combination of the following message options:

WARNINGS:(destination[,...])

NOWARNINGS

WEAK_WARNINGS: (destination|,...])

NOWEAK_WARNINGS

SUPPLEMENTAL:(destination[,...])

NOSUPPLEMENTAL

COMPILATION_NOTES:(destination[,...])
NOCOMPILATION_NOTES

STATUS:(destination|,...])

NOSTATUS

The possible values of destination are ALL, NONE, or any combination of
TERMINAL (terminal device), LISTING (listing file), and DIAGNOSTICS

(diagnostics file). The message categories are summarized as follows (see
Chapter 3 for more information):

ACS CommandDictionary A-117

LOAD

WARNINGS

WEAK_WARNINGS

SUPPLEMENTAL

COMPILATION_NOTES

STATUS

The defaults are as follows:

W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERRORat run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

I-level: Additional information associated with pre-

ceding E-level or W-level diagnostics.

I-level: Information about how the compiler trans-
lated a program, such as record layout, parameter-
passing mechanisms,or decisions madefor the prag-
mas INLINE, INTERFACE,or the import-subprogram
pragmas.

I-level: End of compilation statistics and other
messages.

/WARNINGS= (WARN: ALL, WEAK: ALL, SUPP: ALL, COMP: NONE, STAT: LIST)

If you specify only some of the message categories with the /WARNINGS
qualifier, the default values for the other categories are used.

Example

$ ACS LOAD/NOCOPYSOURCE [JONES.NEWUNITS] *

S ACS COMPILE/NOCOPYSOURCE MAIN

S ACS LINK MAIN

This series of commandsbuilds the program MAINfrom set of files
that have never been previously compiled. The LOAD command puts
syntax-checked, obsolete units into the current program library.

A-118 ACS CommandDictionary

LOAD

The COMPILE command recompiles the units from their original source
files. The LINK command creates an executable image for the program
MAIN. Note the use of /NOCOPY_SOURCEqualifiers to control the creation
of copied sourcefiles.

ACS Command Dictionary A-119

MERGE

MERGE

Moves one or more units from the current program sublibrary to its immedi-
ate parent program library.

Format

MERGE unit-namef,...]

Command Qualifiers Defaults

/[NO}]JCONFIRM /NOCONFIRM

/[NOJENTERED[=library] /ENTERED

/[NO]KEEP /NOKEEP

/[NO]LOCAL /LOCAL

/[NO]LOG /NOLOG

Positional Qualifiers | Defaults

/BODY_ONLY See text.

/SPECIFICATIONONLY See text.

Prompts

Unit:

Command Parameters

A-120

unit-namef,...]
Specifies one or more units, in the current program sublibrary, that are to be
merged into the parent program library. You must express subunit names
using selected component notation asfollows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

The unitnames mayinclude percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

ACS CommandDictionary

MERGE

Description

The ACS MERGE command moveseach specified unit’s specification and
body (if any) from the current sublibrary to the parent library. If a subunit
nameis specified, the MERGE command movesthe subunit into the parent
library.

For each unit merged, the MERGE command movesits associated files into
the parent library and updates the parent library’s indexfile.

If the parent program library already has a version of the unit to be merged,
the unit to be merged must have a more recent external sourcefile.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the MERGE command displays the nameof each unit
before merging and requests you to confirm whetheror not the unit should
be merged. If you specify the /CONFIRM qualifier, the possible responses
are as follows:

e Affirmative responses are YES, TRUE,and1.

e Negative responses are NO, FALSE, 0, and the RETURN key.

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-
mand at that point.

¢ ALLindicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses canbe abbreviated to one or moreletters (for
example, Y, YE, or YES). If you type a response other than one of those in
the list, the prompt is reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are merged. You can use thelibrary option
to merge units that were entered from a particular library. When you
specify the /NOENTERED qualifier, only the units that have been compiled

ACS Command Dictionary A-121

MERGE

or copied into the current program library are merged. Note that when
you specify the /ENTERED qualifier, local units are merged unless the

/NOLOCAL qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units, including entered units, are merged.

/KEEP
/NOKEEP(D)
Controls whether a copy of a unit being mergedis retained in the current
program sublibrary after the merge operation.

By default, the unit is deleted from the program sublibrary after the merge
operation.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library
by a compilation or a COPY UNIT command)are merged. Note that when
you specify the /LOCAL qualifier, entered units are merged unless the
/NOENTEREDqualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified, including localunits, are merged.

/LOG
/NOLOG (D)
Controls whether the nameof each unit is displayed after it has been
merged.

By default, the names of merged units are not displayed.

Positional Qualifiers

/BODYONLY
Merges only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the MERGE command
string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the commandline override the /BODY_ONLY qualifier
for those particular parameters. You cannot append both the /BODY_
ONLY qualifier and the /SPECIFICATION_ONLYqualifier to the MERGE
commandstring or to the same unit name parameter.

A-122 ACS Command Dictionary

MERGE

By default, if the /BODY_ONLY qualifier is omitted, the specification, as
well as the body, is merged.

/SPECIFICATION_ONLY
Merges only the specification of the specified unit.

When you append the /SPECIFICATION_ONLYqualifier to the MERGE
commandstring, any /BODY_ONLYqualifiers that are appended to param-
eters in the commandline override the /BODY_ONLY qualifier for those
particular parameters. You cannot append both the /SPECIFICATION_
ONLY qualifier and the /BODY_ONLYqualifier to the MERGE command
string or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLYqualifier is omitted, the body, as
well as the specification, is merged.

Example

ACS> SET LIBRARY [JONES.HOTEL.SUBLIB]
6I, Current program library is USER: [JONES.HOTEL.SUBLIB])

ACS> SHOW LIBRARY/FULL

Program library USER: [JONES.HOTEL.SUBLIB]

Sublibrary

of USER: [HOTEL.ADALIB]

ACS> MERGE RESERVATIONS .CANCEL

Establishes the sublibrary [JONES.HOTEL.SUBLIB] as the current pro-
gram sublibrary. The SHOW LIBRARY/FULL commandidentifies the

parent library [HOTEL.ADALIB]. The MERGE commandcopies the subunit
RESERVATIONS.CANCELfrom the current program sublibrary into the
parent library, replacing any previous version of RESERVATIONS.CANCEL
in the parentlibrary, then deletes the original unit from the current program

sublibrary.

If the copy of the unit in the parent library is newer than the unit in the

sublibrary, the unit is not merged.

ACS Command Dictionary A-123

RECOMPILE

RECOMPILE

Enters an ACS CHECK commandfor the specified units, then recompiles
(makes current) any obsolete unit that is part of the closure of the set of
units specified. Obsolete entered units must be made current before you can
use the ACS RECOMPILE command(see the Description section).

NOTE

To be recompiled, units must have previously been compiled with
the /COPY_SOURCEqualifier (this is the default value of this
qualifier).

Format

RECOMPILE [unit-namef....]]

Command Qualifiers

/AFTER=time

/[NOJANALYSIS_DATA[=file-spec]

/BATCH_LOG=file-spec

/[NO]JCHECK

/CLOSURE

/COMMAND/[=file-spec]

/[NO]JCONFIRM

/[NO]COPY_SOURCE

/[NO]DEBUG[=(option],...])]

/[NO]DIAGNOSTICS[=file-spec]

/[NOJERROR_LIMIT[=n]

/[NO]KEEP

/[NO]LIST[=file-spec]

/[NO]LOG

/[NOJMACHINE_CODE

/NAME=job-name

/[NOJNOTE_SOURCE

/[NO]NOTIFY

/[NOJOPTIMIZE[=(option{,...])]

A-124 ACS CommandDictionary

Defaults

See text.

INOANALYSIS_DATA

See text.

Seetext.

See text.

Seetext.

/NOCONFIRM

/COPY_SOURCE

/DEBUG=ALL

/NODIAGNOSTICS

/ERROR_LIMIT=30

/KEEP

/NOLIST

/NOLOG

/NOMACHINE_CODE

Seetext.

/NOTE_SOURCE

/NOTIFY

See text.

/OUTPUT=file-spec

/[NO]PRELOAD

/[NOJPRINTER[=queue-name]

/QUEUE=queue-name

/[NO]JSHOW[=option]

/SPECIFICATION_ONLY

/SUBMIT

/[NO]SYNTAX_ONLY

WAIT

/[NO]WARNINGSJ=(option],...])]

Positional Qualifiers

/[NO]DATE_CHECK

/FORCE_BODY

RECOMPILE

/OUTPUT=SYS$OUTPUT

/NOPRELOAD

/NOPRINTER

/QUEUE=ADA$BATCH

/SHOW=PORTABILITY

See text.

/SUBMIT

/NOSYNTAX_ONLY

See text.

See text.

Defaults

/DATE_CHECK

See text.

Prompts

Unit:

Command Parameters

[unit-namef,...]]
Specifies one or more units in the current program library whose closure
is to be processed by the ACS RECOMPILE command. You must express
subunit names using selected component notation as follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

The unit names mayinclude percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manualfor detailed information on
wildcard characters.)

If you do not specify any units with the ACS RECOMPILE command, the
command uses whatever units were involved with the most recent ACS

CHECK command.

ACS Command Dictionary A-125

RECOMPILE

Description

A-126

The ACS RECOMPILE commandis designed to be used when a unit or a
set of units must be compiled again, but the original source code has not
changed. Thus, the RECOMPILE commandis useful for performing the

following operations:

¢ To make an obsolete unit or set of units current (see Chapter 1 for
definitions of obsolescence and currency).

¢ To complete incomplete generic instantiations, once the missing or
changed generic body has been compiled into the current program
library. :

¢ To recompile units after the value of a global program library character-
istic such as LONG_FLOAT or SYSTEM_NAMEhas been changed(for
example, after you have used the ACS SET PRAGMA command).

e To obtain new versions of some units, compiled with a particular
combination of compilation qualifiers (for example, /OPTIMIZE=SPACE,
/CHECK, and so on). In this case, the units are not obsolete, but the

RECOMPILE command, in combination with the /NODATE_CHECK

qualifier, can be used to force the recompilation of the entire execution

closure of a set of units.

For each set of units specified, the RECOMPILE commandgoes through the
following steps:

1. Enter an ACS CHECK command:

a. Forms the execution closure of the specified units.

b. Determines whether each unit in the closure is in the program
library and is current. Units entered from other program libraries
as well as those compiled or copied into the current program library
are checked.

c. If all units in the closure are in the program library and are current,
issues an informational message and terminates the operation.

d. Identifies any unit in the closure that is missing from the current
program library.

e. Identifies any unit in the closure that is obsolete and must be
recompiled.

ACS CommandDictionary

RECOMPILE

2. If any units in the closure created by the CHECK commandare obso-

lete, creates a DCL commandfile for the compiler. The file contains
commands to compile the copied source file of each obsolete unit in the
proper order. Entered units are not considered for recompilation. The
commandfile is deleted after the RECOMPILE commandis completed
or terminated, unless the /COMMAND qualifier is specified. If the
/COMMANDqualifier is specified, the commandfile is retained for
future use, and the compiler is not invoked.

3. Unless the /COMMANDqualifier is specified, invokes the VAX Ada
compiler as follows:

a. By default (RECOMPILE/SUBMIT), the compiler commandfile
generated in step 2 is submitted as a batch job.

b. If you specify the /WAIT qualifier, the commandfile is executed in a
subprocess. You must wait for the compilation to terminate before
entering another command. When you specify the /WAIT qualifier,
process logical names are propagated to the subprocess generated to
execute the commandfile.

Note the use of copied source files in the recompilation. Files external to
the current program library are ignored. If a copied source file needed for
the recompilation is missing (because the /NOCOPY_SOURCEqualifier was
specified in a previous compilation), the program library manageridentifies
the missing file, and the recompilation is not attempted. Thus, if you intend
to use the RECOMPILE command, you should not compile units with the
/NOCOPY_SOURCEqualifier.

If the closure you are recompiling includes an obsolete entered unit, that
unit is not affected by the RECOMPILE command; an error diagnostic
is issued and the RECOMPILE commandis not executed. You should
recompile an obsolete entered unit in its own program library and then
reenter it into the current program library before you try to recompile its
dependent units in the currentlibrary.

Program library manager output originating before the compiler is invoked
is reported to your terminal by default, or to a file specified with the
/OUTPUT qualifier. Compiler diagnostics are reported to a log file, by
default, or to the terminal if the RECOMPILE commandis executed in a

subprocess (by way of the RECOMPILE/WAIT command).

See Chapter 3 for more information on the RECOMPILE command.

ACS Command Dictionary A-127

RECOMPILE

Command Qualifiers

A-128

/AFTER=time
Requests that the batch job be held until after a specific time when the
RECOMPILE commandis executed in batch mode (the default mode). If the
specified time has already passed, or if the /AFTER qualifier is not specified,
the job is queued for immediate processing.

You can specify either an absolute time or a combination of absolute and
delta time. See the VMS DCL Concepts Manual (or type HELP Specify
Date_Time at the DCL prompt) for complete information on specifying time
values.

/ANALYSIS_DATA[=file-spec]
/NOANALYSIS_DATA (D)
Controls whether a data analysis file containing source code cross-reference
and static analysis information is created. The data analysis file is sup-
ported only for use with Digital layered products, such as the VAX Source
Code Analyzer.

One data analysis file is created for each copied sourcefile that is recom-
piled. The default directory for data analysis files is the current default
directory. The default file name is the nameof the source file being com-
piled. The default file type is .ANA. No wildcard characters are allowed in
the file specification.

By default, no data analysis file is created.

/BATCH_LOG=file-spec
Provides a file specification for the batch log file when the RECOMPILE
commandis executed in batch mode (the default mode).

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If you do
not give a file specification with the file-spec option, the default file name
is the job name specified with the /NAME=job-name qualifier. If no job
name has been specified, the program library managercreates a file name
comprising up to thefirst 39 characters ofthe first unit name specified.
If no job name has been specified and there is a wildcard character in the
first unit specified, the program library manager uses the default file name
ACS_RECOMPILE.The default file type is .LOG. No wildcard characters
are allowed in thefile specification.

ACS CommandDictionary

RECOMPILE

/CHECK
/NOCHECK
Controls whether all run-time checks are suppressed. The /NOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmasin the
source code.

Explicit use of the /CHECK qualifier overrides any occurrences of the
pragmas SUPPRESS and SUPPRESS_ALLin the source code, without the
need to edit the source code.

By default, run-time checks are only suppressed in cases where a pragma
SUPPRESS or SUPPRESS_ALL appearsin the source code.

See the VAXAda Language Reference Manual for more information on the
pragmas SUPPRESS and SUPPRESS_ALL.

/CLOSURE
Causes the /SPECIFICATION_ONLY, /NODATE_CHECK, and /FORCE_
BODYqualifiers to apply to all units in the closure of units namedin the
RECOMPILE command. (Without the /CLOSURE qualifier, these qualifiers
apply only to the units named in the command.)

See the description of the /SPECIFICATION_ONLY qualifier in the list of
commandqualifiers; see the description of the /[NOJDATE_CHECK and
/FORCE_BODYqualifiers in the list of positional qualifiers.

/COMMAND[=file-spec]
Controls whether the compiler is invoked as a result of the RECOMPILE
command, and determines whether the commandfile generated to invoke
the compiler is saved. If you specify the (COMMANDqualifier, the program
library manager does not invoke the compiler, and the generated command
file is saved for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the generated
commandfile. The default directory for the commandfile is the current
default directory. By default, the program library managerprovides a
file name comprising upto thefirst 39 characters of the first unit name
specified. If you use a wildcard character in the first unit namespecified,
the compiler uses the default name ACS_RECOMPILE.Thedefault file type
is .COM. No wildcard characters are allowed in the file specification.

ACS Command Dictionary A-129

RECOMPILE

A-130

By default, if you do not specify the (COMMANDqualifier, the program
library manager deletes the generated commandfile when the RECOMPILE
command completes normally or is terminated.

/CONFIRM
/NOCONFIRM (D)
Controls whether the RECOMPILE commandasks you for confirmation be-

fore performing a possibly lengthy operation. If you specify the /CONFIRM
qualifier, the possible responsesareas follows:

e Affirmative responses are YES, TRUE,and1.

e Negative responses are NO, FALSE, 0, and the RETURNkey.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or moreletters (for
example, Y, YE, or YES). If you type a response other than one of those in

the list, the promptis reissued.

By default, no confirmation is requested.

/COPY_SOURCE(D)
/NOCOPY_SOURCE
Controls whether a copied source file is created in the current program
library when a compilation unit is recompiled without error. The ACS
RECOMPILE commandrequires that a copied source file exist in the
current program library; the ACS COMPILE commandusesthe copied
source file if it cannot find an external source file when it is recompiling
an obsolete unit or completing an incomplete generic instantiation (see
Chapter 3). Copied source files may also be used by the VMS Debugger(see
Chapter6).

The /[LNOJCOPY_SOURCEqualifier has an effect with the RECOMPILE
command only for those obsolete units in a parent library that are being

recompiled into the current sublibrary to make them current. In this case,
by default, a copied sourcefile is created in the currentprogram library

when a unit is recompiled withouterror.

/DEBUG[=(optionf{,...])] (D)
/NODEBUG
Controls which debugger compiler options are provided. You can debug VAX
Ada programs with the VMS Debugger (see Chapters 6 and 7). You can
request the following options:

ACS CommandDictionary

RECOMPILE

ALL Provides both SYMBOLS and TRACEBACK

NONE Provides neither SYMBOLS nor TRACEBACK

[NOJSYMBOLS Controls whether debugger symbol records are included in
the objectfile »

[NO]ITRACEBACK Controls whether traceback information (a subset of the

debugger symbol information) is included in the objectfile

By default, both debugger symbol records and traceback information are
includedin the object files (DEBUG=ALL,or equivalently: /DEBUGQ).

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with Digital layered products, such as the VAX Language-Sensitive
Editor. |

By default, a diagnosticsfile is created from the copied source file for each

unit that is recompiled.

/ERROR_LIMIT[=n]
/NOERROR_LIMIT
Controls whether execution of the RECOMPILE commandfor a given
compilation unit is terminated upon the occurrence of the nth E-level error
within that unit.

Error counts are not accumulated across a sequence of compilation units.

If the /ERROR_LIMIT=n option is specified, each compilation unit may
have up to n — 1 errors without terminating the compilation. When the
error limit is reached within a compilation unit, compilation of that unit is
terminated, but compilation of subsequent units continues.

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the RECOMPILE commandis terminated for a
given compilation unit upon the occurrence of the 30th E-level error within
that compilation unit (equivalent to /ERROR_LIMIT=30).

ACS CommandDictionary A-131

RECOMPILE

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it is printed
when the RECOMPILE commandis executed in batch mode(the default
mode).

By default, the log file is not deleted.

/LIST[=file-spec]
/NOLIST(D)
Controls whethera listingfile is created. One listing file is created for each
compilation unit (not file) recompiled by the RECOMPILE command. The
default directory for listing files is the current default directory. The default
file nameofa listing file corresponds to the nameof its compilation unit and
uses the VAX Adafile-name conventions described in Chapter1.

The default file type of a listing file is .LIS. No wildcard characters are
allowed in the file specification.

By default, the RECOMPILE command doesnotcreatea listingfile.

/LOG
/NOLOG(D) |
Controls whethera list of all the units that must be recompiled is displayed.

By default, a list of the units that must be recompiled is not displayed.

/MACHINE_CODE
/NOMACHINE_CODE(D)
Controls whether generated machine code (approximating assembler
notation) is included inthelistingfile.

By default, generated machinecodeis not included in thelistingfile.

/NAME=job-name
Specifies a string to be used as the job name andasthefile namefor the
batch log file when the RECOMPILE commandis executed in batch mode
(the default mode). The job name can have from 1 to 39 characters.

A-132 ACS Command Dictionary

RECOMPILE

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising upto the first 39 characters of the
first unit namespecified. If you do not specify the /NAME qualifier, but use
a wildcard character in the first unit namespecified, the compiler uses the
default name ACS_RECOMPILE.In thesecases, the job nameis also the
file nameof the batch logfile.

/NOTE_SOURCE(D)
/NONOTE_SOURCE
Controls whetherthefile specification of the source file is noted in the
program library when a unit is recompiled without error. The COMPILE
commandusesthis information to locate revised sourcefiles.

The /[NOJNOTE_SOURCEqualifier has no effect with the RECOMPILE
command.

/NOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the RECOMPILE command
is executed in batch mode (the default mode). The message is broadcast to
any terminal at which you are logged in, notifying you that your job has
been completed or terminated.

By default, a message is broadcast.

/OPTIMIZE[=(option{,...])]
/NOOPTIMIZE
Controls the level of optimization that is applied in producing the compiled
code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary op-
timization criterion. Overrides any occurrences of the
pragma OPTIMIZE(SPACE)in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(TIME)in the source code.

ACS Command Dictionary A-133

RECOMPILE

A-134

DEVELOPMENT Suggested when active development of a program is in
progress. Provides some optimization, but development
considerations and ease of debugging take preference
over optimization. This option overrides pragmas that
establish a dependence on a subprogram or generic body
(the pragmas INLINE and INLINE_GENERIC), and thus
reduces the need for recompilations when such bodies are
modified. This option also disables generic code sharing.

NONE Provides no optimization. Suppresses inline expansions
of subprograms and generics, including those specified by
the pragmas INLINE and INLINE_GENERIC.Suppresses
occurrences of the pragma SHARE_GENERIC anddisables
generic code sharing.

The /NOOPTIMIZE qualifier is equivalent to /OPTIMIZE=NONE.

By default, the RECOMPILE commandappliesfull optimization with time
as the primary optimization criterion (like /OPTIMIZE=TIME, but observing

uses of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you can
use separately or together with the primary options to override the default
behavior for inline expansion (generic and subprogram) and generic code
sharing.

The INLINE secondary option can have the following values (see the
VAXAda Run-Time Reference Manual for more information about inline
expansion):

NONE Disables subprogram and generic inline expansion.
This option overrides any occurrences of the pragmas
INLINE or INLINE_GENERIC in the source code,

without your having to edit the source file. It also
disables implicit inline expansion of subprograms.
(Implicit inline expansion means that the compiler
assumes a pragma INLINEfor certain subprograms
as an optimization.) A call to a subprogram or an
instance of a generic in another unit is not expanded
inline, regardless of the /OPTIMIZE optionsin effect
when that unit was compiled.

ACS CommandDictionary

NORMAL

SUBPROGRAMS

GENERICS

RECOMPILE

Provides normal subprogram and generic inline
expansion.

Subprograms to which an explicit pragma INLINE ap-
plies are expandedinline undercertain conditions. In
addition, some subprogramsare implicitly expanded
inline. The compiler assumes a pragma INLINEfor
calls to some small local subprograms (subprograms
that are declared in the same unit as the unit in
which thecall occurs).

Instances are compiled separately from the unit in
which the instantiation occurred unless a pragma
INLINE_GENERIC applies to the instance. If a
pragma INLINE_GENERIC applies and the generic
body has been compiled, the generic is expanded
inline at the point of instantiation.

Provides maximal subprogram inline expansion and
normal generic inline expansion.

In addition to the normal subprogram inline expan-
sion that occurs when INLINE:NORMAL isspecified,
this option results in implicit inline expansion of some
small subprograms declared in other units. The com-
piler assumes a pragma INLINEfor any subprogram
if it improves execution speed and reduces codesize.
This option may establish a dependence on the body
of another unit, as would be thecase if a pragma
INLINE werespecified explicitly in the source code.

With this option, generic inline expansion occurs in
the same manner as for INLINE:NORMAL.

Provides normal subprogram inline expansion and
maximal generic inline expansion.

With this option, subprogram inline expansion occurs
in the same manneras for INLINE:NORMAL.

The compiler assumes a pragma INLINE_GENERIC
for every instantiation in the unit being compiled
unless an explicit pragma SHARE_GENERICapplies
or a generic bodyis not available. This option may
establish a dependence on the body of another unit,
as would be the case if a pragma INLINE_GENERIC
were specified explicitly in the source code.

ACS CommandDictionary A-135

RECOMPILE

MAXIMAL Provides maximal subprogram and generic inline
expansion.

Maximal subprogram inline expansion occurs as
for INLINE:SUBPROGRAMS,and maximal generic
inline expansion occurs as for INLINE:GENERICS.

The SHAREsecondary option can have the following values:

NONE

NORMAL

MAXIMAL

Disables generic sharing. This option overrides the effect
of any occurrences of the pragma SHARE_GENERICin
the source code, without your having to edit the source
file. In addition, instances do not share code from previous
instantiations.

Provides normal generic sharing. Normally, the compiler
will not attempt to generate shareable code for an instance
(code that can be shared by subsequent instantiations)
unless an explicit pragma SHARE_GENERIC applies to
that instance. However, an instance will attempt to share
code that resulted from a previous instantiation to which
the pragma SHARE_GENERICapplied.

Provides maximal generic sharing. The compiler as-
sumes that a pragma SHARE_GENERICapplies to every
instance.in the unit being compiled unless an explicit
pragma INLINE_GENERIC applies. Thus, an instance
will attempt to share code that resulted from a previous
instantiation or to generate code that can be shared by
subsequent instantiations.

SHARE:MAXIMAL cannot be used in combination with

INLINE:GENERICSor INLINE:MAXIMAL.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

/OPTIMIZE=TIME

/OPTIMIZE=SPACE

=(INLINE:NORMAL, SHARE:NORMAL)

=(INLINE:NORMAL, SHARE:NORMAL)

/OPTIMIZE=DEVELOPMENT =(INLINE:NONE, SHARE:NONE)

/OPTIMIZE=NONE =(INLINE:NONE, SHARE:NONE)

See Chapter 3 for more information about the /OPTIMIZE qualifier and its
options.

A-136 ACS Command Dictionary

RECOMPILE

/OUTPUT=file-spec
Requests that any program library manager output generated before
the compiler is invoked be written to the file specified rather than to
SYS$OUTPUT. Any diagnostic messages are written to both SYS$OUTPUT
and thefile.

The default directory is the current default directory. If you specify a file
type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowed in the file specification.

By default, the RECOMPILE commandoutput is written to SYSSOUTPUT.

/PRELOAD
/NOPRELOAD(D)
Controls whether the RECOMPILE commandprocessescopied sourcefiles in
the same manner as the COMPILE/PRELOAD commandprocesses external
source files—to account for new compilation units or unit dependences. _
Because new units and unit dependences are normally not introduced by
way of copied source files, the /PRELOAD qualifier has no effect when
specified with the RECOMPILE command.

By default, the RECOMPILE commanddoes not process copied sourcefiles

to account for new compilation units or unit dependences.

/PRINTER[=queue-name]
/NOPRINTER(D)
Controls whether the batch job log file is queued for printing when the
RECOMPILE commandis executed in batch mode(the default mode).

The /PRINTER qualifier allows you to specify a particular print queue. The
default print queuefor the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify the
/NOPRINTER qualifier, the /KEEP qualifier is assumed.

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the
RECOMPILE commandis executed in batch mode (the default mode).

ACS Command Dictionary A-—137

RECOMPILE

A-138

By default, if the /QUEUE qualifier is not specified, the program library

managerfirst checks whether the logical name ADA$BATCHis defined.
If it is, the program library manager enters the job in the queue speci-

fied. Otherwise, the job is placed in the default system batch job queue,
SYS$BATCH.

/SHOW|=option] (D)
/NOSHOW
Controls the listing file options included whena listing file is provided. You
can specify one of the following options:

ALL Providesall listing file options.

[LNOJPORTABILITY Controls whether a program portability summary is
includedin thelisting file (see Chapter5).

NONE Provides none of thelisting file options (same as
/NOSHOW). |

By default, the RECOMPILE commandprovides a portability summary
(/(SHOW=PORTABILITY).

/SPECIFICATION_ONLY
Causes only thespecifications of the units specified to be considered

for recompilation. You can use the /CLOSURE qualifier with the
/SPECIFICATION_ONLYqualifier to force only the specifications in the
execution closure of the specified units to be considered for recompilation.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, all of the
specifications, bodies, and subunits in the execution closure of the units

specified are considered for compilation.

/SUBMIT
Directs the program library manager to submit the commandfile generated
for the compiler to a batch queue. You can continue to enter commands
in your current process without waiting for the batch job to complete. The
compiler output is written to a logfile.

By default, the program library manager submits the commandfile gener-
ated for the compiler to a batch queue.

ACS Command Dictionary

RECOMPILE

/SYNTAX_ONLY
/NOSYNTAX_ONLY(D)
Controls whether the copied source file is to be checked only for correct
syntax. If you specify the /SYNTAX_ONLY qualifier, other compiler checks
are not performed (for example, semantic analysis, type checking, and so

on), and the program library is not updated.

By default, the compiler performsall checks.

/WAIT
Directs the program library manager to execute the commandfile generated
for the compiler in a subprocess. Execution of your current processis
suspended until the subprocess completes. The compiler output is written
directly to your terminal. Note that process logical names are propagated to
the subprocess generated to execute the commandfile.

By default, the program library manager submits the commandfile gener-
ated for the compiler to a batch queue (by way of the RECOMPILE/SUBMIT
command).

/WARNINGS[=(option{,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can

specify any combination of the following message options:

WARNINGS:(destination{,...])

NOWARNINGS

WEAK_WARNINGS:(destination|[,...])

NOWEAK_WARNINGS

SUPPLEMENTAL: (destination[,...])

NOSUPPLEMENTAL

COMPILATION_NOTES:(destination[,...])

NOCOMPILATION_NOTES

STATUS: (destination|,...])

NOSTATUS

ACS Command Dictionary A—139

RECOMPILE

The possible values of destination are ALL, NONE,or any combination of
TERMINAL (terminal device), LISTING (listing file), and DIAGNOSTICS

(diagnostics file). The message categories are summarized as follows (see
Chapter 3 for more information):

WARNINGS W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

WEAK_WARNINGS I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERRORat run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

SUPPLEMENTAL I-level: Additional information associated with pre-
ceding E-level or W-level diagnostics.

COMPILATION_NOTES I-level: Information about how the compiler trans-

lated a program, such as record layout, parameter-
passing mechanisms,or decisions madefor the prag-
mas INLINE, INTERFACE,or the import-subprogram
pragmas. |

STATUS I-level: End of compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS= (WARN: ALL, WEAK: ALL, SUPP: ALL, COMP: NONE, STAT: LIST)

If you specify only some of the message categories with the (WARNINGS
qualifier, the default values for the other categories are used.

Positional Qualifiers

A-140

/DATECHECK (D)
/NODATE_CHECK
Controls whether the RECOMPILE commandchecks the creation date and

time of copied source files to determine which units in the closure of units
specified are obsolete. If you specify the /NODATE_CHECKqualifier, the
RECOMPILE commandforces the recompilation of every unit specified, even
though some units may not be obsolete; bodies and subunits of the specified
units are also recompiled as necessary, to make them current. Entered units
are not considered for recompilation when the /NODATE_CHECKqualifier
is in effect.

ACS Command Dictionary

RECOMPILE

If you specify the /NODATE_CHECK/CLOSUREqualifier, the RECOMPILE
commandforces the recompilation of every unit in the execution closure of
the units specified.

You can use the /NODATE_CHECKqualifier to force the recompilation of a

set of units using a particular combination of compiler qualifiers.

By default, the RECOMPILE commandchecksthe creation date and time of
copied source files ((/DATE_CHECK), and recompiles only the copied source
files for units that are obsolete.

/FORCE_BODY
Forces the recompilation of the bodies of the specified compilation units,
regardless of whether or not they are obsolete.

The /FORCE_BODYqualifier can have different effects depending on its
position in the commandline andits interaction with other qualifiers:

e If you append the /FORCE_BODYqualifier to the RECOMPILE com-
mandstring (as opposed to appending it to an individual unit parame-
ter), the RECOMPILE commandforces the recompilation of the bodies of
each unit specified on the commandline.

e If you append the /FORCE_BODY qualifier to an individual unit
parameter, the RECOMPILE commandforces the recompilation of the
body of only that unit.

e If you specify the /FORCE_BODYqualifier with the /CLOSURE qualifier,
the RECOMPILE commandforces the recompilation of the bodies ofall
the units in the execution closure of the units specified.

By default, if the /FORCE_BODYqualifier is omitted, the specifications,
bodies, and subunitsof all of the units in the execution closure of the units

specified are considered for recompilation.

ACS Command Dictionary A-141

RECOMPILE

Examples

1. ACS>

6I, The following units will be recompiled:
RESERVATIONS

package specification 16-Apr-1989 13:34
package body 16-Apr-1989 13:34

SCREENIO
package body 16-Apr-1989 13:22

SCREENIO.INPUT

procedure body 16-Apr-1989 13:22

SCREENIO.INPUT.BUFFER

function body 16-Apr-1989 13:22
SCREENI0.OUTPUT

procedure body 16-Apr-1989 13:22

RESERVATIONS .RESERVE

procedure body 16-Apr-1989 13:35

RESERVATIONS .RESERVE. BILL

procedure body 16-Apr-1989 13:35

RESERVATIONS .CANCEL ;

procedure body 16-Apr-1989 13:36

$I, Job RESERVATIONS (queue ALLBATCH, entry 180) started
on FASTBATCH .

Lists all of the units in the closure of unit RESERVATIONSthat need to
be recompiled, then submits the compiler commandfile generated by the
program library managerasa batchjob.

2. ACS>

Creates and retains the compiler commandfile generated by the
program library manager. The commandfile has the file name and type
HOTEL.COM,by default. It contains commandsto force (/NODATE_

CHECK)the recompilation of all units in the closure ((\CLOSURE)of
unit HOTEL, with the /NOCHECKqualifier.

A-142 ACS Command Dictionary

REENTER

REENTER

Enters current references to units that were entered into the current pro-
gram library and subsequently compiled in their original libraries.

Format

REENTER unit-namef....]

Command Qualifiers Defaults

/[NO]JCONFIRM /NOCONFIRM

/ENTERED=library See text.

/[NO]LOCAL /LOCAL

/[NO]LOG /NOLOG

Positional Qualifiers Defaults

/BODY_ONLY See text.

/[NO]DATE_CHECK /DATE_CHECK

/SPECIFICATIONONLY See text.

Prompts

_Unit:

Command Parameters

unit-name{,...]
Specifies one or more units to be reentered into the current program library.
You must express subunit names using selected component notation as
follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

The unit names mayinclude percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

ACS Command Dictionary A-143

REENTER

Description |

The ACS REENTER command, like the ACS ENTER UNIT command,

operates on a specified unit’s specification plus its body and subunits,if any.
For each unit specified, the REENTER commandlooks up the unit in its
original program library and enters the current definition of the unit into
the current program library. By default, if a specified unit’s definition is
current, it is not reentered.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the REENTER commanddisplays the unit name of each
unit before reentering and requests you to confirm whetheror not the unit

should be reentered. If you specify the /CONFIRM qualifier, the possible

responses are as follows:

e Affirmative responses are YES, TRUE,and 1.

e Negative responses are NO, FALSE, 0, and the RETURNkey.

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-

mandat that point.

e ALL indicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for

example, Y, YE, or YES). If you type a response other than one of those in

the list, the promptis reissued.

By default, no confirmation is requested.

/ENTEREDz=library
Controls whether entered units are selected for reentering. You can use the
library option to reenter units that were entered from a particular library.
When you specify the /NOENTEREDqualifier, only units that have been
compiled or copied into the current program library are reentered. Note that
when you specify the /ENTERED qualifier, local units are selected unless

the /NOLOCAL qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

A-144 ACS CommandDictionary

REENTER

By default, all units specified are reentered from all of the libraries from
which they were originally entered.

/LOG
/NOLOG(D)
Controls whether the nameof a unit is displayed after it has been reentered.

By default, the names of reentered units are not displayed.

Positional Qualifiers

/BODY_ONLY
Reenters only the body of the specified unit.

When you append the /BODY_ONLYqualifier to the REENTER command
string, any /SPECIFICATION_ONLYqualifiers that are appended to
parameters in the commandline override the /BODY_ONLY qualifier for

those particular parameters. You cannot append both the /BODY_ONLY

qualifier and the /SPECIFICATION_ONLY qualifier to the REENTER
commandstring or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as
well as the body, is reentered.

/DATE_CHECK(D)
/NODATE_CHECK
Controls whether the REENTER command compares the compilation date-
time in the current program library and original library as the criterion
for reentering a unit. If you specify the /NODATE_CHECKqualifier, the
REENTER command will unconditionally reenter each unit specified in the
command.

By default, the REENTER command compares the compilation date-time
and reenters only those references that were obsolete.

/SPECIFICATION_ONLY
Reenters only the specification of the specified unit.

When you append the /SPECIFICATION_ONLYqualifier to the REENTER
commandstring, any /BODY_ONLY qualifiers that are appended to param-
eters in the commandline override the /BODY_ONLY qualifier for those
particular parameters. You cannot append both the /SPECIFICATION_

ACS Command Dictionary A-—-145

REENTER

ONLYqualifier and the /BODY_ONLY qualifier to the REENTER command

string or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLYqualifier is omitted, the body, as
well as the specification, is reentered.

Examples

1. ACS> REENTER/LOG *

SI, QUEUEMANAGER entered

Reenters every unit in the current program library that needs to be
reentered, in this case the unit QUEUE_MANAGER.

2. ACS> REENTER/NODATECHECK STACKS

Unconditionally reenters the unit STACKS into the current program
library, even if references to STACKS are current.

A-146 ACS CommandDictionary

REORGANIZE

REORGANIZE

Optimizes the organization of the current VAX Ada program library (or the
specified library).

NOTE

You can use this commandonly on a library to which you have
exclusive access.

Format

REORGANIZE [directory-spec]

Command Qualifiers Defaults

/[NO]LOG /LOG

/OUTPUT=file-spec See text.

Prompts

None.

Command Parameters

[directory-spec]
Specifies the VAX Ada program library to be reorganized. No wildcard
characters are allowed in the directory specification.

If you do not specify a program library, the ACS REORGANIZE command
reorganizes the current program library.

ACS Command Dictionary A-147

REORGANIZE

Description

The ACS REORGANIZE commandoptimizes the organization of the current
program library or the specified library. You can use this command to
improve the performance of any library; it is especially useful for improving
the performance of libraries that have have been updated frequently.

To use the REORGANIZE command, you must have exclusive read-write
access to the program library you are reorganizing. If another useris
accessing the library when you enter the REORGANIZE command,the
command will fail. One way to obtain exclusive access is to use the ACS
SET LIBRARY/EXCLUSIVE command(note that this commandwill also fail
if you cannot gain exclusive access when you enter it). You must enter the
SET LIBRARY/EXCLUSIVE commandinteractively for it to have an effect.

Note that the SET LIBRARY/EXCLUSIVE commandis not permitted for
libraries across DECnet.

Command Qualifiers

A-148

/LOG (D)
/NOLOG
Controls whether a successful library reorganization is reported.

By default, a successful library reorganization is reported.

/OUTPUT=file-spec
Requests that the REORGANIZE command output be written to the file

specified rather than to SYS$OUTPUT. Any diagnostic messages are written
to both SYS$OUTPUTandthefile.

The default directory is the current default directory. If you specify a file

type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowedin the file specification.

By default, the REORGANIZE commandoutput is written to SYS$OUTPUT.

ACS CommandDictionary

REORGANIZE

Example

ACS> REORGANIZE

$I, USER: [JONES.HOTEL.ADALIB] reorganized

Reorganizes the current program library (the library defined by the last
ACS SET LIBRARY command). To determine when a library was last
reorganized, enter the ACS SHOW LIBRARY/FULL commandfor that
library.

ACS Command Dictionary A-149

SET LIBRARY

SET LIBRARY

Defines a VAX Ada program library or program sublibrary as the current
program library.

Format

SET LIBRARY dilrectory-spec

Command Qualifiers Defaults

/[NOJEXCLUSIVE /NOEXCLUSIVE

/[NO]LOG /LOG

/[NO]READ_ONLY /NOREAD_ONLY

Prompts

_Library:

Command Parameters

directory-spec
Specifies the program library or program sublibrary that is to be defined as
the current program library. For subsequent ACS commandsto work, the
specified directory must be a valid VAX Ada program library or program
sublibrary, previously created with the CREATE LIBRARY or CREATE
SUBLIBRARY command,respectively.

If you specify an invalid library, the SET LIBRARY commandsets the
library to whatever you specified (to prevent you from incorrectly modifying

the wronglibrary).

A-150 ACS Command Dictionary

SET LIBRARY

Description

The ACS SET LIBRARY commandestablishes the current program library.
VAX Ada units are compiled in the context of the current program library.
The current program library is the target library for compiler output and for
ACS commandsin general.

The SET LIBRARY commandperformsthe following steps:

1. Verifies that the specified directory is a valid VAX Ada program library
or sublibrary. If the directory is invalid, an error message is issued.

2. Assigns the directory specification to the process logical name ADA$LIB.

This assignment takes place even ifthe specified directory is invalid.
The program library manager and the compiler use that logical name to
maintain the current program library context when performing various

operations.

The SET LIBRARY commanddoes not affect the definition of the current

default directory. The DCL SET DEFAULT commanddoes not affect the
definition of the current program library.

The /EXCLUSIVE and /READ_ONLY qualifiers are used for temporarily

controlling access to program libraries in a shared library environment.

When using the SET LIBRARY command with the /EXCLUSIVE or /READ_
ONLY qualifier values, you need to enter the commandinteractively (not as

a DCL one-line command). For example:

ACS> SET LIBRARY/EXCLUSIVE [JONES.HOTEL.ADALIB]

When you use the /EXCLUSIVE or /READ_ONLY qualifier, the qualifier
remains in effect until you exit from the program library manageror until
another SET LIBRARY commandis executed.

Command Qualifiers

/EXCLUSIVE
/NOEXCLUSIVE (D)
Controls whether the specified program library is opened for exclusive or
shared ((NOEXCLUSIVE) access when the SET LIBRARY commandis
executed. Exclusive access to a compilation library over DECnet is not
permitted.

ACS Command Dictionary A-151

SET LIBRARY

If you execute a SET LIBRARY commandwithout the /EXCLUSIVE qualifier
or with the /NOEXCLUSIVE qualifier, then other processes are not denied
access to the specified program library.

If you try to execute a SET LIBRARY/EXCLUSIVE command while the
specified program library is being accessed by another process, the command

will fail.

After executing a SET LIBRARY/EXCLUSIVE command, you have exclusive
access to the specified program library until you exit from the program

library manager or until another SET LIBRARY commandis executed.
Other processes are denied access to the program library until you exit
from the program library manager or another SET LIBRARY commandis
executed.

By default, the SET LIBRARY commandprovides for shared (/(NOEXCLUSIVE)
access to the specified program library.

/LOG (D)
/NOLOG
Controls whether the program library directory specification of the library
being set is displayed.

By default, the program library directory specification is displayed.

/READ_ONLY
/NOREAD_ONLY(D)
Controls whether the program library access is restricted to read-only access. |

When you execute the SET LIBRARY/READ_ONLY command, the program

library is opened only for reading for the duration of the ACS session.
Therefore, you can only perform operations that do not modify the library:
for example, ACS CHECK, DIRECTORY, EXPORT, EXTRACT SOURCE,
LINK, SHOW LIBRARY, or SHOW PROGRAM.You can also copy and enter

units from(not to) the library.

When you execute the SET LIBRARY/NOREAD_ONLY command, the
program library is opened for reading, as well, but any subsequent command
can try to open the library for a different kind of access.

By default, the /NOREAD_ONLYqualifier is in effect.

A-152 ACS CommandDictionary

SET LIBRARY

Examples

ACS> SET LIBRARY [JONES.HOTEL.ADALIB]

$I, Current program library is USER: [JONES.HOTEL.ADALIB]

Defines the program library [JONES.HOTEL.ADALIB], on the default

device, as the current program library. The library is opened for both
read and write access.

ACS> SET LIBRARY/READ_ONLY DISK: [SMITH.SHARE.ADALIB]

$I, Current program library is DISK: [SMITH.SHARE.ADALIB]

Defines the program library DISK:[SMITH.SHARE.ADALIB] as the
current program library, with READ_ONLYaccesstothe library.

ACS Command Dictionary A-153

SET PRAGMA

SET PRAGMA

Redefines specified values of the program library characteristics LONG_

FLOAT, MEMORY_SIZE, and SYSTEM_NAME.

Note that use of this command may make units obsolete that depend on the
previous value of a characteristic.

Format

SET PRAGMA

Command Qualifiers Defaults

/LONG_FLOAT=option See text.

/MEMORY_SIZE=n See text.

/SYSTEM_NAMEssystem see text.

Prompts

None.

Command Parameters

None.

Description

By default, a program library or sublibrary is created with the following
system characteristics:

¢ LONG_FLOAT = G_FLOAT

e MEMORYSIZE = 2147483647

e¢ SYSTEM_NAME = VAX_VMS

These may be changed by compiling a unit that contains the pragmas

LONG_FLOAT, MEMORY_SIZE, or SYSTEM_NAME.

A-154 ACS CommandDictionary

SET PRAGMA

The ACS SET PRAGMA commandallows you to change the current program
library’s characteristics without having to compile a unit consisting of one of
those pragmas.

The SET PRAGMA command may make units that depend on these

characteristics obsolete. You can use the ACS RECOMPILE command to

make obsolete units current.

Command Qualifiers

/LONG_FLOAT=option
Redefines the value of the program library characteristic LONG_FLOAT.
The possible values are D_FLOAT and G_FLOAT.

By default, the current value of LONG_FLOATis unchanged.

/MEMORY_SIZE=n
Redefines the value of the program library characteristic MEMORY_SIZE

to n.

By default, the current value of MEMORY_SIZE is unchanged.

/SYSTEM_NAME=system
Redefines the value of the program library characteristic SYSTEM_NAME
to a particular target operating system. The possible system values are
VAX_VMS and VAXELN.

By default, the current value of SYSTEM_NAMEis unchanged.

Example

ACS> SET PRAGMA/LONGFLOAT=D_FLOAT

Redefines the current program library characteristic LONG_FLOATto the
value D_FLOAT.

ACS Command Dictionary A—155

SET SOURCE

SET SOURCE

Defines a source-file-directory search list for the ACS COMPILE command.

Format

SET SOURCE dlrectory-specy....]

Prompts

_Search list:

Command Parameters

directory-specf{,...]
Specifies one or more VMSdirectories where the ACS COMPILE command
should search for sourcefiles.

Description

A-156

The ACS COMPILE commandsearchesthe directories in the order specified
in the ACS SET SOURCE command.

The search order takes precedence over the version numberor revision date-
time if different versions of a source file exist in two or more directories.
Within any one directory, the version of a particularfile that has the highest
numberis considered for compilation.

The search list specified by SET SOURCE remainsin effect until another

SET SOURCE commandis executed, or until the process logs out.

If no SET SOURCE commandis executed, the default search order is as

follows: |

1. SYS$DISK:[] (the current default directory)

2. ;0 (the directory that contained the file when it was last compiled), or
node::;0 (if the file specification of the source file being compiled contains
a node name)

ACS CommandDictionary

SET SOURCE

Examples

1. ACS> SET SOURCE SYSSDISK:[],USER: [JONES.HOTEL], ;0

Defines the source-file search list to be: first, the current default

directory (SYS$DISK:[]); second, the directory USER:[JONES.HOTEL];

third, the directory where the particular source file was last compiled

(50).

2. ACS> SET SOURCE SYSSDISK:[],CMSSLIB

Defines the source-file search list to be: first, the current default

directory (SYS$DISK:[]); second the current CMSlibrary, as defined by

the most recent CMS SET LIBRARY command, which definesthelogical
name CMS$LIB.

ACS CommandDictionary A—157

SHOW LIBRARY

SHOW LIBRARY

Displays information about one or more VAX Ada program libraries, includ-
ing directory specifications, library characteristics, and units defined in each

library.

Format

SHOW LIBRARY [directory-specf....]]

Command Qualifiers Defaults

/BODY_ONLY See text.

/BRIEF See text.

/[NOJENTERED[=library] /ENTERED

/FULL See text.

/[NO]LOCAL /LOCAL

/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT

/SPECIFICATIONONLY See text.

/UNITS See text.

Prompts

None.

Command Parameters

[directory-spec{,...]]
Specifies one or more VAX Ada program libraries for display. No wildcard
characters are allowed in the directory specifications.

If you do not specify a program library, the SHOW LIBRARY command
displays information about the current program library.

A-158 ACS Command Dictionary

SHOW LIBRARY

Description

The ACS SHOW LIBRARY commanddisplays various information about one
or more specified program libraries, including the full directory specifica-
tions, library characteristics, and units defined in each program library.

The output of the SHOW LIBRARY command depends on whether the
/UNITS qualifier is used and, in addition, whether the /BRIEF or /FULL

formatting qualifier is used.

If you do not specify a qualifier, the SHOW LIBRARY commanddisplays the
directory specifications of the program libraries specified.

Command Qualifiers

/BODYONLY
Displays only the bodies of the specified units when you use the /UNITS
qualifier.

You cannot append both the /BODY_ONLYqualifier and the /SPECIFICATION

ONLY qualifier to the SHOW LIBRARY/UNITS commandstring.

By default, if the /BODY_ONLYqualifier is omitted, the specifications, as

well as the bodies, are displayed.

/BRIEF
Displays the program library directory specifications.

If used with the /UNITSqualifier, also lists the namesofall units contained
in each program library.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are displayed when you use the /UNITS

qualifier. You can use the library option to display units that were entered

from a particular library. When you specify the /NOENTERED qualifier,
only units that have been compiled or copied into the current program
library are displayed. Note that when you specify the /ENTERED qualifier,
local units are displayed unless the /NOLOCAL qualifier is also in effect (the
defaults for these qualifiers are (LOCAL and /ENTERED).

By default, all units, as well as entered units are displayed when you use

the /UNITS qualifier.

ACS CommandDictionary A-—159

SHOW LIBRARY

A-—160

/FULL |
Displays, for each program library specified, the directory specifications and
the values of the program library characteristics LONG_FLOAT, MEMORY_

SIZE, and SYSTEM_NAME.

If a program sublibrary is specified, identifies the parent library.

If used with the /UNITS qualifier, also displays, for each program library
specified, each unit’s name, kind, compilation date-time, and thefile
specifications of the files associated with each unit.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were addedto the library by
a compilation or a COPY UNIT command) are displayed when you use the
/UNITSqualifier. Note that when you specify the /LOCAL qualifier, entered
units are displayed unless the /NOENTEREDqualifier is also in effect (the

defaults for these qualifiers are /LOCAL and /ENTERED).

By default, all units specified, including local units, are displayed.

/OUTPUT=file-spec
Requests that the SHOW LIBRARY commandoutput be written to thefile
specified rather than to SYS$OUTPUT. Any diagnostic messages are written
to both SYS$OUTPUTandthefile.

The default directory is the current default directory. If you specify a file

type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowed in thefile specification.

By default, the SHOW LIBRARY command output is written to
SYS$OUTPUT.

/SPECIFICATION_ONLY
Displays only the specifications of the specified units when you use the
/UNITSqualifier.

You cannot append both the /SPECIFICATION_ONLYqualifier and the
/BODY_ONLYqualifier to the SHOW LIBRARY/UNITS commandstring.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the bodies,

as well as the specifications, are displayed.

ACS CommandDictionary

SHOW LIBRARY

/UNITS
Lists each unit that is defined in the specified program libraries. The level
of information displayed depends on whether the /BRIEF or /FULL qualifier
is also used. The unit information displayed is identical to that displayed by

the DIRECTORY command.

Examples

1. ACS> SHOW LIBRARY

6I, Current program library is USER: [JONES.HOTEL.ADALIB]

Identifies the current program library.

2. ACS> SHOW LIBRARY/FULL [JONES.HOTEL.SUBLIB]

Program library USER: [JONES.HOTEL.SUBLIB]

Sublibrary
of USER: [HOTEL.ADALIB]

Created: 15-Apr-1989 14:44, by VAX Ada 2.0
Last reorganized: 16-Apr-198913:40 |

Pragmas that affect STANDARD and SYSTEM:

pragma LONGFLOAT (D_FLOAT)
pragma MEMORYSIZE (2147483647)
pragma SYSTEMNAME (VAXVMS)

Identifies USER:[JONES.HOTEL.SUBLIB] as a sublibrary of
USER:[HOTEL.ADALIB].

ACS Command Dictionary A-161

SHOW PROGRAM

SHOW PROGRAM

Displays information about the execution closure of one or more units in the
current program library.

Format |

SHOW PROGRAM _unit-name{....]

Command Qualifiers Defaults

/BRIEF See text.

/FULL See text.

/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT

/[NO]PORTABILITY /NOPORTABILITY

Prompts

Unit:

Command Parameters

unit-namef,...]
Specifies one or more units, in the current program library, about whose
execution closure various information is to be shown. You must express
subunit names using selected component notation as follows:

ancestor-unit-name[.parent-unit-name[...]].subunit-name

The unit names mayinclude percent signs (%) and asterisks (*) as wildcard
characters. (See the VMS DCL Concepts Manual for more information on
wildcard characters.)

A-162 ACS CommandDictionary

SHOW PROGRAM

Description

The ACS SHOW PROGRAM commanddisplays information aboutall of the
units in the execution closure of the specified units.

Units are listed by name in alphabetical order. Subunit names are shown
using selected component notation.

The output of the SHOW PROGRAM command dependson whether the
-/BRIEF, /FULL,or no formatting qualifier is used.

If you do not specify a qualifier, the SHOW PROGRAM commanddisplays
a level of information that is part way between that displayed with the
/BRIEF and /FULL qualifiers.

If you do not specify a qualifier, the SHOW PROGRAM commanddis-
plays the information provided by the /BRIEF qualifier plus the following
information for each unit in the closure:

e The with list of that unit

e The duration specified with the pragma TIMESLICE

e The names of units mentioned in one or more ELABORATE pragmasfor
that unit

e Thenamesof units that the unit has established a dependence on as a
result of subprogram inline expansion

e The namesof units that the unit has established a dependence on as a
result of generic inline expansion

Command Qualifiers

/BRIEF
Displays the following information:

e Thedirectory specification of the current program library.

e The values of the program library characteristics LONG_FLOAT,
MEMORY_SIZE, and SYSTEM_NAME.

e For each unit in the closure of the specified units: the unit name; the
kind of unit (for example, procedure body); the date and time ofthe last
compilation; and thefile specification of the sourcefile, or (if the unit

ACS CommandDictionary A-163

SHOW PROGRAM

was entered into the current program library) the directory specification
of the otherlibrary.

/FULL
Displays the information provided by the SHOW PROGRAM command when
used with no qualifier plus, for each unit in the closure, the file specifications
of the associatedfiles.

/OUTPUT=file-spec
Requests that the SHOW PROGRAM commandoutput be written to thefile
specified rather than to SYS$OUTPUT. Any diagnostic messages are written

to both SYS$OUTPUTandthefile.

The default directory is the current default directory. The default file type
is .LIS. If you specify a file type but omit the file name, the default file name
is ACS. No wildcard characters are allowed in thefile specification.

By default, the SHOW PROGRAM commandoutput is written to

SYS$OUTPUT.

/PORTABILITY
/NOPORTABILITY (D)
Lists, for the closure of the specified units, a portability summary indicating
use of potentially nonportable features. For example:

e Pragmas

e VMSpredefined floating-point types

e Enumeration representation clauses

Implementation-defined features are flagged with an asterisk (*).

See Chapter 3 for a discussion of portability.

A-164 ACS Command Dictionary

SHOW PROGRAM

Example

ACS> SHOW PROGRAM/PORTABILITY ADACALLER

ADA_CALLER
16-Apr-1989 13:45

Program library USER: [PROJ.ADALIB]

Created: 15-Apr-1989 14:44, by VAX Ada 2.0
Last reorganized: 16-Apr-1989 13:40

Pragmas that affect STANDARD and SYSTEM:

pragma LONGFLOAT (GFLOAT)

pragma MEMORYSIZE (2147483647)

pragma SYSTEMNAME (VAXVMS)

The closure of the specified units is:

ADACALLER

Procedure body

Compiled: 16-Apr-1989 11:26
Source file: 31-Jul-1987 16:23 USER: [TEST]ADACALLER.ADA; 2

With list: SOR

INTEGERTEXTIO

INTEGERTEXTIO

Package instantiation
Compiled: 13-Apr-1989 23:38
Entered from: SYSSCOMMON: [SYSLIB.ADALIB]

With list: TEXTIO

IO_EXCEPTIONS
Package specification

Compiled: 13-Apr-1989 23:35
Entered from: SYSSCOMMON: [SYSLIB.ADALIB]

SQR

Function specification

Compiled: 16-Apr-1989 11:24
Source file: 31-Jul-1987 16:21 USER: [TEST]SQR_.ADA;2

Foreign function body
Object file: 16-Apr-1989 11:25 SQR.OBJ;1

ACS Command Dictionary A-165

SHOW PROGRAM

SYSTEM

Builtin package

TEXTIO
Package specification

Compiled: 13-Apr-1989 23:37
Entered from: SYSSCOMMON: [SYSLIB.ADALIB]

With list: IOEXCEPTIONS

Package body

Compiled: 13-Apr-1989 23:37
Entered from: SYSSCOMMON: [SYSLIB.ADALIB]

With list: SYSTEM

PORTABILITY SUMMARY

predefined SHORTINTEGER or SHORTSHORTINTEGER

SYSTEM spec

with SYSTEM TEXTIO body

predefined FFLOAT, DFLOAT, GFLOAT or HFLOAT*

TEXTIO body

enumeration representation clause

SYSTEM spec

TEXTIO spec

length SIZE representation clause

SYSTEM spec

record representation clause

SYSTEM spec

pragma PACK SYSTEM spec

pragma IMPORTEXCEPTION*

IOEXCEPTIONS spec

pragma IMPORTFUNCTION* SOR spec
TEXTIO spec

pragma IMPORTPROCEDURE*
TEXTIO

pragma INTERFACE SQR spec

TEXTIO

where * indicates an implementation-defined feature

A-166 ACS CommandDictionary

SHOW PROGRAM

Displays information about the closure of the unit ADA_CALLER, which
also includes the unit SQR and a number of VAX Ada predefined units.

The /PORTABILITY qualifier produces a portability summary for the units
displayed. The unit display and portability summary indicate that the body
of SQR wascopied into the current program library, USER:[PROJ.ADALIB],
as a foreign body (file SQR.OBJ).

ACS CommandDictionary A-167

‘SHOW SOURCE

SHOWSOURCE

Displays the source-file-directory search list used by the ACS COMPILE

command.

Format

SHOW SOURCE

Prompts

None.

Command Parameters

None.

Description

The ACS SHOW SOURCE commanddisplays the directory list specified
in the last ACS SET SOURCE command. Seethe description of the SET
SOURCE command.

Example

ACS> SHOW SOURCE

%I, Current source search list (ADASSOURCE) is

USER: [JONES .HOTEL]

DISK: [SMITH. SHARE]

Showsthat the directories to be searched by the ACS COMPILE command
for external source files are first the directory USER:[JONES.HOTEL] and
then the directory DISK:[SMITH.SHARE].

A-168 ACS CommandDictionary

SHOW VERSION

SHOWVERSION

Displays the version of VAX Adathat is installed on your system.

Format

SHOW VERSION

Prompts

None.

Command Parameters

None.

Description

The ACS SHOW VERSION commanddisplays a string that gives the
version number of VAX Ada (compiler and program library manager) that is
installed on your system.

Example

ACS> SHOW VERSION

VAX Ada V2.0-0

Showsthat Version 2.0 of VAX Adais currently running on the user’s
system.

ACS CommandDictionary A-169

SPAWN

SPAWN

Creates a subprocess of the current process and suspends execution of the
current process.

Format

SPAWN [DCL-command]

Prompts

None.

Command Parameters

[DCL-command]
Specifies an optional DCL command.

Description

The ACS SPAWN commandcreates a subprocess of the current process and
suspends execution of the current process.

If you specify a DCL command, that commandis executed in a subprocess,
and control is returned to the program library manager after the command
is executed.

If you do not specify a DCL command, an interactive subprocess is created
allowing you to execute a whole series of DCL commandsinteractively. You
can return to the program library managerby logging out of the subprocess
(by entering a DCL LOGOUT command) or entering a DCL ATTACH
command. See the description of the DCL ATTACH commandin the VMS

DCL Dictionary.

A-170 ACS Command Dictionary

SPAWN

Example

ACS> SPAWN MAIL ! from process JONES

MAIL>

MAIL> ATTACH JONES

6I, Control returned to process JONES
ACS>

ACS> ATTACH JONES1
MAIL>

The ACS SPAWN MAIL command, entered from process JONES, invokes
the VMS Mail Utility in a subprocess named JONES_1. The DCL ATTACH

command entered from MAIL (subprocess JONES_1)returns control back

to process JONES. The ACS ATTACH command entered interactively from
the program library manager (process JONES) switches control back to
subprocess JONES_1.

ACS CommandDictionary A-171

VERIFY

VERIFY

Performsa series of consistency checks on the current program library (or

the specified library) to determine whether the library structure and library
files are in valid form. The ACS VERIFY commandoptionally corrects some
of the inconsistencies detected.

Format

VERIFY [directory-spec]

Command Qualifiers Defaults

/[NO]JCONFIRM /NOCONFIRM

/[NO]LOG /INOLOG

/OUTPUT=file-spec See text.

/[NO]JREPAIR /NOREPAIR

Prompts

None.

Command Parameters

directory-spec
Specifies the VAX Ada program library to be verified. No wildcard characters
are allowed in the directory specification.

If you do not specify a program library, the ACS VERIFY commandverifies
the current program library.

A-172 ACS Command Dictionary

VERIFY

Description

The ACS VERIFY command checksthe following items (unless otherwise
stated, only files in the specified program library are checked):

¢ The format of the library indexfile.

¢ Whetherall files cataloged in the library indexfile exist in the program
library and are accessible—thatis, all object (.OBJ), compilation unit

(.ACU), and copied source (.ADC)files. In the case of entered units, the

VERIFY commandchecks whetherthefiles exist in the library from
which they were entered.

¢ Whether all .OBJ, .ACU, and .ADCfiles that exist in the program library

directory are cataloged in the library indexfile.

¢ Whether temporary files used by the REORGANIZE commandare in the
program library.

¢ The format of the compilation unit files (.ACU).

¢ Whether the protection code of cataloged .OBJ, .ACU, and .ADCfiles is
consistent with that of the library indexfile (see Chapter5).

If inconsistencies are found, the VERIFY commandissues error messages

indicating the units or files that are erroneous.

The kinds of inconsistencies detected by the VERIFY commandaretypically
not detected by the ACS CHECK command, which is used to determine
whether any units in a closure are missing or obsolete.

You can use the /REPAIR qualifier to correct some of the inconsistencies

reported by the VERIFY command. When the /REPAIR qualifier is used, the
VERIFY commandperforms the same checks as when the qualifier is not

used, but corrective action is taken only on the specified program library or,
by default, on the current program library. No corrective action is taken for
entered units.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the VERIFY/REPAIR commandasks for confirmation
before deleting unit index entries from the library indexfile, or deleting

ACS Command Dictionary A-—173

VERIFY

uncataloged files from the program library directory. If you specify the

/CONFIRM qualifier, the possible responses are as follows:

e Affirmative responses are YES, TRUE,and1.

e Negative responses are NO, FALSE, 0, and the RETURN key.

¢ QUIT or CTRL/Z indicates that you want to stop processing the com-
mandat that point.

e ALL indicates that you want to continue processing the command
without any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or moreletters (for

example, Y, YE, or YES). If you type a response other than one of those in
the list, the promptis reissued.

By default, no confirmation is requested.

/LOG
/NOLOG (D)
Controls whether the nameof a unit or the specification of a file is displayed
as that unit orfile is verified.

By default, the names of units or files being verified are not displayed.

/OUTPUT=file-spec
Requests that the VERIFY commandoutput be written to the file specified
rather than to SYS$OUTPUT. Any diagnostic messages are written to both
SYS$OUTPUTandthefile.

The default directory is the current default directory. If you specify a file
type but omit the file name, the default file name is ACS. The default file
type is .LIS. No wildcard characters are allowedin thefile specification.

By default, the VERIFY command output is written to SYS$OUTPUT.

/REPAIR |
/NOREPAIR (D)
Controls whether the VERIFY commandrepairs some of the inconsistencies
that it has detected.

A-174 ACS CommandDictionary

VERIFY

To use the /REPAIR qualifier, you must have exclusive read-write access

to the program library you are repairing. If another user is accessing

the library when you enter the VERIFY/REPAIR command, the com-

mandwill fail. One way to obtain exclusive access is to use the ACS SET
LIBRARY/EXCLUSIVE command(note that this commandwillalso fail if
you cannot gain exclusive access when you enter it). You must enter the

SET LIBRARY/EXCLUSIVE commandinteractively for it to have an effect.

Note that the SET LIBRARY/EXCLUSIVE commandis not permitted for
program libraries over DECnet.

The VERIFY/REPAIR commandtakesthe following actions:

e Identifies any files in the program library directory that are not cata-
loged in the library index file. Deletes any uncataloged files with file
type of .OBJ, .ACU, or .ADC. Deletes any temporary files remaining
from an interrupted ACS REORGANIZE command. Deletes any other
uncatalogedfiles if you have also specified the /CONFIRM qualifier and
given an affirmative response.

e As necessary, changesthe file protection on .OBJ, .ACU, and .ADCfiles
to be consistent with the protection code for the library index file.

e Marks as obsolete any unit whose .OBJ or .ACUfile is inaccessible.
A later VERIFY/REPAIR command will reset any such marksif the
associated files are again available.

¢ Removesreferences to inaccessible copied source files (.ADC) from the
library indexfile.

e Deletes any index entry with an illegal format from the library index
file.

By default, the VERIFY commandonly checks for inconsistencies and takes

no corrective action.

Examples

1. ACS> VERIFY

$I, USER: [JONES.HOTEL.ADALIB] verified

Checks the current program library. No inconsistencies have been
detected.

ACS CommandDictionary A-175

VERIFY

ACS> SET LIBRARY/EXCLUSIVE [PROJ.ADALIB]

$I, Current program library is USER: [PROJ.ADALIB]

ACS> VERIFY/REPAIR/LOG

, STARLET verified

, STR verified

, Inconsistent file protection [PROJ.ADALIB]SQR.OBJ;1
, SQR verified and repaired

SE, Error opening [PROJ.ADALIB]TESTSTACKS.OBJ;2 as input
-E, file not found

SW, TESTSTACKS verified and repaired

ol
e

K
e
t

«

~ Units with inaccessible files are obsolete. If repair
(VERIFY/REPAIR) is not possible, then recompilation of

these units is necessary; after entering a VERIFY/REPAIR
command, the CHECK command will show any obsolete units

SW, USER: [PROJ.ADALIB] verified and repaired

ACS> RECOMPILE TESTSTACKS

Defines the program library [PROJ.ADALIB] as the current program
library, with exclusive read-write access. This step is necessary before

using the VERIFY/REPAIR command.

The VERIFY/REPAIR commandthen notes that the protection offile
SQR.OBJ is inconsistent with that of the library index file and changes
the protection to makeit consistent; marks the unit TEST_STACKS as

obsolete, because its .OBJ file (TEST_STACKS.OBJ;2) is inaccessible;
and issues a summary message that the program library has been
verified and repaired.

The RECOMPILE command then makesthe obsolete unit, TEST_

STACKS,current.

A-176 ACS Command Dictionary

Appendix B

Debugger Command Summary

This appendix lists all of the debugger commandsandanyrelated DCL
commandsin functional groupings, along with brief descriptions.

During a debugging session, you can get online HELP on any command and
its qualifiers by typing the HELP commandfollowed by the nameof the
commandin question. The HELP commandhasthe following form:

HELP command

B.1 Starting and Terminating a Debugging Session

($) RUN?

($) RUN/NOJDEBUG’

CTRL/Z or EXIT

QUIT

CTRL/Y

CTRL/C

($) CONTINUE’

Invokes the debugger if ACS LINK/DEBUG was
used

Controls whether the debugger is invoked when
the program is executed

Ends a debugging session, executing all exit
handlers

Ends a debugging session without executing any
exit handlers declared in the program

Interrupts a debugging session and returns you
to DCL level

Has the sameeffect as CTRL/Y, unless the
program has a CTRLservice routine

Resumes a debugging session after a CTRL/Y
interruption

1This is a DCL command, not a debugger command.

Debugger Command Summary B-1

($) DEBUG"

ATTACH

SPAWN

Resumes a debugging session after a CTRL/Y
interruption but returns you to the debugger
prompt

Passes control of your terminal from the current
process to another process (similar to the DCL
ATTACH command)

Creates a subprocess; allows you to enter DCL
commandswithout interrupting your debugging
context (similar to the DCL SPAWN command)

1This is a DCL command, not a debugger command.

GO

STEP

{ SET
SHOW

SET
SHOW BREAK

CANCEL

SET
4 SHOW TRACE

CANCEL

SET
SHOW WATCH

CANCEL

SHOW CALLS

SHOW STACK

\ STEP

CALL

B.2 Controlling and Monitoring Program Execution

Starts or resumes program execution

Executes the program up to the nextline, in-
struction, or specified instruction

Establishes or displays the default qualifiers for
the STEP command

Sets, displays, or cancels breakpoints

Sets, displays, or cancels tracepoints

Sets, displays, or cancels watchpoints

Identifies the currently active routine calls

Gives additional information about the currently
active routinecalls

Calls a routine

EXAMINE

B-2 Debugger Command Summary

B.3 Examining and Manipulating Data

Displays the value of a variable or the contents
of a program location

SET MODE [NOJOPERANDS Controls whether, when you examine an instruc-
tion, the address and contents of the instruction

operands are displayed

DEPOSIT Changes the value of a variable or the contents
of a program location

EVALUATE Evaluates a language or address expression

B.4 Controlling Type Selection and Symbolization

SET Establishes the radix for data entry and display,
SHOW RADIX displays the radix, or restores the radix
CANCEL

SET Establishes the type to be associated with un-
SHOW TYPE typed program locations, displays the type, or
CANCEL restores the type

SET MODE [NO]G_FLOAT Controls whether double-precision, floating-point
constants are interpreted as G_FLOATor
D_FLOAT |

SET MODE [NO]LINE Controls whether code locations are displayed in
terms of line numbersor routine-name plus byte
offset :

SET MODE [NO]JSYMBOLIC Controls whether code locations are displayed
symbolically or in terms of numeric addresses

SYMBOLIZE Converts a virtual address to a symbolic address

B.5 Controlling Symbol Lookup

SHOW SYMBOL Displays symbols in your program

SET Sets a module by loading its symbol records
SHOW MODULE into the debugger’s symbol table, identifies a
CANCEL set module, or cancels a set module (in Ada, a

module corresponds to a compilation unit)

SET Sets a shareable image by loading data struc-
SHOW IMAGE tures into the debugger’s symbol!table, identifies
CANCEL a set image, or cancels a set image

Debugger Command Summary B-3

SET MODE [NO]DYNAMIC

SET
SHOW SCOPE

CANCEL

Controls whether modules and shareable im-
ages are automatically set when the debugger
interrupts execution

Establishes, displays, or restores the scope for
symbol lookup

B.6 Displaying Source Code

TYPE

EXAMINE/SOURCE

SET
SHOW
CANCEL

SEARCH

{ SET
SHOW

{ SET \
SHOW

SET{ crow MARGINS

SOURCE

} SEARCH

MAX_SOURCE_
FILES

Displays lines of source code

Displays the source code at the location specified
by the address expression

Creates, displays, or cancels a source directory
search list

Searches the source code for the specified string

Establishes or displays the default qualifiers for
the debugger SEARCH command

Establishes or displays the maximum numberof
source files that may be kept open at one time

Establishes or displays the left and right margin
settings for displaying source code

B.7 Using Screen Mode

SET MODE [NO]JSCREEN

SET MODE [NO]SCROLL

DISPLAY

SET

SHOW
CANCEL

SET
SHOW
CANCEL

SELECT

DISPLAY

WINDOW

B-—4 Debugger Command Summary

Enables or disables screen mode

Controls whether an output display is updated
line by line or once per command

Modifies an existing display

Creates, identifies, or deletes a display

Creates, identifies, or deletes a window definition

Selects a display for a display attribute

SHOW SELECT

SCROLL

SAVE

EXTRACT

EXPAND

MOVE

{ SET
SHOW

CTRL/W or DISPLAY/REFRESH

} TERMINAL

Identifies the displays selected for each of the
display attributes

Scrolls a display

Saves the current contents of a display and
writes it to another display

Saves a display or the current screen state and
writes it to a file

Expandsor contracts a display

Moves a display across the screen

Establishes or displays the height and width of
the screen

Refreshes the screen

B.8 Editing Source Code

EDIT

{ SETSOW \ EDITOR
Invokes an editor during a debugging session

Establishes or identifies the editor invoked by
the debugger EDIT command

B.9 Defining Symbols

DEFINE

DELETE

{ SET

SHOW

SHOW SYMBOL/DEFINED

\ DEFINE

Defines a symbol as an address, command, or
value

Deletes symbol definitions

Establishes or displays the default qualifier for
the debugger DEFINE command

Identifies symbols that have been defined

B.10 Using Keypad Mode

SET MODE [NO]KEYPAD

DEFINE/KEY

Enables or disables keypad mode

Creates key definitions

Debugger Command Summary B-5

DELETE/KEY

SET KEY

SHOW KEY

Deletes key definitions

Establishes the key definition state

Displays key definitions

B.11 Using Command Procedures and Log Files

‘DECLARE

SET
SHOW LOG

SET OUTPUT [NO]LOG

SET OUTPUT [NOJSCREEN_
LOG

SET OUTPUT [NO]VERIFY

SHOW OUTPUT

SET=ow ATSIGN

@file-spec

Defines parameters to be passed to command
procedures

Specifies or identifies the debuggerlogfile

Controls whether a debugging session is logged

Controls whether, in screen mode, the screen
contents are logged as the screen is updated

Controls whether debugger commandsaredis-
played as a commandprocedureis executed

Displays the current output options established
by the debugger SET OUTPUT command

Establishes or displays the default file speci-
fication that the debugger uses to search for
command procedures

Executes a command procedure

B.12 Using Control Structures

IF

FOR

REPEAT

WHILE

EXITLOOP

B-6 Debugger Command Summary

Executes a list of commands conditionally

Executes a list of commandsrepetitively

Executes a list of commandsrepetitively

Executes a list of commands conditionally

Exits an enclosing WHILE, REPEAT, or FOR
loop

B.13 Additional Commands

SET PROMPT

SET OUTPUT [NOJTERMINAL

{ SET
SHOW

{ SET t EVENT_
SHOW FACILITY

SHOW EXIT_HANDLERS

\ LANGUAGE

{ SET
SHOW

\ TASK

DISABLE
ENABLE AST

SHOW

SET MODE [NO]SEPARATE

Specifies the debugger prompt

Controls whether debugger output is displayed
or suppressed, except for diagnostic messages

Establishes or displays the current programming
language

Establishes or identifies the current run-time
facility for language-specific events

Identifies the exit handlers declared in the
program

Modifies the tasking environment or displays
task information

Disables the delivery of ASTs in the program, en-
ables the delivery of ASTs, or identifies whether
delivery is enabled or disabled

Controls whether a separate window is created
on a VAXstation for debugger input and out-
put (this commandhasnoeffect on VT-series
terminals)

Debugger Command Summary B-7

Appendix C

Using VAX Ada with the VAX
Language-Sensitive Editor and Source Code

Analyzer

This appendix provides overviews of the VAX Language-Sensitive Editor
(LSE) and VAX Source Code Analyzer (SCA) tools and explains how you can
use them with VAX Ada.

These tools are not included with the VAX Ada software; you must purchase
them separately. For information on how to purchase them, contact your
Digital sales representative.

C.1 Using VAX Ada with LSE

LSE is a powerful and flexible text editor designed specifically for software
development. In addition to text-editing features, LSE provides the following
software developmentfeatures:

¢ Formatted language constructs, or templates, for most VAX program-
ming languages, including VAX Ada. These templates include the
keywords and punctuation used in source programs, and useplace-
holders to indicate locations in the source code where additional program
text must be provided.

e Extensive online HELP for language constructs, as well as for LSE
commandsand keydefinitions.

¢ Theability to compile, review, and correct compilation errors from within
the editor.

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C—1

e Integration with the VAX Source Code Analyzer (SCA) and VAX
DEC/Code Management System (CMS). SCA and CMS commandscan be
entered from within the editor to make program analysis and sourcefile
management moreefficient.

The following sections describe some of the key features of LSE, and give
Ada-specific information where appropriate. For more details on advanced
features of LSE, see the Guide to VAX Language-Sensitive Editor and VAX
Source Code Analyzer.

C.1.1 Starting and Ending an Editing Sesssion

To invoke LSE, enter the LSEDIT command at the DCL prompt, specifying
a file name with the .ADAfile type as a parameter. For example:

S$ LSEDIT HOTEL.ADA

To end an LSE session, press CTRL/Z to get the LSE> prompt. If you
wish to save modifications to yourfile, enter the EXIT command. If you

do not wish to save the file or any modification to thefile, enter the QUIT

command. :

C.1.2 Obtaining Help

You can obtain both LSE help and Ada languagehelp at any time during
your editing session, as follows:

e To obtain a diagram of the keypad and LSE key bindings, press the
HELP key (PF2).

¢ To obtain a listing of the keypad keys and their descriptions, press
CTRL/Z to get the LSE> prompt, and type the SHOW KEY command.

¢ To obtain a list of LSE commandsandtheir explanations, press CTRL/Z
to get the LSE> prompt, and type HELP COMMANDS.

e To display a list of all of the predefined tokens or placeholders for the
language of the current buffer, press CTRL/Z to get the LSE> prompt,
and type the SHOW TOKEN or SHOWPLACEHOLDER command.

¢ To obtain language-specific help on a particular keyword or placeholder,
position the cursor on the keyword or placeholder and press PF1-PF2.
Help is not available for all keywords and placeholders.

C2 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

C.1.3. Entering Source Code Using Tokens and Placeholders

To help you enter syntactically correct source code, LSE provides tokens and
placeholders. These are language elements that have been predefined for
Ada (as well as for other LSE-supported languages). You expand tokens and
placeholders into templates for Ada language constructs.

Tokens are Ada reserved words or other keywords that you type into your
editing buffer and then expand using CTRL/E or the EXPAND command. |
The expansions provide templates for the corresponding language constructs.
For example, you can type the reserved word if into your editing buffer,
press CTRL/E, and obtain the following template:

if {condition} then

{statement}...

[elsifpart]...
[elsepart]
end if;

Placeholders are markers for places in the source code where you must
provide additional program text or choose from a numberof options.
Placeholders are inserted into the editing buffer by LSE, as the result

of expanding other placeholders or tokens. In the preceding example,
{condition}, {statement}, [elsif_part], and [else_part] are placeholders. Unlike

tokens, you cannot type in and expandplaceholders.

Placeholders can be either required or optional. Required placeholders are
delimited by braces (for example, {condition}); they represent places in the
source code where you must provide program text. Optional placeholders
are delimited by brackets (for example, [else_part]); they represent places in
the source code where you can either provide additional constructs or erase

the placeholder.

Placeholders followed by a horizontal ellipsis indicate that more than

one of the represented items is appropriate. A placeholder of the form
[placeholder]... indicates that zero or more items are appropriate; a place-
holder of the form {placeholder}... indicates that one or more items are
appropriate.

You can expand, erase,or type directly over placeholders. When you type
over a placeholder, the placeholder is automatically removed, and the text
you type is inserted into the buffer. If more than one item represented by a
placeholder is appropriate, LSE continues to provide a placeholder until you
press CTRL/K (to erase the remaining placeholder).

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-3

When you expanda placeholder (using CTRL/E or the EXPAND command),
one of three events occurs:

e The placeholder is automatically replaced with a template of language
constructs. This kind of placeholder is called a nonterminal placeholder.

e Text appears in a separate window to help you supply a value. This kind
of placeholder is called a terminal placeholder. When you supply a value
or press the spacebar, the window disappears.

e A menu appears in a separate window to provide you with options that
you can select and expand into templates. This kind of placeholder is
called a menu placeholder. When you choose an option, the window
disappears and the placeholder is replaced with another template. The
window also disappears when you press the spacebar.

You can write a complete program by repeatedly expanding templates until
you reach terminal placeholders. You can also type in values or constructs
at a higherlevel.

LSE provides two ways to enter commands: keypad mode and command-line
mode. When you invoke LSE, you are in keypad mode, and the text that you
type is inserted into a buffer. To get to command-line mode, use one of the
following procedures:

e Press the DO key or COMMANDkey(PF1-7). The LSE Command>
prompt appears at the bottom of the screen. After you enter one
line-mode command, you are automatically returned to keypad mode.

e Press CTRL/Z. The LSE> prompt appears at the bottom of the screen.
After you enter as many line-mode commandsasyoulike, press CTRL/Z
again or enter the CONTINUE commandto return to keypad mode.

Table C-—1 lists the LSE commandsfor manipulating tokens and
placeholders.

C-4 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

Table C-1: VAX LSE Commandsfor Manipulating Tokens and Placeholders

Key
Command Binding Function

EXPAND CTRL/E Expands a placeholder

UNEXPAND PF1-CTRL/E Reversestheeffect of the
most recent placeholder
expansion

GOTO PLACEHOLDER/FORWARD CTRL/N Movesthe cursor to the next
placeholder

GOTO PLACEHOLDER/REVERSE CTRL/P Movesthe cursor to the
previous placeholder

ERASE PLACEHOLDER/FORWARD CTRL/K Erases a placeholder

UNERASE PLACEHOLDER PF1-CTRL/K Restores the most recently
erased placeholder

None Down arrow Movesthe indicator down
through a menu

None Up arrow Moves the indicator up
through a menu

None ‘ ENTER \ Selects a menu option
RETURN

You can use the SHOW TOKEN and SHOW PLACEHOLDER commandsto
display a list of all defined tokens and placeholders, or a particular token or
placeholder. To copy the listed information into a separate file, first enter
the appropriate SHOW commandto putthelist into the $SHOW buffer.
Then enter the following command: |

LSE> WRITE/BUFFER=SSHOWfilename

To obtain a hard copy of the list, use the PRINT command at DCL level to
print the file you created.

C.1.4 Compiling and Reviewing Source Code

The LSE COMPILE and REVIEW commandsallow you to compile your code
and review compilation errors without leaving your editing session.

The LSE COMPILE command enters a DCL commandin a subprocess to
invoke the VAX Ada compiler. Remember that you must have created and
defined a VAX Ada program library before you can compile Ada source

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-—5

code using the DCL ADA command(see Chapters 1, 2, and 3 for more
information on program libraries and compilation).

NOTE

The LSE COMPILE commandis equivalent to the DCL ADA

command, not the ACS COMPILE command.

By default, the LSE COMPILE command executes the DCL

ADA/DIAGNOSTICS command (including any default qualifiers for the

DCL ADA command, such as /DEBUG, /OPTIMIZE, and /NOANALYSIS_

DATA). The /DIAGNOSTICSqualifier causes the Ada compiler to generate
a file (.DIA) of compilation diagnostics, which you can review with the LSE

REVIEW command. For example, if you enter the LSE COMPILE command
while you are in the buffer HOTEL.ADA,the following DCL commandis
executed:

S ADA HOTEL.ADA/DIAGNOSTICS=HOTEL.DIA

To change the ADA qualifiers executed by the LSE COMPILE command, you
can use one of the following methods:

e Specify a dollar sign ($) as the first parameter to the LSE COMPILE
command, appending the qualifiers you wish to change. For example:

LSE> COMPILE $/NOOPTIMIZE

This method is most useful when you want to change qualifiers on a
one-time or infrequent basis.

¢ Modify the meaning of the LSE COMPILE command, using the LSE

MODIFY LANGUAGE/COMPILE_COMMAND command. For example:

LSE> MODIFY LANGUAGE/COMPILE_COMMAND="ADA/ANALYSISDATA"

This method is useful if you want to use a particular qualifier change
many times from the same editing buffer. If you then save your environ-

mentfile after entering the MODIFY LANGUAGE command, and make
the file part of the context for all of your editing sessions, the change
will be permanent (until you change it again).

e Redefine the symbol ADA at the DCL level. For example:

$ ADA == "ADA/ANALYSISDATA"

This method is useful if you want to change qualifiers on a permanent
or semipermanent basis. If you put the symbol definition in your

LOGIN.COMfile, it is defined permanently (until you changeit again).
The symbol is passed to your subprocess each time the LSE COMPILE
commandis executed.

C-6 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

When the LSE COMPILE commandfinishes executing, you can review any
errors by entering the LSE REVIEW command. Alternatively, you can go di-
rectly from compile to review modeby entering the LSE COMPILE/REVIEW
command.

The REVIEW and COMPILE/REVIEW commandsdisplay any diagnostic
messages that result from a compilation. LSE displays the compilation

errors in one window and the corresponding source code in a second window
so that you can review your errors while examining the associated source
code.

You can use the LSE REVIEW commandto review the diagnostics and
source code for a numberof units at the same time by concatenating
the diagnostics files for the units and then using the REVIEW/FILE
command. For example, you can use the ADA/DIAGNOSTICS (or ACS
COMPILE/DIAGNOSTICS) commandoutside of the editor to compile a
number of Ada sourcefiles:

S$ ADA/DIAGNOSTICS A
S$ ADA/DIAGNOSTICS B
S$ ADA/DIAGNOSTICS C

Then, you can concatenate the resulting .DIA files using the DCL COPY
command:

S$ COPY *.DIA ALLERRORS.DIA

Then, you can invoke LSE, and use the following REVIEW commandto
review the errors—and use CTRL/G (GOTO SOURCE)to havethe editor
bring up the corresponding sourcefile for each error:

LSE> REVIEW/FILE=ALL_ERRORS

NOTE

When you use the /DIAGNOSTICSqualifier with the ACS
COMPILE command,it applies only to sourcesfiles that are com-
piled again. It has no effect on units that are recompiled (no .DIA
files are produced). Similarly, you can use the /DIAGNOSTICS
qualifier with the ACS RECOMPILE command, but it has no
effect.

Using VAXAda with the VAX Language-Sensitive Editor and Source Code Analyzer C-7

Table C—2 summarizes the LSE commandsfor compiling your program and
reviewing any errors.

Table C-2: VAX LSE Commandsfor Compiling a Program and Reviewing

Errors

Command Key Binding Function

COMPILE None | Compiles the contents of the source buffer.
You can enter this command with the

/REVIEW qualifier to put LSE in REVIEW

mode immediately after the compilation.

REVIEW None Puts LSE into REVIEW mode anddis-

plays any errors resulting from the last
compilation.

END REVIEW None Removes the buffer $REVIEW from the

screen; returns the cursor to a single window
containing the source buffer.

GOTO SOURCE CTRL/G Movesthe cursor to the source buffer that

contains the error.

NEXT STEP CTRL/F Moves the cursor to the next error in the

buffer $REVIEW.

PREVIOUS STEP CTRL/B Movesthe cursor to the previouserror in the
buffer $REVIEW.

None { Down arrow \ Movesthe cursor within a buffer. —
Up arrow

C.1.5 Sample LSE Session

This section shows parts of an LSE session used to develop the Ada
source program in Example C—1. The program calls the VMS system
routine SYS$ASCTIM,which returns the current time as an ASCII string.

Instructions and explanations precede each step (or group of steps) in the
development of the program.

The program development steps show expansionsof placeholders and tokens
to produce the following program elements:

e Acontext clause

e An Ada main program

e An object declaration

e Acall to a VMS system routine in package STARLET

C-8 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

e An input-output operation in package TEXT_IO

e An if statement

Control keys and commands that manipulate tokens and placeholders are
mentioned as appropriate; see Section C.1.3 for a more complete list of
control keys and commands.

Rememberthat braces ({}) enclose required placeholders; brackets ([])
enclose optional placeholders. When you erase an optional placeholder using
the ERASE PLACEHOLDER/FORWARD command or CTRL/K, LSE also
deletes any associated text before and after that placeholder.

NOTE

Keywords such as procedure, type, exception, and so on can be
tokens as well as placeholders; thus, any time you are in the VAX
Ada language environment, you can type one of these words and
press CTRL/E to expandthe construct.

Example C-1: Complete Ada Program Developed Using LSE

with TEXT_I0, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
CURRENTTIME : STRING (1..23) := (others => ’ ’);

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;
begin

STARLET.ASCTIM (

STATUS => RETSTATUS,

TIMBUF => CURRENTTIME) ;

if CONDITIONHANDLING.SUCCESS (RETSTATUS) then

TEXTIO.PUTLINE (ITEM => CURRENTTIME);

else

TEXTIO.PUTLINE ("Call to ASCTIM failed.");

end if;

end LSEEXAMPLE;

Step 1: Creating a Main Program with a Context Clause

When you use LSE to create a new VAX Ada program,the initial string,
{compilation_unit}, appears at the top of the screen. For example:

{compilationunit}
[End of file]

(The [Endoffile] indicator appears at all times when you are in an LSE
buffer; it is shown here only for completeness and does not appear in other
examples in this section.)

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-9

Using CTRL/E, expandthe initial string to produce a menu, and press the
down arrow key until the cursor points at the option {procedure body}. Press
the RETURNkey. The following appears on your screen:

-- [sourcefileheadercomment]
[contextclause]

{procedurebody}

Form a context clause by first pressing CTRL/K to erase the [source_file_
header_comment] placeholder, and then pressing CTRL/E to expand the
[context_clause] placeholder. The following appears on yourscreen:

[withclause]...

[useclause]...
[contextclause]...
{procedurebody}

Press CTRL/E to expand the [with_clause] placeholder, with the following
result:

with {unit_identifier}...;

[with clause]...

[useclause]...

[contextclause]...
{procedurebody}

Type TEXT_IO in place of the {unit_identifier} placeholder, and press

CTRL/N to get to the next {unit_identifier} placeholder, which LSE auto-
matically creates each time you add a unit identifier to the context clause:

with TEXTIO, {unit_identifier}...;
[withclause]...

[useclause]...
[contextclause]...
{procedurebody}

Type STARLETin place of the {unit_identifier} placeholder. Repeat this
process to add CONDITION_HANDLINGto the context clause, then press
CTRL/K four times to delete the remaining {unit_identifier} placeholder

and the [with_clause], [use_clause], and [context_clause] placeholders. The

following appears on yourscreen:

with TEXTIO, STARLET, CONDITIONHANDLING;

{procedurebody}

Form the main procedure by pressing CTRL/E to expand the {procedure_
body} placeholder. The following appears on your screen:

C—10 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure {procedureidentifier} [formalpart] is
-- [procedureheadercomment]

[declarativepart]

begin
{statement}...

[exceptionpart]
end [procedureidentifier];

Type LSE_EXAMPLEin place of {procedure_identifier}; note that LSE
automatically replaces the [procedure_identifier] placeholder at the end
statement for you. Now, erase the [formal_part] placeholder by pressing
CTRL/K. Press CTRL/K again to erase the [procedure_header_comment]
placeholder. The following appears on your screen:

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
[declarativepart]

begin

{statement}...
[exceptionpart]
end LSEEXAMPLE;

Now that the main procedure template is formed, you can expand the
declarative and statement parts as described in steps 2, 3, and 4.

Step 2: Declaring Objects

Using the main procedure template at the end of step 1, press CTRL/E to
expand the [declarative_part] placeholder. The following appears on your
screen:

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is

[basicdeclarativeitem]...
[laterdeclarativeitem]...

begin :
{statement}...

[exceptionpart]

end LSEEXAMPLE;

Press CTRL/E to expand the [basic_declarative_item] placeholder. This
placeholder is a menu placeholder; choose {basic_declaration} from the menu.
The following appears on your screen, with a menuof basic declarations:

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C—11

with TEXTI0, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
{basicdeclaration}
[basicdeclarativeitem]...
[laterdeclarativeitem]...

begin

{statement}...
[exceptionpart]

end LSEEXAMPLE;

Choose {object_declaration} from the menu. LSE automatically presents
you with another menu of possible object declarations; choose the object
appropriate for declaring a STRING variable. The following appears on your
screen:

with TEXTIO, STARLET, CONDITIONHANDLING;
procedure LSEEXAMPLE is

{identifier}...: [constant] {subtypeindication}:=[initialvalue];
[basicdeclarativeitem]...
[laterdeclarativeitem]...

begin |

{statement}...

[exceptionpart]

end LSEEXAMPLE;

TypeCURRENT_TIMEin place of the {identifier} placeholder. Press
CTRL/K twice: once to erase the rest of the {identifier} placeholder, and
once to erase the [constant] placeholder. Press CTRL/E to expand the
{subtype_indication} placeholder. The following appears on your screen:

with TEXTI0, STARLET, CONDITIONHANDLING;

procedure LSE_EXAMPLE is
CURRENTTIME: {typemark} [constraint] := [initialvalue];
[basicdeclarativeitem]...
[laterdeclarativeitem]...

begin
{statement}...

[exceptionpart]
end LSEEXAMPLE;

Type STRINGin place of the {type_mark} placeholder. Press CTRL/N to get
to the [constraint] placeholder, and type (1..23) to replace the placeholder.
Press CTRL/N to give the object CURRENT_TIMEaninitial value by
replacing the [initial_value] placeholder with the aggregate (others =>’ ’).
The following appears on yourscreen:

C-12 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
CURRENTTIME : STRING (1..23) := (others => ’ ');
[basicdeclarativeitem]...
[laterdeclarativeitem]...

begin
{statement}...

[exceptionpart]

end LSEEXAMPLE;

Press CTRL/N to get to the [basic_declarative_item] placeholder. Expand the
placeholder, and create another object, RET_STATUS, which should be of

type CONDITION_HANDLING.COND_VALUE_TYPE. Press CTRL/K twice
to erase the the extra [basic_declarative_item] and [later_declarative_item]

placeholders. The following appears on the screen:

with TEXTIO, STARLET, CONDITIONHANDLING;
procedure LSEEXAMPLE is

CURRENTTIME : STRING (1..23) := (others => ' ');

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;
begin

{statement}...

[exception_part]
end LSEEXAMPLE;

Now, you can expand the {statement} part of the template as described in
steps 3 and 4.

Step 3: Using LSE to Write a Package STARLET System Service Call

Using the template at the end of step 2, type STARLET.ASCTIM in place
of the {statement} placeholder, as follows. (Alternatively, you can type
STARLET and expandit into a menuofthe routines available from the Ada
predefined package STARLET.)

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
CURRENTTIME : STRING (1..23) := (others => ’ ‘);

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;

begin
STARLET .ASCTIM

[statement]...

[exceptionpart]

end LSEEXAMPLE;

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-—13

Press CTRL/E immediately after typing STARLET.ASCTIM to expand the
token. The following appears on the screen:

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
CURRENTTIME : STRING (1..23) := (others => ’ ’);

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;

begin
STARLET.ASCTIM (

STATUS => {status},
[TIMLEN => {timlen}],

TIMBUF => {timbuf},

[TIMADR => {timadr}],

[CVIFLG => {cvtflg}]);
[statement]...

[exceptionpart]
end LSEEXAMPLE;

Type RET_STATUSin place of the {status} placeholder, and press CTRL/K

to erase the next (optional) parameter. Type CURRENT_TIMEin place of
the {timbuf} placeholder, and use CTRL/K to erase the remaining optional
parameters. The following appears on the screen:

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
CURRENTTIME : STRING (1..23) := (others => ' ');

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;

begin
STARLET.ASCTIM (

STATUS => RETSTATUS,

TIMBUF => CURRENTTIME) ;

[statement]...

[exceptionpart]
end LSEEXAMPLE;

Step 4: Writing an if Statement and Calling a TEXT_IlO Procedure

Using the template from the end of step 3, press CTRL/E to expand the
[statement] placeholder, and choose the if statement from the menu. The
following appears on the screen:

C—14 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

with TEXT_IO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
CURRENTTIME : STRING (1..23) := (others => ’ ');

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;
begin

STARLET.ASCTIM (

STATUS => RETSTATUS,

TIMBUF => CURRENTTIME);

if {condition} then

{statement}...

[elsifpart]...

[elsepart]

end if;

[statement]...

[exceptionpart]

end LSEEXAMPLE;

Type the boolean function CONDITION_HANDLING.SUCCESS(RET_
STATUS)in place of the {condition} placeholder, with the following result:

with TEXTIO, STARLET, CONDITIONHANDLING;
procedure LSEEXAMPLE is

CURRENTTIME : STRING (1..23) := (others => ’ ');

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;

begin
STARLET.ASCTIM (

STATUS => RETSTATUS,
TIMBUF => CURRENTTIME);

if CONDITIONHANDLING.SUCCESS (RETSTATUS) then

{statement}...

[elsifpart]...

[elsepart]
end if;

[statement]...

[exceptionpart]
end LSEEXAMPLE;

Press CTRL/N to get to the {statement} placeholder. Type TEXT_IO.PUT_
LINE in place of the {statement} placeholder and press CTRL/E to obtain
the syntax for PUT_LINE from LSE(all of the Ada input-output operations
are also LSE tokens). The following appears on your screen:

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C—15

with TEXTIO, STARLET, CONDITIONHANDLING;
procedure LSEEXAMPLE is

CURRENTTIME : STRING (1..23) := (others => ’ ');

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;
begin

STARLET.ASCTIM (

STATUS => RETSTATUS,

TIMBUF => CURRENTTIME);

if CONDITIONHANDLING.SUCCESS (RETSTATUS) then

TEXTIO.PUTLINE ([FILE => {fileidentifier}],
ITEM => {stringorchar_expression});

[statement]..

[elsifpart]...
[elsepart]

end if;

[statement]...

[exceptionpart]
end LSEEXAMPLE;

Press CTRL/K to delete the first (optional) parameter, and type CORRENT_
TIMEin place of the {string_or_char_expression} placeholder. Press CTRL/K
twice more to erase the[statement] and[elsif_part] placeholders. The
following appears on your screen:

with TEXT_I0, STARLET, CONDITIONHANDLING;
procedure LSEEXAMPLE is

CURRENTTIME : STRING (1..23) := (others => ’ ');

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;

begin
STARLET.ASCTIM (

STATUS => RETSTATUS,

TIMBUF => CURRENTTIME);

if CONDITIONHANDLING. SUCCESS (RETSTATUS) then

TEXTIO.PUTLINE (ITEM => CURRENTTIME);

[elsepart]
end if;

[statement]...

[exceptionpart]

end LSE_EXAMPLE;

Press CTRL/E to expandthe [else_part] placeholder, and substitute another
TEXT_JO.PUT_LINE statement for the resulting {statement} placeholder,
with the following result:

C-—16 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

with TEXTIO, STARLET, CONDITIONHANDLING;
procedure LSEEXAMPLE is

CURRENTTIME : STRING (1..23) := (others => ’ ');

RETSTATUS : CONDITIONHANDLING.CONDVALUETYPE;

begin | |

STARLET.ASCTIM (
STATUS => RETSTATUS,
TIMBUF => CURRENTTIME);

if CONDITIONHANDLING.SUCCESS (RETSTATUS) then
TEXTIO.PUTLINE (ITEM => CURRENTTIME);

else

TEXTIO.PUTLINE(ITEM => "Call to ASCTIM failed.");

[statement]...

end if;

[statement]...

[exceptionpart]
end LSEEXAMPLE;

Use CTRL/K to erase the [statement] and [exception_part] placeholders.
The complete program now appears on thescreen, as follows, and can be
compiled:

with TEXTIO, STARLET, CONDITIONHANDLING;

procedure LSEEXAMPLE is
CURRENTTIME : STRING (1..23) := (others => ’ ');

RETSTATUS : CONDITIONHANDLING.COND_VALUETYPE;

begin
STARLET.ASCTIM (

STATUS => RETSTATUS,

TIMBUF => CURRENTTIME);

if CONDITIONHANDLING.SUCCESS (RETSTATUS) then

TEXTIO.PUT_LINE (ITEM => CURRENTTIME);

else

TEXTIO.PUTLINE(ITEM => "Call to ASCTIM failed.");

end if;

end LSEEXAMPLE;

C.2 Using VAX Ada with SCA

SCAis an interactive tool for cross-referencing and statically analyzing
source code. You can use it with most VAX languages, including VAX Ada.
SCA stores data generated by the VAX Ada compiler in an SCAlibrary. The
data in an SCAlibrary contains information aboutall the symbols, modules,
and files encountered during compilation of your sourcefiles.

Cross-referencing provides information about program symbols and source
files. SCA provides the following cross-referencing features:

e You can locate symbols and occurrences (uses) of those symbols in your
source code. SCA allows you to obtain information on one or several

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-—17

symbols; you can also obtain information on partial symbols by using

wildcard characters.

¢ You can find symbols or files of particular kinds (such as subprogram
names, operators, variable names, or sourcefiles).

¢ You can find specific occurrences (or uses) of the symbols you are

interested in. For example, you can look for symbol declarations,
exceptions, calls to subprograms or operators, and so on.

Static analysis provides information on how subprograms, symbols, andfiles
are related. SCA provides the following static analysis features:

e You can display calls to a particular subprogram, and then go to the
source location of those calls (SCA FIND/REFERENCE=CALL).

e You can display call tree information related to a particular subprogram;
you can also display calls to or from a particular subprogram (SCA
VIEW CALL_TREE).

Note that because Ada is strongly typed and subprogram calls are checked
by the compiler, the SCA CHECK CALLS commandhasnoeffect for

VAX Ada.

SCAis fully integrated with LSE to provide additional features. By using
SCA with LSE, you can view any portion of an entire system and edit the
related sourcefiles.

See Section C.1 for general and Ada-specific information on LSE; see the
Guide to VAX Language-Sensitive Editor and VAX Source Code Analyzer for
detailed information on both LSE and SCA.

C.2.1 Setting Up an SCA Environment

To use SCA to analyze VAX Ada source code, you must take the following
steps:

1. Create an SCA library.

2. Use the VAX Ada compiler to generate data analysis files for each
compilation unit you want to analyze.

3. Load the information from the data analysis files into your SCAlibrary.

The following sections describe these steps in moredetail.

C-—18 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

C.2.1.1 Creating an SCA Library

To use SCA, you must have an SCAlibrary in which to store the analysis
data that the VAX Ada compilercollects. To create an SCA library, first
create a VMSdirectory. For example:

$ CREATE/DIRECTORY [.MY_SCA_LIBRARY]

Next, initialize and set the library with the SCA CREATE LIBRARY com-
mand. For example:

S SCA CREATE LIBRARY [.MY_SCA_LIBRARY]

If you have an existing SCA library that has been initialized, you makeits
contents visible to SCA by setting it with the SCA SET LIBRARY command.
For example: |

$ SCA SET LIBRARY [.EXISTINGSCA_LIBRARY]

VAX Ada provides a predefined SCA library for the Ada predefined units.
The nameof this library is ADA$SCA_PREDEFINED.To make its contents
visible to SCA, add it to your SCAlibrary list using the SCA SET LIBRARY
command. For example:

$ SCA SET LIBRARY [.MY_SCALIBRARY] ,ADASSCA_PREDEFINED

Note that ADA$SCA_PREDEFINEDis a system library, and thusis gener-

ally read-only (for example, you cannot use the SCA DELETE MODULE,

REORGANIZE, or VERIFY commandswiththis library).

C.2.1.2 Generating Data Analysis Files

The ADA, ACS COMPILE, and ACS RECOMPILE commandsall have an

optional /ANALYSIS_DATA[=filespec] qualifier that causes data analysis

files to be output for each file that is compiled. By default, the data analysis
files are created in your current default directory. By default, they have the
same namesas the namesofthefiles that were compiled, and they have a
file type of .ANA. For example:

$ ADA/LIST/ANALYSISDATA ADAPACKAGE, ADAPROGRAM

This command compiles the input files ADA_PACKAGE.ADA and ADA_

PROGRAM.ADAinto the current Ada program library, and generates
two outputfiles for each input file in the current default directory: ADA_

PACKAGE.LIS, ADA_PACKAGE.ANA, ADA_PROGRAMLLIS, and ADA_
PROGRAM.ANA.

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-—19

Note that unlike the ADA command, the ACS RECOMPILE and COMPILE

commands operate on compilation units, not source files, and different sets
of data analysis files can result based on the way these commandsoperate.

The ACS RECOMPILE commandcreates a .ANAfile from the copied source
file of each unit involved in the recompilation. The ACS COMPILE command
creates a .ANAfile for each original source file that it must compile again
and a .ANAfile for each unit that it recompiles. In both cases, if no other
directory is specified in the /ANALYSIS_DATA[=filespec] command,
the .ANA files appear in the current default directory.

C.2.1.3. Loading Data Analysis Files into a Local Library

Once you have an SCAlibrary and have generated data analysisfiles for

your source code during compilation, you must load the information in the

data analysis files into your SCA library. For example:

$ SCA LOAD ADAPACKAGE, ADA_PROGRAM

This command loads your current library with the information contained in
ADA_PACKAGE.ANA and ADA_PROGRAM.ANA.

C.2.2 Using SCA for Cross-Referencing

Once you have set up your SCA environment, you can ask for symbol orfile
information by using the SCA command FIND. The FIND commandhas the
following form: ©

FIND [/qualifier...] [name-expression[,...]]

The possible qualifiers are /FILE and /SYMBOL_CLASS; /SYMBOL_CLASS
is the default. The name can represent any of the following entities:

Name A series of characters that uniquely identifies a symbol ora file

Item An appearance of a symbol (such as a variable, constant, label, or
procedure) or file

Occurrence The use of a symbol ora file

The name expression can be explicit or can contain wildcards. For example:

$ SCA FIND ABC, XY%

SCA is integrated with LSE. Thus, you can execute any SCA command from
within LSE. Once you are inside the editor, you press CTRL/Z to get the
LSE> prompt; you can type any SCA commandat the prompt, and press the
RETURNkey to execute the command. For example:

LSE> FIND ABC, XY%

C-20 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

When you first enter a FIND command within LSE, you initiate a query

session. Within this context, the integration of LSE and SCA provides com-
mands thatcan be used only within LSE. Table C-—3 lists these commands.

Table C-3: VAX LSE Commandsfor Making SCA Queries

Command Function

NAME Allows you to step through one or more
NEXT ITEM query buffer displays within LSE

{ PREVIOUS \ OCCURRENCE
QUERY
STEP

GOTO SOURCE Displays the source corresponding to the
current query item

GOTO DECLARATION Positions the cursor on a symbol declaration
in one window, and displays the source code
that contains the symbol declaration in
another window

The following sections discuss the use of the SCA FIND commandandthe
LSE-related SCA commandsin moredetail.

C.2.2.1 Finding Files

The SCA FIND/FILE commandis designed to help you find information
on thefiles involved in your program. Since Ada programsare structured
as sets of compilation units, rather than files, this command haslittle use

with VAX Ada programs except to tell you which compilation units (called
modules in SCA) are in which sourcefiles.

C.2.2.2 Finding Ada Symbols

The SCA FIND/SYMBOL_CLASS commandis designed to help you find
information on symbols in your program. This command has a number of
qualifiers for helping you find the information about a symbol or group of
symbols. Those qualifiers that have Ada-specific features or interpretations
are explained in the following sections.

Note that some Ada constructs fall into more than one of the categories
defined by the various qualifiers. For example, a generic instantiation is
both a declaration and a reference. If, for example, a generic package is

instantiated, a declaration is generated for the instantiation; a referenceis

generated for the generic package. Thus, the following instantiation will

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C~21

generate both a declaration of package MY_INT_SORTanda reference to

generic package SORT(as well as a reference to type INTEGER):

package MYINTSORT is new SORT (INTEGER);

Also note that SCA recognizes Ada operators as symbols; you can use any of
the SCA FIND/SYMBOL_CLASSqualifiers to query SCA about the use of
operators in your Ada source code. When querying SCA about an operator
using the FIND/SYMBOL_CLASS command, you must enclose the operator
in quotation marks. For example:

LSE> FIND/SYMBOLCLASS/DECLARATIONS "+"

To query SCA about a multiplication operator (*), you must go to the source

code and use the SCA FIND/INDICATED command(see Section C.2.3).
SCA recognizes this operator as a wildcard character even whenit is inside
quotation marks. The FIND/INDICATED commandcan be used with any of

the FIND/SYMBOL_CLASSqualifiers.

C.2.2.2.1 Declarations

The /DECLARATIONS|[=(option[,...])] qualifier allows you to query SCA
for information on symbol declarations. The option keywords are PRIMARY,

ASSOCIATED, EXPLICIT, IMPLICIT, VISIBLE, HIDDEN, ALL, and NONE.
Note the following points about the use of this qualifier and its keywords

with VAX Ada source code:

e Ina very general sense, Ada specifications (package, subprogram, and

task) are considered to be associated declarations; the corresponding bod-
ies are considered to be primary declarations. Thus, a main subprogram
(which has no separate specification) has only a primary declaration.

SCA recognizes the pairs of associated and primary declarations in Ada
source code listed in Table C-4.

For Ada constructs that have both a primary and an associated declara-

tion, you can use the LSE GOTO DECLARATION/INDICATED/CONTEXT_
DEPENDENT command(by default bound to the PF1-CTRL/D key-
pad key) to toggle between the two declarations in the source code.
See Section C.2.3 for more information on commands that involve the

/INDICATED qualifier.

e The EXPLICIT option keyword provides information on explicit dec-
larations in the source code. Declarations that result from a generic
instantiation are also considered to be explicit (even though they are
hidden).

C-—22 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

¢ The IMPLICIT option keyword provides information on implicit op-
erators derived from type declarations (for example, the operations
associated with type INTEGERare considered to be declared implicitly).

¢ The VISIBLE option keyword provides information on declarations that
appear only in the source code (declarations that result from a generic
instantiation are not visible).

¢ The HIDDENoption keyword provides information on declarations that
are presumed, but not declared, in the source code. Implicit declarations
(such as operations associated with a type) and declarations that result
from a generic instantiation are hidden declarations.

¢ The ALL and NONEoption keywords provide either all or noneof the
information available on symbol declarations.

Table C-4: Ada Constructs Associated with SCA PRIMARYand
ASSOCIATED Keywords

Ada Constructs Associated with the

PRIMARY Keyword
Ada Constructs Associated with the

ASSOCIATED Keyword

accept statement

full constant declaration

[generic] package body

[generic] subprogram body

task [type] body

full type declaration

accept formal parametersin a task [type]
body :

subprogram formal parameters in a body

discriminants in a full type declaration

entry [family] declaration

deferred constant declaration

[generic] package specification

[generic] subprogram specification

task [type] specification

incomplete or private type declaration

entry formal parameters in a corre-
sponding task [type] specification

subprogram formal parameters in a
corresponding specification

corresponding discriminants in an
incomplete or private type declaration

C.2.2.2.2 References

The /REFERENCES[=(option[,...])] qualifier allows you to query SCA infor-
mation on symbol references. The option keywords are READ (or FETCH),

WRITE (or STORE), ADDRESS (or POINTER), CALL, OTHER, VISIBLE,
HIDDEN, ALL, and NONE.Note the following points about the use of this

qualifier and its keywords with VAX Ada source code:

_¢@ The READ and WRITE keywords provide information on symbol values
that have been read or written.

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C—23

e The ADDRESS keyword has no meaning for VAX Ada.

¢ The CALL keyword providesinformation on calls to subprograms(note
that operators are also subprograms).

¢ The OTHER keyword provides information on all references that are
not READ, WRITE, or CALL references. For example, references to

exceptions in a raise statement are other references, as are references to

exceptions in an exception handler.

¢ The VISIBLE keyword provides information on all references that are in
the current source code.

¢ The HIDDEN keyword provides information on all references that
are related to the current source code, but are not directly visible (for

example, the operations in an instantiation of package DIRECT_IO).

¢ The ALL and NONEoption keywords provide either all or none of the
information available on symbol references.

C.2.2.2.3. Symbol Classes

The /SYMBOL_CLASS[=(symbol_classf[,...])] qualifier allows you to select

various classes of symbols. The following keywords are provided (synonyms

that are less relevant to Ada are in parentheses):

ADDRESS(or POINTER)
ARGUMENT
COMPONENT(or FIELD)
CONSTANT (or LITERAL)
EXCEPTION
FILE
LABEL
GENERIC
MACRO
PACKAGE (or MODULE, PROGRAM)
PSECT
FUNCTION or PROCEDURE(or ROUTINE, SUBROUTINE)
TASK
TYPE
UNBOUND
VARIABLE
OTHER
ALL
NONE

C-—24 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

When using the SCA FIND/SYMBOL/SYMBOL_CLASS command for sym-

bols that are not alphanumeric identifiers (such as subtraction, concatena-
tion, and addition operators), you must enclose the symbols in quotation

marks; for example: SCA FIND "-", "&", "+".

Note the following points about the use of this qualifier and its keywords

with VAX Ada source code:

The ADDRESS keyword has no meaning for VAX Ada.

The ARGUMENT keywordlists subprogram formal parameters.

The COMPONENTkeywordlists record components and discriminants.

The CONSTANT keywordlists constants.

The EXCEPTION keywordlists exceptions.

The FILE keyword has no meaning for VAX Ada.

The LABEL keywordlists labels and loop identifiers.

The GENERIC keywordlists generic packages and subprograms.

The MACRO keyword has no meaning for VAX Ada.

The PACKAGE keywordlists packages.

The PSECT keyword has no meaning for VAX Ada.

The FUNCTION or PROCEDUREkeywordlists all subprograms(includ-
ing operators), entries, and accept statements (all are listed as a result

of either keyword).

The TASK keywordlists all task objects.

The TYPE keywordlists all types.

The UNBOUNDkeywordlists all Ada attributes and pragmas. Pragmas
that are compilation units—MEMORY_SIZE, SYSTEM_NAME,and
LONG_FLOAT—donot appear in SCAdisplays.

The VARIABLE keywordlists all Ada objects.

The OTHER keyword has no meaning for VAX Ada(all symbol classes
are accounted for with symbol class keywords).

The ALL and NONEoption keywords provide either all or none of the
information available on symbol classes.

Note that single tasks appear as having a task type specification decla-
ration, a task type body declaration, and a task object declaration. Task
types appear as having a task type specification declaration and task body
declaration; task objects appear as having only a task object declaration.

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C—25

C.2.3. Navigating Through Ada Source Code

The best way to navigate through code is to use SCA from inside VAX LSE.

The following navigation features are especially useful in analyzing Ada
source code:

NOTE

When you use these commands with an operator, you must
first enclose the operator in a select range (use the SELECT
command bound to the period (.) key on the keypad and the
CHAR commandboundto the three (3) key on the keypad).

If you do not use the commandwith an operator, and the operator
is enclosed in quotation marks in the source code, you should
include only the operator symbol (and not the quotation marks) in

the select range.

FIND/AINDICATED—You must position the cursor on a symbol in
the source code before you can execute this command; you can use

this commandto find context-dependent occurrences of a particular
symbol. You can use any of the FIND/SYMBOL_CLASS qualifiers
with this commandto control the kind of information displayed for

the indicated symbol. However, the /REFERENCES[=(optionl[,...])] and

/DECLARATIONS[=(option,...)] qualifiers are perhaps the most useful.

GOTO DECLARATION/INDICATED/CONTEXT_DEPENDENT(PF1-
CTRL/D)—You can use this command to toggle between primary and

associated declarations of a particular symbol. For example, if the cursor
is on a primary declaration, this command will cause the cursor to be

positioned at the associated declaration, and vice versa.

You can also use this command on symbol references. In such cases,

the cursor is positioned on the location that determines the meaning

of the symbol in the context in which the command was executed. For

example, if you are working with an Ada private type, and you position
the cursor on a reference to the type in the package body, the cursor
is moved to the complete declaration of the type in the package body.
If you position the cursor on a reference to the type that is outside of
the package, the cursor is moved to the declaration of the type in the
package specification.

GOTO DECLARATION/AINDICATED/PRIMARY (CTRL/D)—You must
position the cursor on a symbol in the source code before you can execute
this command; you can use the CTRL/D key binding to quickly find the
body of a subprogram or package, operator, accept statement, and so
on (see Table C—4). If the symbol does not have a primary declaration

C-—26 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

(as is the case for specifications that have no bodies), SCA will issue an
informational message to that effect.

GOTO DECLARATION/INDICATED/ASSOCIATED—You must position
the cursor on a symbol in the source code before you can execute this

command; you can use this commandto find the specification of a
subprogram or package, operator, entry declaration, and so on (see
Table C—4). If the symbol does not have an associated declaration (as is
the case for subprograms that have no separate specifications), SCA will
issue an informational messageto that effect.

Note that although this commandhas no key boundto it, you can bind it
to a key of your choice using the LSE DEFINE KEY command.

GOTO SOURCE (CTRL/G)—You must position the cursor on an entity
in an SCA query display. When you execute this command, the cursor

is positioned at the entity’s location in the actual source code. This

command can be used on all Ada units, including the predefined units in
ADA$SCA_PREDEFINED.

C.2.4 Using SCAfor Static Analysis

The SCA CHECK CALLS and VIEW CALL_TREE commands allow you to

statically analyze your source code (display calls to a particular subprogram

and display call tree information). When using these commands with VAX

Ada source code, note the following points:

The SCA CHECK CALLS commandhasnoeffect for Ada because Ada
is strongly typed; the compiler ensures that the actual parameters
in subprogram calls correctly match the formal parameters in the
corresponding subprogram specifications.

The SCA VIEW CALL_TREE commandstops whenit encountersa call
to a subprogram resulting from a generic instantiation.

When the SCA VIEW CALL_TREE commandis entered with the name
of an overloaded subprogram,it will produce n distinct call trees for each
of the noverloadings.

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-—27

C.2.5 Multimodular Development

The cross-referencing and static analysis features of SCA are especially
useful during the implementation and maintenance phasesof a project that

involves many programming modules. For example, the project team work
area in Figure C—1 contains a set of source modules. (The team might use

a code managementtool, such as VAX DEC/CMS,to keep track of these
modules in their various development stages.) When the team compiles the

source code, SCA generates the source information it requires (that is, data
analysis files with the file type .ANA); then the team loads this information

into a previously established project SCA library.

When a team member wants to do additional development work on specific

modules, that membersets up an individual work area, which might contain
the following:

¢ Copies of source and object modules from the project libraries

¢ Local SCA libraries that contain copies of the module information

To make available all the capabilities of SCA/LSE integration, the team
memberinforms LSE of the locations of that member’s current sources, and

related source information. Using LSE,all team memberscan effectively
see through their own individual work areas to the project work area and
possibly to other individual work areas.

The following sections provide a general overview of SCA and discuss some
of the commandsthat are available to you when you use SCA within LSE.

Information is also provided that is necessary for using SCA to analyze
VAX Ada programs. For detailed information on SCA, see the Guide to VAX
Language-Sensitive Editor and VAX Source Code Analyzer.

C.2.6 Additional Ada-Specific SCA Considerations

Many of the Ada-specific SCA considerations have been presented in

previous sections. The following sections note additonal considerations that
can aid your use of SCA with VAX Ada source code.

C-—28 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

Figure C—1: Using LSE and SCA for Multimodular Development

Project Work Area

| Compile Load

Debugger, cD

—__—— | Source,
|

ANA

CMS Reference Files SCA |

| Copy Library
Library Are

|
| Some

Source ANA Individual
| Code Files SCA
| Modules :

Pointers to Source Pointers to SCA

for LSE Information for LSE

ZK-5850-GE

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C-—29

Library Differences

SCA libraries and VAX Ada program libraries have some differences, and

the commandsfor creating, deleting, and setting SCA libraries behave
somewhat differently from similar ACS commands. Table C—5 summarizes

these differences.

Table C-5: Comparison of SCA and ACSLibrary Characteristics

SCA Libraries VAX Ada Libraries

The SCA CREATE LIBRARY command

requires that a VMSdirectory already
exist before the commandis entered.

The SCA CREATE LIBRARY command
also defines the library it creates to be
the current, active SCA library.

To delete an SCA library andits con-
tents, you must use the DCL DELETE
command.

The SCA CREATE and SET LIBRARY
commands allow you to create and set a
group of libraries, which then together
act as a single, virtual library.

You must manage your SCAlibraries and
library lists yourself. For example, you
must update your SCA libraries when
units are recompiled.

Data analysis files are produced and can
be loaded into an SCA library, whether
or not the compilation was successful.

SCA cannot be used across DECnet.

ACS CREATE LIBRARY and CREATE
SUBLIBRARY commands create a VMS
directory if one doesnot already exist.

The ACS CREATE LIBRARY and
CREATE SUBLIBRARY commands
do not automatically set the current
program library.

To delete a VAX Adalibrary, you must
use the ACS DELETE LIBRARYor
DELETE SUBLIBRARY command.

The ACS CREATE LIBRARY, CREATE
SUBLIBRARY, and SET LIBRARY
commandsoperate on only one library at
a time; you can have only one library as
your current library at any one time.

VAX Adalibraries are updated by the
VAX Ada program library manager.

The VAX Ada compiler updates the
current program library only when a
compilation is successful.

VAX Ada libraries can be accessed across

DECnet; see Chapter5.

(continued on next page)

C~-30 Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer

Table C—5 (Cont.): Comparison of SCA and ACSLibrary Characteristics

SCA Libraries VAX Ada Libraries

If you load a unit specification (a The VAX Ada program library man-
package, function, procedure, generic ager does not allow you to replace a
package, generic function, or generic specification with a body.
procedure specification) into an SCA
library, and then you load a unit body
that has a matching name but that de-
clares a different kind of unit, SCA will

replace the existing specification with
the new body. For example, if you load
a procedure specification into your SCA
library and then load a function body
with the same name, SCA will delete

the procedure specification and replace it
with the function body.

C.2.6.2 Ada-Related Effects and Restrictions

Note the following Ada-related effects and restrictions in SCA queries:

e The SCA SHOW MODULE/BRIEF command(the default when wild-
cards are used in or for module names) may often list a given module
twice. This is a feature for VAX Ada units that have both a specifica-

tion and a body: one module represents the specification, and the other
represents the body. The SCA SHOW MODULE/FULL commandalso
lists modules twice, but provides enough information to allow you to
distinguish specifications and bodies.

e Due to an SCA restriction, the full name of an Ada library unit cannot

exceed 1024 characters in query displays (unit names greater than 1024

characters are truncated from the right in the displays). This restriction
generally applies only to deeply nested subunits. This restriction also
applies only to displays; internally, SCA recognizes names of any length.

Using VAX Ada with the VAX Language-Sensitive Editor and Source Code Analyzer C~31

Appendix D

Program Library and Sublibrary Structure and
Contents

A VAX Ada program library or sublibrary is a dedicated VMS directory that
is recognized by the VAX Ada compiler and program library manager.

Before any compilation has occurred, a program library contains only two
files, which were created when the program library was created:

¢ The library index file (ADALIB.ALB)

e A file used for program library version control (ADA$LIB.DAT)

The library index file distinguishes a program library or sublibrary from
other VMSdirectories, and is used by the program library managerfor
information like the following:

e To associate compilation unit and subunit names with their associated
VMSfile specifications

¢ To record the date and time when the VMSfiles were created or revised

¢ To maintain references to entered units

¢ To maintain a reference to the parent library if the library is a
sublibrary |

The program library managerand the compiler use and update this data
to keep track of successfully compiled units and their order of compilation.
Whenevera previously compiled unit is successfully compiled again, earlier
index entries are revised to reflect the new file specifications and compilation
date and time.

The current program library (see Section 2.1.2) is updated each time one of
the following VAX Ada commandsis executed successfully:

Program Library and Sublibrary Structure and Contents D-1

DCL ADA
ACS COMPILE
ACS RECOMPILE
ACS COPY
ACS ENTER

In the course of program development, a numberoffiles are created or
deleted from the program library or sublibrary, and data maybe read,
written, or deleted from these files and the library index file, depending on

the operation performed (compilation, linking, program library management,
and so on).

Each time a unit is successfully compiled into the current program library,

the followingfiles are created or accounted for (their VMSfile types appear —
in parentheses):

e An object file (OBJ) is usually created for each compilation unit. The
object file contains the machine codeinstructionsfor that unit. Note that
the compiler may not always create an object file for each compilation
unit. For example, compiling a library function specification does not
create an objectfile.

¢ Acompilation unit file (.ACU) is created for each compilation unit. The

file contains data that is used to support separate compilation, linking,
and program library management. The data includes the nameof the

compilation unit; whetherit is a specification, a body, or a subunit;

use of certain pragmas, and so on. Also, the file identifies all library
specifications that the given compilation unit dependson.

e Unless suppressed by the /NOCOPY_SOURCE compilation qualifier, a
copied source file (.ADC) is created for each compilation unit. Thisfile
contains a copy of the Ada source text for that compilation unit. It is

used by the ACS RECOMPILE commandfor recompiling obsolete units
(see Chapter 3). It is also used by the VMS Debuggerto display source
lines during debugging (see Chapter6).

e¢ Unless suppressed by the /NONOTE_SOURCEcompilation qualifier,
the file specification of the sourcefile (.ADA) is noted in the library
index file. This source file specification is used by the ACS COMPILE
commandfor compiling units from external source files (see Chapter 3).
If the /NOCOPY_SOURCEqualifier is in effect, then this sourcefile is
used by the VMS Debuggerto display source lines during debugging.

Otherfiles created during compilation and linking (compilerlistingfiles,

linker mapfiles, and so on) are created in your current default directory or
in any other directory you may havespecified for them with the appropriate

compilation or linking commands.

D-2 Program Library and Sublibrary Structure and Contents

Whenassigningfile specifications to program library files, the program
library manager and the compiler use the file-name conventions for source
files described in Chapter1.

Whenever a unit is copied into the current program library, its associated
files are copied. Whenever a previously compiled unit is successfully
compiled again or copied and replaced, earlier versions of the associated files
are deleted.

One set of object, compilation unit, and copied source files is created for

each compilation unit, not for each file submitted to the compiler. The
contents of the program library would be the sameif the source code for

these compilation units had been arrangedin one, two, or three sourcefiles.
If the compiler detects a fatal or user error during the compilation of a given
compilation unit, the program library is not updated for that unit. However,
if the compiler issues only warning or informational messages, the program
library is updated.

If several compilation units are submitted in one compilation and errors
are detected, not all compilation units will have errors. In that case, the
program library is updated only for those compilation units that do not have
errors. See Chapter 3 for more information on compilation errors.

Figure D-1 shows a program library that contains the following set of
compiled units:

e The procedure body HOTEL

e The specification and body for the package RESERVATIONS

e The subunit RESERVATIONS.CANCEL

Figure D-—1 showsthe relationship between the sourcefiles for these
units and the compiled units and their associated files. The source files
are in the current default directory [JONES.HOTEL], and the compiled
units and their associated files are in the current program library
[JONES.HOTEL.ADALIB].

The arrows in Figure D-2 show, in simplified fashion, how the library index
file references units and associatedfiles.

Program Library and Sublibrary Structure and Contents D-—3

Figure D~—1: Current Default Directory and Current Program Library After Compilation

Current default directory (JONES.HOTEL] Current program library [JJONES.HOTEL.ADALIB}]

HOTEL.ADA ADALIB.ALB

ADAS$LIB.DAT
with RESERVATIONS HOTEL

procedure HOTELis Compilation HOTEL.OBJ

a P HOTEL.ACU
end HOTEL, HOTEL.ADC

RESERVATIONS_.ADA

with SCREEN_IO; RESERVATIONS
package RESERVATIONSis RESERVATIONS_.OBJ

Lae ® RESERVATIONS_.ACU
end RESERVATIONS; RESERVATIONS_.ADC

RESERVATIONS.ADA .

with TEXT_IO; with QUEUE_MANAGER; RESERVATIONS
with HOTEL_MATH; RESERVATIONS.OBJ
package body RESERVATIONSis ® RESERVATIONS.ACU

bas RESERVATIONS.ADC
end RESERVATIONS;

RESERVATIONS__CANCEL.ADA

separate (RESERVATIONS) RESERVATIONS.CANCEL
procedure CANCELis RESERVATIONS__CANCEL.OBJ

bas ® RESERVATIONS__CANCEL.ACU
end CANCEL; RESERVATIONS__CANCEL.ADC

ZK-6741-GE

You can use the /FULL qualifier with the ACS DIRECTORY commandto
display the following information about a unit or subunit in the current
program library:

Thefile specifications of the object (.OBJ), compilation unit (.ACU), and
copied source (.ADC)files.

D-—4 Program Library and Sublibrary Structure and Contents

Figure D-2: Compilation Units as Entries in the Library Index File

Program library [JONES.HOTEL.ADALIB]

~ADALIB.ALB

————» HOTEL

HOTEL.OBJ
HOTEL.ACU
HOTEL.ADC

———» RESERVATIONS

RESERVATIONS_.OBJ
RESERVATIONS_.ACU
RESERVATIONS_.ADC

RESERVATIONS.OBJ
RESERVATIONS.ACU
RESERVATIONS.ADC ———— RESERVATIONS.CANCEL

RESERVATIONS__CANCEL.OBJ
RESERVATIONS__CANCEL.ACU
RESERVATIONS__CANCEL.ADC

ZK-6745-—-GE

Thefile specification of the source file (.ADA). The file specification in-
dicates the directory where the sourcefile exists, and is preceded by the
at character (@) to indicate that the file is not in the current program
library. This information is used by the ACS COMPILE command.

Program Library and Sublibrary Structure and Contents D-5

For example:

$ ACS DIRECTORY/FULL SCREEN_IO
SCREEN_IO

package specification 16-Apr-1989 13:36
SCREENIO_.ACU;3
SCREENIO.OBJ;3
SCREENIO.ADC;3

@ USER: [JONES .HOTEL] SCREENIO_.ADA; 6

package body 16-Apr-1989 15:42
SCREEN_IO.ACU;3
SCREENI0.0BJ;3
SCREENIO.ADC;2 |

@ USER: [JONES.HOTEL] SCREENIO.ADA;5

Total of 2 units.

You can also use the /FULL qualifier with the ACS SHOW PROGRAM
commandto add to the display the namesof the object file, copied source

file, and .ACU file for each unit in the closure of a set of units. For example:

S$ ACS SHOW PROGRAM/FULL SCREEN_IO

SCREENIO
Package specification

Compiled:
Source file:

Object file:

Copied file:
ACU file:

Package body

Compiled:
Source file:
Object file:

Copied file:
ACU file:

With list:

16-Apr-1989 13:36
1-Sep-1988 10:39 USER: [PROJ]SCREENIO.ADA;1

SCREENIO.0BJ;3
SCREENIO_.ADC;3
SCREENIO.ACU;3

16-Apr-1989 15:42

11-Sep-1988 10:39 USER: [PROJ] SCREENI0O.ADA;1
SCREENIO.OBd; 3
SCREENI0.ADC;2

SCREENIO.ACU; 3
TEXTIO

D-6 Program Library and Sublibrary Structure and Contents

Appendix E

Efficient Compilation

This appendix presents information on memory and resource requirements
for efficient compilation. It duplicates similar information in the VAXAda
Installation Guide and online release notes.

E.1 Memory Usage

Working set size and virtual address space are important factors in
achieving efficient compilation of VAX Ada programs. Thefollowing sections
analyze the results of sample compilations and suggestgeneral guidelines
for adjusting working set size and selecting an appropriate virtual address
space.

E.1.1 Working Sets

To measure the effects of working set size on page faults and compilation
rates, selected VAX Ada programsrepresenting typical usage were compiled
with a variety of working set sizes. The test compilations were run on
a standalone system with the following configuration: a 13-megabyte
VAXstation II with an RD53 system disk drive and an RD53 user disk drive
running VMS Version 5.1.

Table E-1 gives brief descriptions of the sourcefiles compiled in the tests
(each file represents one or more VAX Ada program units).

Efficient Compilation E-1

Table E-1: Description of Test Programs

Programs Descriptions

BL6PERFO

BL6PERF1

ADABNF

ADAMACROS

STARLETO

STARLET1

NULLP

250 lines (27 disk blocks). A set of eight library package specifica-
tions that were taken from the front end of a compiler written in
Ada.

The set includes units for lexical analysis and parsing.

850 lines (56 disk blocks). One of the package bodies that goes with
BL6PERFO.

The with clause names seven packages(five from BL6PERFO).
The body includes one instantiation of INTEGER_IO.TEXT_IO.

3400 lines (284 disk blocks). A library package specification that
provides the control tables for the LALR parser in BL6PERFO.

This package specification consists of a small numberof array ob-
jects initialized by very large aggregates. One of these is an array
aggregate consisting of 2700 namedassociations in which each
componentvalue is itself a record aggregate with two components.
Another is similar, with nearly 500 associations in which each
component value is a record aggregate with three components.

125 lines (10 disk blocks). A complete program (library procedure)
that performs a simple macro-like substitution for a set offiles
using a simple definition file. (Used to construct the VAX Ada-
specific versions for the implementation-dependenttests of the Ada
validation tests.)

29,000 lines (2113 disk blocks). Two library package specifications
consisting of CONDITION_HANDLING and STARLETas found in

the predefined library for VAX Ada.

6 lines (1 disk block). A very small procedure that uses a single
named number from package STARLET.

4 lines (1 disk block). A procedure consisting of only a null
statement.

Each of these units was compiled using working sets of 500, 750, 1000, 1250,
1500, 1750, 2000, 2500, 3000, 4000, 6000, and 10000 pages.

For these experiments, the working set size was established using the
following DCL command, where x is the desired workingset size in pages:

SSET WORKING_SET/LIMIT=x/QUOTA=x/NOADJUST

This causes the working set to be fixed as specified and disables the VMS
automatic adjustmentstrategies.

E-2 Efficient Compilation

E.1.1.1 Effect of Working Set on Paging Rate

Page fault data is shown in Figure E-1. The vertical axis is the number of
page faults times 1000. For the program STARLETO, the number of page
faults is scaled by a multiplier of 10.

The significant feature of the graph in Figure E—1 is the workingset associ-
ated with the knee of each curve. As shown, the knee occurs at around 2500

pages (1-1/4 megabytes) in each case.

The value of 2500 pages is significant because it indicates that as the
working set is reduced below this value, the amount of paging rises rapidly.

This increased paging translates into increased system load that affects
the overall system performance and responsivenessfor all users. On the
other hand, as the working set is increased abovethis figure, the paging
does not decrease very rapidly. Thus, a working set of 2500 pages should
be considered as the minimum requiredfor efficient VAX Ada compilations.
(This figure is also reinforced by the analysis of compilation rates.)

E.1.1.2 Effect of Working Set on Compilation Rate

Using data derived from the sample compilations used to analyze page
faulting behavior, Figure E—2 shows the compilation rate (measured in

source lines per elapsed minute) in relation to working set size. These
compilation rates are based on the numberof source lines compiled per

elapsed minute and not on the numberof source lines compiled per CPU
minute, because the numberof source lines per elapsed minute is a better
measure of compilation rate throughput. The vertical axis in Figure E—2
is the numberof lines compiled per elapsed minute, which is scaled by a
multiplier shown on the graph for each program.

In Figure E-2, there is a clearly defined knee at 2500 pages, for which the
following determinations can be made:

e At working sets above 2500 pages, there is very little increase in the
compilation rate.

e At working sets below 2500 pages, there is a decrease in the compilation

rate due to the paging overhead.

Efficient Compilation E-3

Figure E-1: Page Faults Versus Working Set Size

Page Faults

X1000

40 —-

 BL6PERF1

 | 2 watemn

aA
a a,

oo HL
|

| NULLP

| | | | | | | | | | | |
| 1 I 1 | | | 1 | J | 1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 10000

Working Set (pages)

ZK-4027-GE

E-4 Efficient Compilation

These measurements were made under standalone conditions on a system
with a relatively large amount of memory, so that even at very small work-
ing set sizes, page faults could be quickly and cheaply satisfied from VMS

cached pages in main memory. On a more heavily loaded system, or one
with less main memory, the cost of paging is likely to be higher as more
page faults require disk access. This increase in page faults would result
in more sharply reduced compilation rates and throughput at the smaller
workingsets.

It may seem surprising that such a relatively large working set is desirable
even for very small programs. Part of the explanation for this is the rather
large size of the VAX Ada compiler itself—approximately 4600 disk blocks.
The operation of just paging in the VAX Ada compiler during its execution
phase causes more paging than other compilers. (Other VMS compilers
supplied by Digital are generally in the 600- to 1200-block range.)

E.1.1.3 Suggestions for Controlling Working Set Sizes

Some VMSsystemsare used in environments where a large numberof users
coexist with relatively small working set quotas (an educational environment
is a key example). In such settings, VAX Ada may appear both to be very
sluggish for each individual user and to induce a large system overhead
affecting all users. A suggested practice is to establish a special batch
job queue intended primarily for VAX Ada compilations. (While especially
important in such cases, this practice is a good one even on systems where

there is generous memory for large user quotas.)

The characteristics of the queue should beset to allow a fairly large working
set quota (at least 2500 pages) with a working-set extent of 4000 or morefor
each of the concurrent compilations operating at normal interactive priority
(priority 4). In general, you can allow as many concurrent compilations
as you have VAX units of performance (VUPs). (One VUPis equal to the
performance of a VAX-11/780.)

These characteristics will allow VAX Ada compilations to complete efficiently
and without inducing excessive system overhead. You may needto experi-
ment a bit with the various parameters and optionsto find the configuration
that works best on your system.

Efficient Compilation E-—-5

Figure E-2: Compilation Rate Versus Working Set Size

Compilation Rate

(lines per elapsed minute)

80 “7—

70 --

sADABNF X10
/A\~e

x.NULLP
o—/\—e

A > §

60 -;-

s_ BL6PERF1 X10

4—\—K

50 -T

iSTARLET1
rA\—x

40

y— BLEPERFO X10
x —x

30 ---

,ADAMACROS X10
x—\—x

f.STARLETO X100
o—— o/\—«

 | | | ! | | | | | | | |
i | I { { i | { { I I

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 10000

Working Set (pages)

ZK-4026-GE

The ACS COMPILE and RECOMPILE commandsare designed to support
this style of batch processing. By default, the COMPILE and RECOMPILE
commands submit compilations to the queue namedbythe logical name
ADA$BATCH.If ADA$BATCHis not defined, then the system batch queue
SYS$BATCHis used. When a separate queue for VAX Ada compilations is
desired, ADA$BATCHshould be defined as a system logical name whose
translation is the name of the appropriate queue.

E-6 Efficient Compilation

E.1.2 Virtual Address Space

It is useful to consider the peak virtual memory required for the compilation
of each unit. This is the total virtual memory required for the execution of
the process for all purposes, including the compileritself, as well as dynamic
memory used for representing the program, input-output buffers, and so on.

The virtual memory requirements of the programs compiled for the experi-
ments on working set size are as follows:

Program Peak Virtual Pages

BL6PERFO 9100

BL6PERF1 10300

ADABNF 12000

ADAMACROS 9100

STARLETO 18900

STARLET1 8900

NULLP 8900

These figures suggest that in a large-scale production environment the
system and individual quotas should be configured to allow a virtual address
space of at least 20,000 pages (10 megabytes) for VAX Ada compilations. In
less demanding environments, 15,000 pages might generally be adequate.
(The actual virtual memory used and remaining for a compilation is
displayed as part of the summary in the compilation listing.)

See Section E.2 for more information on specific system parameters that
affect the amountof available virtual address space.

E.2 Resource Requirements

The following sections provide information on the system resources used
by the VAX Ada compiler and program library manager. Key System
Generation Utility (SYSGEN) and User Authorization File (UAF)
parameters are described, and suggested minimum values are noted. The
parameters discussed are those for which VAX Ada requires larger values
than the VMSdefaults, or for which thevalues are larger than those
required for other VAX languages.

Efficient Compilation E-7

The VMSoperating system controls resource usage through two primary
sets of parameters: system-wide parameters and per-process parameters.

You use the SYSGENutility to define and modify system-wide parameters
(SYSGEN parameters). Per-process parameters are controlled on a per-
user-name basis by quotas and defaults that are contained in the User
Authorization File (UAF parameters); you use the Authorize Utility to

modify UAF entries.

A complete description of VMS resources, SYSGEN, and UAF parameters
is contained in the VAX/VMS System Manager’s Reference Manual. You
should be familiar with the procedures described there for modifying
SYSGEN parameters. The recommendedprocedureis to add site-specific
parameters to the file SYS$SYSTEM:MODPARAMS.DATandthen invoke

the SYS$SUPDATE:AUTOGEN commandprocedure.

E.2.1 ASTLM—AST Queue Limit Parameter

The UAF AST queue limit (ASTLM) parameter limits the sum of the
following:

— The numberof asynchronous system trap (AST) requests that a user’s
process can have outstanding at one time

— The number of scheduled wakeup requests that a user’s process can
have outstanding at one time

The VAX Ada delay statement is implemented as a call to the VMS
SYS$SETIMRsystem service, which executes an AST routine. Also, VAX
Ada providesfacilities for calling VMS system routines that execute AST
routines; for example, the package STARLET provides the system services
SYS$QIO and SYS$QIOW,both of which allow you to specify an AST service
routine. The routines in the package TASKING_SERVICES execute ASTs
as well (although the execution and handling of the ASTs is hidden by the
package). |

The suggested VMStypical value for ASTLM is 24; this should be sufficient
for most Ada programs. However, if your programsinvolve tasks that could
execute many delay statements simultaneously, or you use a high number of
calls to VMS system routines that execute AST routines, you may want to
increase this value.

See the VAXAda Run-Time Reference Manual for more information on ASTs

in VAX Ada programs, especially programs that use tasks.

E-8 Efficient Compilation

E.2.2 ENQLM—Enqueue Quota Parameter

The UAF enqueue quota (ENQLM) parameter limits the numberof locks
that a process and its subprocesses can own. VAX Record Management
Services (RMS) uses locks to synchronize access to shared files and records.

VAX Ada and the VAX Adaprogram library manager use VAX RMSto access
the VAX Ada program library index file, ADALIB.ALB. Up to eight locks
may be used for each library or sublibrary that is open. When a sublibrary
is opened, it is usually the case that its parent and its ancestors are also

opened. Therefore, if you are using a sublibrary that has a parent and a
grandparent, up to 24 (3 * 8) locks may be needed. Commands such as ACS
COPY UNIT may havetwolibraries or sublibraries open at the same time,
which doubles the numberof locks.

The suggested VMStypical value for ENQLM is 30. This value is not
sufficient for using the VAX Ada program library manager and sublibraries;
the recommended value for VAX Ada users is 60.

E.2.3. FILLM—Open File Limit Parameter

The UAF openfile limit (FILLM) parameter limits the numberoffiles that a
user’s process can have open at one time. This limit includes the numberof
network logical links that can be active at the same time. (See Section E.2.7
for more information about logical links.)

The VAX Ada compiler and program library manager use the value of
FILLM to limit the total numberof files open at one time. If a compilation
involves a large numberof units, and FILLM is set too low to allow all the
files involved to be opened at the same time, the compilation can take a long
time. For example, if a unit depends, directly or indirectly, on 99 additional
units, and FILLM is set to 20, the compilation will be slower than if FILLM
had been set to 100.

FILLM is a pooled limit with a suggested typical value of 20. This value
is not sufficient for most VAX Ada compilations; the recommended min-
imum value for VAX Ada users is 50. Note, however, that the value of

FILLM must always be lower than the value of the SYSGEN channel count
(CHANNELCNT)parameter. See Section E.2.8 for more information.

If you increase the value of the FILLM parameter, you may also want to
increase the value of the UAF BYTLM parameter. The general rule for the
relationship between these two parameters is that the value of BYTLM
should be at least 100 times the value of FILLM.

Efficient Compilation E-9

E.2.4 PRCLM—SubprocessCreation Limit Parameter

The UAF subprocesscreation limit (PRCLM) parameter limits the number
of subprocesses that a user’s process can create.

The VAX Ada program library managercreates a subprocess to run the
linker or the VAX Ada compiler for the ACS LINK/WAIT, COMPILE/WAIT,
LOAD/WAIT, and RECOMPILE/WAIT commands. Only one subprocessis
created, and the creating process waits for the termination of the subprocess.

The suggested VMStypical value for PRCLM is 2; this should be sufficient
for the VAX Ada program library manageras well.

E.2.5 TQELM—Timer Queue Entry Limit Parameter

The timer queue entry limit (TQELM) parameter limits the sum of the

following:

— The numberof entries that a user’s process can have in the timer queue

— The numberof temporary commonflag clusters that a user’s process can
have

The VAX Ada delay statement is implemented as a call to the VMS
SYS$SETIMR system service, which adds an entry to the timer queue.

The suggested VMStypical value for TQELM is 20; this value should be
sufficient for most Ada programs. However, if your programs involve tasks
that could execute many delay statements simultaneously, you may want to
increase this value.

See the VAXAda Run-Time Reference Manual for more information on the
interaction of the TQELM parameter with Ada tasking programs.

E.2.6 Virtual Memory Usage

The Memory Usagesection describes the VAX Ada compiler’s requirements
for virtual address space and working sets. Various SYSGEN and user
parameters should be set so that a VAX Ada compilation can use up to
20,000 pages (10 megabytes) of virtual memory. Working set parameters |
(see the following sections) should be adjusted to provide good performance
for such large virtual address spaces.

E-10 Efficient Compilation

E.2.6.1 VIRTUALPAGECNT—Maximum Numberof Virtual Pages Parameter

The SYSGEN VIRTUALPAGECNTparameter sets the maximum number
of virtual pages that can be mapped for any one process. The VMSdefault
(8192 pages, or 4 megabytes) is too small for the compilation of large VAX
Ada programs; a value of 20,000 (10 megabytes) is recommended.

You should also make sure that the system pagingfile is large enough toac-
commodate processes with large page file quotas. A pagingfile size of 30,000
blocks is adequate for single users when the value of VIRTUALPAGECNTis
20,000.

E.2.6.2 PGFLQUOTA—Paging File Quota Parameter

The UAF paging file quota (PGFLQUOTA) parameter limits the number
of pages thatyour process can use in the system paging file. In effect, it
limits the amount of read/write working storage that the compiler can use.
PGFLQUOTAshould be set to a value consistent with VIRTUALPAGECNT.

The VMStypical value of 12800 for PGFLQUOTAis too small; a value of
17000 (VIRTUALPAGECNT—3000) is recommended.

You should also make sure that the system pagefile is large enough to
accommodate processes with large pagefile quotas. The size of the paging
file should be greater than the maximum pagingfile quota for an individual.
If your value of PGFLQUOTAor the system’s value of VIRTUALPAGECNT
is too small, large Ada compilations will fail with this message:

SF, Insufficient virtual memory

E.2.6.3 System Paging File

The system paging file (SYS$SYSTEM:PAGEFILE.SYS) determines the
amount of paging space available for system processes and VAX RMSglobal
buffers. The pagingfile size should be greater than the maximum paging
file quota (UAF PGFLQUOTAparameter) for an individual. It should
also be larger than the virtual page count (SYSGEN VIRTUALPAGECNT
parameter). For example, if the value of VIRTUALPAGECNTis 20,000
pages, then a pagingfile of at least 30,000 blocks is needed.

If the paging file size is not properly adjusted with respect to these two
parameters, system processing could appear to be suspended, and the
following messages will appear on the operator’s console:

SSYSTEM-W-PAGEFRAG, Page file badly fragmented, system continuing
SSYSTEM-W-PAGECRIT, Page file space critical, system trying

to. continue

Efficient Compilation E-11

It is recommended that you use the Digital-supplied AUTOGEN command
procedure operations to adjust the size of the system paging file after
adjusting the values of VIRTUALPAGECNT and PGFLQUOTA.Note that

AUTOGENsometimes chooses a pagingfile size that is too low; you may

need to explicitly specify a paging file size before invoking the AUTOGEN
operation. See the Guide to Setting Up a VMS System for information on

how to use AUTOGENandhowto specify parameter values before invoking
AUTOGEN.

See Sections E.2.6.1 and E.2.6.2 for more Ada-related information on
these parameters. See the Guide to Setting Up a VMS System for infor-
mation on the VMSdefault value of PGFLQUOTA; see the VMS System

Generation Utility Manual for more information on the VMS default value of
VIRTUALPAGECNT.

E.2.6.4 WSQUOTA and WSEXTENT—Working Set Quota and Extent Parameters

The UAF working set quota (WSQUOTA) parameterspecifies the maximum
size to which a user’s physical memory size can grow on a typically loaded
system. In other words, the system guarantees the user that WSQUOTA
physical pages will be available to the user’s process.

The UAF working set extent (WSEXTENT) parameter specifies the max-
imum size to which a user’s physical memory can grow, independent of
system load. WSEXTENT should be greater than or equal to WSQUOTA.If
WSEXTENTis greater than WSQUOTA, the VMSoperating system will at-
tempt to provide additional physical pages to a process that is page-faulting
heavily. Thus, on a lightly loaded system, the user’s working set can grow
beyond WSQUOTAup to WSEXTENT.

The discussion in Section E.1 shows that a VAX Ada compilation should
have a working set of 2500 pages or more. If a user is going to do VAX Ada
compilations interactively or in a subprocess (COMPILE/WAIT), the user’s
UAF entry should specify WSQUOTA=2500.

Manysites may not permit such large working sets for interactive jobs. In
this case, a batch queue should be established for VAX Ada compilations.
The VAX Ada batch queue can define values for WSQUOTA and WSEXTENT
that override the UAF values. Compilations done in the batch queue can
have much larger working sets, resulting in better compile times and better
use of system resources.

E-12 Efficient Compilation

E.2.6.5 Batch Queue Parameters

A batch queue with large working set parameters should be provided for
VAX Ada compilations. This batch queue minimizes the numberof concur-
rent VAX Ada compilations so that each compilation completesefficiently,
without inducing excessive system overhead.

You should define the logical name ADA$BATCHin the system logical name
table. The VAX Ada program library manager submits ACS COMPILE
and RECOMPILE commandsto the queue named by ADA$BATCH;;if
ADA$BATCHis not defined, these jobs are submitted to SYS$BATCH.

A typical VAX Ada batch queue that is designed to handle two concurrent
compilations should beinitialized with the following values:

$INITIALIZE/QUEUE/BATCH-
/BASE_PRIORITY=4/JOB_LIMIT=2-
/WSQUOTA=2500/WSEXTENT=4000 ADABATCH

SASSIGN/SYSTEM ADABATCH ADASBATCH

E.2.6.6 WSMAX—Working Set Maximum Number of Pages Parameter

The SYSGEN working set maximum number of pages (WSMAX) parameter

sets the maximum number of pages for any working set on a system-
wide basis. The value of WSMAX should be as large as the maximum
WSEXTENTvalue assigned to any user or batch queue. The VMSdefault
WSMAX of 1024 pages is too small for VAX Ada; a value of at least 4000 is
recommended.

E.2.7 Program Library Networking Effects

There are several SYSGEN and DECnet parameters (on both the local
and remote nodes) that may affect the availability of compilation units or
files accessed over DECnet. For example, every time a file is opened on a
remote node, a temporary connection, called a logical link, is made from the
local node to the remote node. The total numberof logical links allowed at
one timeis controlled by DECnet and may be set by the Network Control
Program (NCP) Utility with the following command:

NCP> SET EXECUTOR MAX LINKS X

The X in this command is the maximum numberoflogical links. This
number represents the system (not process) quota; each connection between
two nodes deducts one from the quota total. When setting this value, note
that both the Ada compiler and program library manager use the per-process

FILLM (file and logical link limit) quota, not the system quota, to limit the

Efficient Compilation E-13

total numberof open files at one time. Limiting the total numberoffiles
open at one time will also reduce the potential numberoflogical links
created to the remote node: a logical link is only requiredfor files that are
not accessed locally.

Also note that the creation of a logical link may also involve the creation of
a process on the remote node. Thus, you may needto increase (or at least
monitor) the values of the SYSGEN parameters MAXPROCESSCNTand
BALSETCNTtoallow more processes to be created for network servers
(FALs).

If you are expecting to access a numberoffiles or compilation units over
DECnet, you may wantto increase the value of the UAF buffered input-
output byte count limit (BYTLM) parameter on your system. The value
of this parameter affects the efficiency of program library operations
performed over DECnet. Other parameters mayalso have an effect; DECnet
parameters are documented in the Guide to DECnet-VAX Networking.

After you have set or reset system parameters to accommodate the use
of remote nodes, you may want to runthe Digital-supplied AUTOGEN
command procedure (SYS$UPDATE:AUTOGEN.COM)to recompute optimal
values for related parameters.

E.2.8 Channel Count Parameters

The SYSGEN channel count (CHANNELCNT) parameter specifies the
maximum number of channels for each process in a VMS system; the UAF
file and logical link limit (FILLM) parameterspecifies the maximum number
of files that can be open at one time,including active network logical links.

The VAX Ada compiler and program library manager use the value of
FILLM to limit the total numberof open files at one time; they closefiles as
necessary to avoid exceeding that value. The compiler and program library
manager assumethat the value of FILLM (which has a default value of 20)
is less than the value of CHANNELCNT(which has a default value of 127).
You may needto raise the value of FILLM to accommodate Ada compilations
that involve a large numberof compilation units; however, you should be
careful not to raise the value of FILLM above the value of CHANNELCNT.

Note that the value of the FILLM parameter may interact with other system
parameters; see Sections E.2.3 and E.2.7 for more information on the FILLM
parameter.

E-14 Efficient Compilation

Appendix F

Compile-Time Diagnostic Messages

VAX Ada diagnostic messages generated by the compiler are presented in
this appendix. Some messages can occur for both the compiler and program
library manager; these are listed both in this appendix and in Appendix G.

The messagesare listed in alphabetical order by ident. The ident is followed
by the message text and the severity level of the message.

Chapter 3 presents complete details on compiler message categories; that
information is summarized in the following sections for convenience. The
/[NOJWARNINGSqualifier for the DCL ADA and ACS LOAD, COMPILE,
and RECOMPILE commandsallows you to control the display or listing of
warning and informational messages.

F.1 Diagnostic Message Format

The general format of a compile-time diagnostic messageis as follows:

SFacilitycode-Severitycode-Ident-Messagetext

Facility_code
Is a four-letter code (ADAC) that identifies the VAX Ada compiler.

Severity_code
Is a letter (F, E, W, or I) that indicates the severity of the message. The
meaning of these severity codes is discussed in Section F.2.

Ident
Is a name that uniquely identifies the message.

Compile-Time Diagnostic Messages F—1

Message_text

Is a description of the event that has taken place. Italicized items in the
message text in this appendix indicate items that are replaced with specific
information when the messageis actually generated. Pertinent references to

the VAXAda Language Reference Manual are included in the message text
wherever possible. The references have the following form:

[LRM sectionnumber (paragraph number)]

A plus sign (+) in a reference indicates that the reference is to Digital-

supplied text (as opposed to Ada standardtext).

F.2 Diagnostic Message Severity Codes

A VAX Ada compile-time diagnostic message contains one of four codes—F,
E, W, I—which indicate the severity of the error:

e F indicates a fatal error. An F-level message indicates that the intended
request cannot be executed.

e E indicates a user error. An E-level message is often supplemented with

informational (I-level) messages that give additional information about
the error.

¢ W indicates a warning message. A command may have performed some,
but not all, of your request, and you may haveto verify the command
output.

e [indicates an informational message. An I-level message often contains

supplementary information about a preceding or otherwise related
E-level error. The VAX Ada compiler further classifies I-level messages
into one of four categories. These categories are discussed in Section F.3.

F.3 VAX Ada Compiler Informational Messages

F-2

The VAX Ada compiler issues four kinds of informational (I-level) diagnostic
messages:

¢ WEAK_WARNINGSindicate potential problems in a legal program—for
example, a possible run-time error. Weak warnings are the only kind
of informational diagnostics that are counted in the summarystatistics
given at the end of a compilation listing.

Compile-Time Diagnostic Messages

e SUPPLEMENTAL messagesare associated with a W-level or E-level
diagnostic. Such messages provide additional information about a
diagnostic or indicate that some checks were not performed due to
previous errors.

e COMPILATION_NOTESprovide information about how the compiler
translated a program. They do not warn you of a possible problem, nor
are they related to a W-level or E-level diagnostic.

¢ STATUSdiagnostics include some end-of-compilation statistics and other
status messages in the compilationlisting.

F.4 VAX Ada Compiler Diagnostic Messages

ACCDESIGOBJTYPE, Access_type designates objects of type

Informational - supplemental.

ACPTSAMEENTRY, Accept for entity is within another accept source_
location for the same kind_of_entity [LRM 9.5(8)]

Error.

ACSSUBMITSPR, Internal program library manager error—please submit
a Software Performance Report (SPR) for ACS_version

Fatal.

ADASUBMITSPR, Internal Ada compiler error—please submit a Software
Performance Report (SPR) for Ada_version

Fatal.

ADDRESS_ZERO, Attribute evaluates to SYSTEM.ADDRESS_ZERO
[LRM 13.7a.1, 13.7.2(3+)]

Warning.

ADRREPENTRYINOU, All parameters of a task entry with an address
representation clause must be of mode ’in’; param-
eter entity for task entry entity is of mode ’in out’

[LRM 13.1(1)]

Error.

Compile-Time Diagnostic Messages F-3

ADRREPENTRYNOTI, An address representation clause for a task entry
(entity) is not supported by this implementation

[LRM 13.5(7+)]

Error.

ADRREPENTRYOUT, All parameters of a task entry with an address rep-
resentation clause must be of mode ’in’; parameter
entity for task entry entity is of mode ’out’

[LRM 13.1(1)]

Error.

ADRREPNOSYS, No with clause for predefined package SYSTEM applies
to this unit [LRM 10.1.1(4), 13.5(3)]

Error.

ADRREPOCCURS, An address representation clause must not follow an
occurrence of a namefor entity declared source_location

[LRM 13.1(8)]

Error.

ADRREPUNITNOTIM, An address representation clause for a sub-
program, package, or task unit (entity) is not
supported by this implementation [LRM 13.5(7+)]

Error.

AGGRARRNAMPOS, Component associations of an array aggregate must
be all namedorall positional (except ’others’)

[LRM 4.3.2(3)]

Error.

AGGRCOMPUNKN, Componenttype of array type entity is unknown due
to a prior error

Error.

AGGROTHSCONTEXT, Array aggregate is not in a context that allows an
‘others’ choice [LRM 4.3.2(4-8)]

Error.

F-4 Compile-Time Diagnostic Messages

AGGROTHSNAMED, Array aggregate is not in a context that allows an
others’ choice in combination with other named

associations [LRM 4.3.2(6)]

Error.

AGGROTHSSTATIC, The applicable entity corresponding to ’others’ is not
static [LRM 4.3.2(3)]

Error.

AGGRSTRCHAR, Character has no visible declaration that matches the

componenttype entity for the array type entity

[LRM 4.2(5)]

Error.

AGGRSTRLAST, String subaggregate does not correspondto the last
dimension of array type entity [LRM 4.3.2(2)]

Error.

AGGRSTRTYPE, Componententity of array type entity is not a character
type [LRM 4.3.2(2)]

Error.

ALLOCINITLIM, An allocator must not includeinitialization for an object
of limited entity [LRM 7.4.4(8)]

Error.

AMBIGEXP, Ambiguous expression: the required type is entity, but more
than one possible meaning hasthis type [LRM 8.7]

Error.

AMBIGEXPDNAME, Prefix of expanded name(selected component) de-
notes multiple containing program units or accept
statements [LRM 4.1.3(18)]

Error.

AMBIGRANGE, Ambiguous range; the required type is entity, but more
than one possible meaning hasthis type [LRM 8.7]

Error.

Compile-Time Diagnostic Messages F-5

AMBIGRESUNIV, Ambiguous expression in number declaration can be
either of type {universal_integer} or {universal_real}

[LRM 8.7]

Error.

AMBIGRSL, Ambiguity detected during overload resolution [LRM 8.7]

Error.

ANANOTRAN, Analysis data file file_specification must be written to a
random access device

Fatal.

ANASUBMITSPR, Internal Ada compiler error in analysis data
collection—please submit a Software Performance
Report (SPR) for Ada_version and try compilation with
the /NOANALYSIS_DATAqualifier

Fatal.

ARRAGGRTYPE, Erroroccurs in array aggregate for entity

Informational - supplemental.

ARRBOUCONNOT, Array bounds must be all constrained or all uncon-

strained [LRM 3.6(2)]

Error.

ARRDEFMULOBJ, An array type definition is allowed as a subtype indica-
tion only for a constant or a variable [LRM 3.2(9)]

Error.

ASSIGNLIM, Assignmentis not available for limited types [LRM 5.2(1),
7.4.4(1)]

Error.

ASSIGNNERESTYP, Result typeof entity is not the same astypeof entity
[LRM 5.2(1)]

Error.

ASTENTIGN, First parameter entity is not an ’in’ parameter passed by
VALUE; pragma AST_ENTRYignored [LRM 9.12a]

Warning.

F-6 Compile-Time Diagnostic Messages

ATTRARGS, Arguments not legal with attribute attribute_name; argu-
ments ignored

Error.

ATTRNOTSUPP, Attribute attribute_nameis not supported by this imple-
mentation [LRM A]

Error.

ATTRONEARG, Only one argumentcan bespecified for attribute attribute_
name; additional arguments ignored

Error.

ATTRRANGEFIXEDT, Attribute RANGEis not allowed as the range
of a fixed-point type definition [LRM 3.5.9(8-10),
3.6.2(7), 4.9(11,13), A]

Error.

ATTRRANGEFLOATT, Attribute RANGEis not allowed as the range of
a floating-point type definition [LRM 3.5.7(10-12),
3.6.2(7), 4.9(11,13), A]

Error.

ATTRRANGEINTTYP, Attribute RANGEis not allowed as the range of
an integer type definition [LRM 3.5.4(3-4), 3.6.2(7),
4,9(11,13), A]

Error.

ATTRUNKN, Attribute attribute_name is not knowntothis

implementation

Error.

BADSLICE, A range for a slice operation must be the only operand
[LRM 4.1.2(1-3)]

Error.

BAD_ALIGNMENT, Must be aligned on at least a number bit boundary

[LRM 13.4(5+)]

Error.

Compile-Time Diagnostic Messages F-—7

BASETYPERANGEIN, Type of range is inconsistent with its context,
which requires entity [LRM 8.7]

Error.

BASETYPERANGEUN, Type of range is unknown due to a prior error

Informational- supplemental.

BASICAFTLATER, A basic declaration is not allowed after later declara-
tions, which begin source_location [LRM 3.9(2)]

Error.

BODYBPUNIT, A body declaration is not allowed for predefined entity

Error.

CANTRUN, Ada compiler cannot be invoked from a DCL RUN command,
or incorrect commanddefinition file (.CLD) used

Fatal.

CASEEXPDERGENTY, Expression result type entity is derived from
generic formal type entity [LRM 5.4(3)]

Error.

CASEEXPGENTYPE, Expression result type entity is a generic formal type

[LRM 5.4(3)]

Error.

CASESUBTNOTSTAT, Subtypeis not static [LRM 5.4(4)]

Informational - supplemental.

CASETYPEAPPLIES, All values of the base type must be given unless the
expression is the nameof an object whose subtype
is static, or a qualified expression or type conversion
whose type mark denotes a static subtype
[LRM 5.4(4,5)]

Informational- supplemental.

CASEUNIVINTOTHS, Expression result type entity implies that an ’others’
alternative is required [LRM 5.4(4)]

Error.

F-8 Compile-Time Diagnostic Messages

CHARSTRTYPE, Entity has no visible declaration that matches the compo-
nent type entity for the string type entity [LRM 4.2(5)]

Error.

CHOICE_OVERLAP*, Choice value_or_range overlaps another choice for
value_or_range source_location

Error. The given value or range overlaps with the value or range
of another choice of the same case statement, variant part, or
aggregate. There are multiple variations of this message depending
on whether each of the overlapping choices is a single value or
range of values, and whether the overlap is a single value or
a range of values. If the overlap occurs within the choices of a
single alternative (separated by vertical bars (|)), then the source
location is given as "in this same sequence." Otherwise, appropriate
variants of the message occur twice: as an informational message
on thefirst of the overlapping pair of choices, and as an error
message on the secondof the pair of choices.

CIRCTYPE, Circular type declaration [LRM 3.3(8)]

Error.

CL_ACCLIBDEN, Access to program library directory_specification is
denied dueto file protections associated with the VMS
directory or the library indexfile

Error.

CL_ADDED, Entity added to library file_specification

Informational- status.

CL_ADDED_1, Replaces older version compiled date_time

Informational - status.

CL_ADDED_2, Supersedes entity compiled date_time

Informational - status.

CL_ADDED_3, Correspondsto entity compiled date_time

Informational - status.

CL_BPUNOTLIB, Entity depends on entity, which is a predefined unit in
this library

Error.

Compile-Time Diagnostic Messages F-9

CL_COMPLETED, Entity completed in library file_specification; from
instantiation entity

Informational - status.

CL_ERROPELIB, Error opening library for compilation

Fatal.

CL_INVACUFMT, The compilation unit file (ACU)file has an invalid
format

Error.

CL_INVLIBFMT, Thelibrary index file (ADALIB.ALB) has an invalid
format

Error.

CL_NEWLIB, Program library directory_specification was created or last
converted by a newer compiler version (version-number) and
cannot be used by the current compiler version (version-
number)

Error.

CL_NEWUNIT, £ntity was compiled by a newer compiler (version-number)
and cannot be used by the current compiler (version-
number)

Error.

CL_NOTADDED, Entity in file file_specification was not addedto library

Informational - status.

CL_OBSLIB, Program library directory_specification was created or last
converted by an obsolete compiler version (obs_version) and
cannot be used by the current compiler version (version-
number); use the ACS CONVERT LIBRARY command to

convert the library to the current version

Error.

CL_OBSUNIT, Entity was compiled by an obsolete compiler (version-
number) and cannot be used by the current compiler
(version-number); this unit should be compiled using the
current compiler

Error.

F-10 Compile-Time Diagnostic Messages

CL_OLDREFBPU, Entity depends on predefined name, which has been
redefined

Error.

CL_OLDREFUNI, Entity depends on entity, which was recompiled date_
time :

Error.

CL_PREV20, Program library directory_specification was created by a
VAX Ada version prior to Version 2.0 and cannot be used by
the current compiler version (version-number); use the ACS
CONVERT LIBRARY commandto convert the library to the
current version

Error.

CL_SOURCEFILE, Entity originated in sourcefile file-spec

Informational - supplemental.

CL_SPECOMLAT, Entity now depends uponits specification (which was
compiled later into the library) and must be (re)compiled

Error.

CL_SPENOTFOU, Specification for name not found in library

Error.

CL_STUNOTFOU, Namecontains no body stub for name

Error.

CL_TGTMISMATCHI1, Nameis compiled for an unknown target

[LRM 13.7(11)]

Error.

CL_UNIALREXI_1, Unit name already exists in the library and was not
replaced

Error.

CL_UNIALREXI2, Entity was previously compiled into the library from
the same sourcefile file_specification and was not
replaced

Informational - status.

Compile-Time Diagnostic Messages F—11

CL_UNIDEPDFL, Name depends on pragma LONG_FLOAT(D_FLOAT),
but that is not the library definition [LRM 3.5.7a]

Error.

CL_UNIDEPGFL, Name depends on pragma LONG_FLOAT(G_FLOAT),
but that is not the library definition [LRM 3.5.7a]

Error.

CL_UNIDEPMEM, Name depends on SYSTEM.MEMORY_SIZE, which

has been redefined [LRM 13.7(11)]

Error.

CL_UNIDEPNAM, Name depends on SYSTEM.SYSTEM_NAME,which
has been redefined [LRM 138.7(11)]

Error.

CODESTMTAGGR, An expression in a code statement must be a compile-
time-constant record aggregate [LRM 13.8(2,4)]

Error.

CODESTMTDECL, Declarations in entity must be either use clauses or
pragmas [LRM 13.8(3)]

Error.

CODESTMTHNDLR, Exception handlers may not be specified in entity

| [LRM 13.8(3)]

Error.

CODESTMTINHNDLR, A code statement may not appear in an exception

handler [LRM 13.8(3)]

Error.

CODESTMTPOSI, A code statement must appear in the sequence of
statements of a procedure body [LRM 138.8(3)]

Error.

CODESTMTPROC, Entity may not includecodeinsertionsas it is not a
procedure body [LRM 13.8(3)]

Error.

F-12 Compile-Time Diagnostic Messages

CODESTMTSTMT, Statements in entity must be either code insertions or

pragmas [LRM 13.8(3)]

Error.

CODESTMTTYPE, Entity is not declared in the predefined library package
MACHINE_CODE[LRM 13.8(4)]

Error.

COMPASSDUP, Duplicate value given for entity [LRM 3.7.2(4), 4.3(6)]

Error.

COMPASSEXPPRIOR, Error occurs in expression that corresponds to
entity

Informational - supplemental.

COMPASSNOASSOC, No value given for entity [LRM 3.7.2(4), 4.3(6)]

Error.

COMPASSNOTCOMP, Entity is not a componentof entity [LRM 4.3.1(1)]

Error.

COMPASSNOTDISCR, Entity is not a discriminantof entity [LRM 3.7.2(4)]

Error.

COMPASSNOTUSED, Excess association has no corresponding component

[LRM 4.3(6)]

Error.

COMPASSTYPENETY, Type entity of entity is not the sameas type entity
of entity [LRM 3.7.2(4), 4.3.1(1), 12.3.2(3)]

Error.

COMPASSWRONGVAR, Entity is in the wrong variant [LRM 4.3.1(2)]

Error.

COMPDECLACC, [Illegal component declaration; found access type defini-
tion when expecting a subtype indication
[LRM 3.7(2)]

Error.

Compile-Time Diagnostic Messages F—13

COMPDECLARRAY, Illegal component declaration; found array type
definition when expecting a subtype indication

[LRM 3.7(2)]

Error.

COMPDECLREC, Illegal component declaration; found record type defini-
tion when expecting a subtype indication

[LRM 3.7(2)]

Error.

COMPDEPSGENFORM, A component representation clause is not allowed
for a component whose type entity is, or depends
on, a generic formal type [LRM 13.1(10+,14), F.4]

Error.

COMPLINCOMPL, Completion failed because of one or more incomplete
generic bodies

Error.

COMP_OVERLAP, Storage place for this record component overlaps that
allocated to component [LRM 138.4(7)]

Error.

COMP_SIZE_NOT_S, Size of componentis not constant [LRM 13.4(7)]

Error.

CONFBASETYPE, Type entity of entity is not the same as type entity of
entity [LRM 6.3.1]

Error.

CONFDENOT, Entity is not the same as entity, which is denoted source_
location [LRM 6.3.1]

Error.

CONFDFLTEXP, A default expression is given for this nameor entity, but
not both [LRM 6.3.1]

Error.

F-14 Compile-Time Diagnostic Messages

CONFDFLTIN, Default mode ’in’ applies for this entity, but ’in’ is explicit
for entity [LRM 6.3.1]

Error.

CONFDIFFNAME, Name nameis not the sameas entity [LRM 6.3.1]

Error.

CONFEXPLIN, Explicit mode ’in’ is given for this name, but ’in’ is implicit
for entity [LRM 6.3.1]

Error.

CONFLEX, Identifier_or_literal is not the same as syntactic_form that
occurs source_location [LRM 6.3.1]

Error.

CONFLITVAL, Literal literal does not have the same valueasentity
[LRM 6.3.1(2)]

Error.

CONFMODE, The mode of name is not the same as the modeofentity
[LRM 6.3.1]

Error.

CONFMULTI, The multiple declaration form of name does not match entity

[LRM 6.3.1]

Error.

CONFNUMASSOC, The numberof associations is not the same as source_
location [LRM 6.3.1]

Error.

CONFNUMCHOICE, The numberof choices is not the same as source_

location [LRM 6.3.1]

Error.

CONFNUMOBJ, The numberof discriminants or formals is not the same

as source_location [LRM 6.3.1]

Error.

Compile-Time Diagnostic Messages F-—15

CONFSINGLE, Thesingle declaration form of name does not match entity

[LRM 6.3.1]

Error.

CONFTYPECONVDER, A type conversion corresponding to an ’in out’ or
‘out’ parameterof entity is not allowed [LRM 6.3.1]

Error.

CONFWITH, Error detected during conformance check with entity

Informational - supplemental.

CONFWITHTYPEMAR, Error detected during conformance check with
type mark ofentity

Informational - supplemental.

CONSTNOINITGFPT, Constant name of type_or_subtypeis not initialized;
type_nameis a generic formal private type

[LRM 3.2.1(2)]

Error.

CONSTNOINITNPT, Constant name of type_or_subtypeis not initial-
ized; type_nameis not a private type [LRM 3.2.1(2),
7.4(1,3)]

Error.

CONSTRAINTS, CONSTRAINT_ERRORwill be raised here [LRM 4.3.1(3),
4.3.2(11), 5.2(4), 6.4.1(10), 12.3.4(5)]

Informational - weak warning.

CONSTRINCOSEP, A constraint is not allowed for entity whose corre-
spondingfull type does not occur in the sameprivate
part as that incomplete type [AI-00007]

Error.

CONSTRNOTSTATIC, Constraint source_location for entity is not static
[LRM 13.2(6), 13.4(7), 18.9a.2]

Error.

F-16 Compile-Time Diagnostic Messages

CONSTRPREV, Error occurs in apparent index or discriminant constraint
for entity

Informational - supplemental.

CONSTRPREVDESIG, Error occurs in apparent index or discriminant
constraint for entity, which designates objects of
type

Informational - supplemental.

DECLINPRAG, Illegal declaration appears as a pragma argument; pragma
ignored

Error.

DECLINSTMT, Ignored declaration appearing within a list of statements

Error.

DECLPRIPART, [Illegal declaration in the private part of a package
specification [LRM 7.1(2)]

Error.

DECLTASKSPEC, Illegal declaration in a task specification [LRM 9.1(3)]

Error.

DECLVISPART, Illegal declaration in the visible part of a package
specification [LRM 7.1(2)]

Error.

DEFCONSTINPACK, A deferred constant declaration is allowed only in
the visible part of a package specification

[LRM 7.4(1)]

Error.

DEFEXPIGN, A default expression is only allowed for ’in’ formal parame-
ters; expression ignored [LRM 6.1(4), 12.1.1(2)]

Error.

DEFTYPEDIFFPACK, Type of deferred constant nameis not declared
immediately within this same package [LRM 7.4(4)]

Error.

Compile-Time Diagnostic Messages F—17_

DEPSYSNAMESTAB, Dependenceestablished on predefined SYSTEM
NAMEvalueofliteral

Informational - compilation note.

DEPSYSNAMINCO, Construct is not allowed in combination with prede-
fined SYSTEM_NAMEvalue of value [LRM 13.7(6+)]

Error.

DERIVDERIV, Derivation from derived type entity before the end of the
: packagevisible part is not allowed [LRM 3.4(15), 7.4.1(4)]

Error.

DESCR_LENGTH_TO, CONSTRAINT_ERRORwill be raised during
descriptor evaluation [LRM 11.1(5), 13.9a.1.2]

Warning.

DIGTOOBIG, Digits expression value number exceeds the implemented
range of number [LRM 3.5.7(8+), 13.7.1(4+)]

Error.

-~DIGZERNEG, Digits expression value numberis less than 1 [LRM 3.5.7(3)]

Error.

DISCONSTRPREV, Error occurs in discriminant constraint for entity

Informational - supplemental.

DISCONSTRPREVDE, Error occurs in discriminant constraint for entity,

which designates objects of type

Informational - supplemental.

DISCRIMIGN, A discriminant part can only be specified for a private,
record, or incomplete type declaration; discriminants
ignored [LRM 3.3.1]

Error.

DISCRIMIGNGEN, discriminant part can only be specified for a private
type declaration in a generic part; discriminants
ignored [LRM 12.1.2]

Error.

F-18 Compile-Time Diagnostic Messages

~ DISCRIMUSE, Discriminant_entity is allowed only as an index or discrim-
: inant constraint value, or in a record component default

expression [LRM 3.7.1(6)]

Error.

DISCRIMVARGEN, Type entity of discriminant entity is a generic formal

type [LRM 3.7.3(3)]

Error.

DISCSPECACC, [Illegal discriminant specification; found access type
definition when expecting a type or subtype name
[LRM 3.7.1(2)]

Error.

DISCSPECARRAY, [Illegal discriminant specification; found array type
: definition when expecting a type or subtype name

[LRM 3.7.1(2)]

Error.

DISCSPECREC, [Illegal discriminant specification; found record type
definition when expecting a type or subtype name

[LRM 3.7.1(2)]

Error.

DUPBODY, Entity correspondsto entity, which already has a body given
source_location [LRM 6,3(3)]

Error.

DUPBODYINST, kind is not allowed corresponding to entity
[LRM 12(2), 12.3(2,5)]

Error.

DUPEXCPUSE, Exception entity is already named source_location in this
sequence of handlers [LRM 11.2(5)]

Error.

DUPSUBBODY, Entity has the same parameter andresult typeprofile
as entity, which already has a body given source_location

[LRM 6.3(3)]

Error.

Compile-Time Diagnostic Messages F-19

F-20

ENTITYIS, Entity is of type_or_subtype

Informational - supplemental.

ENTRYAFTREP, Entity is not allowed following a representation clause
location

Error.

ENTRYCONTTASK, Entity is not an entry of the containing task unit
entity [LRM 9.5(4)]

Error.

ENTRYCONTTASK1, Entity is not the containing task unit entity

[LRM 9.5(4)]

Error.

ENTRYINTASKSPEC, An entry declaration is allowed only in a task
specification [LRM 9.1(3), 9.5(1)]

Error.

ENTRYNOACCEPT, Entity has no corresponding accept statement in this
task body

Informational - weak warning.

ENTRYOBJ, Entity must be an entry of a task object [LRM 8.5(9), 9.5(4)]

Error.

ENUMREPBADORD, Therepresentation entity (number) is not greater
than its predecessor (number) [LRM 13.3(4)]

Error.

ENUMREPDERIVED, An enumeration representation clause is not
allowed for derived entity whose parent entity has
derivable subprograms(such as entity)
[LRM 13.1(3), 13.3]

Error.

ENUMREPDUP, An enumeration representation clause for entity is
already given source_location [LRM 13.1(3)]

Error.

Compile-Time Diagnostic Messages

ENUMREPNOREP, Norepresentation value is specified for entity

[LRM 13.4(4)]

Error.

ENUMREPNOTLIT, Entity is not an enumeration literal [LRM 13.3(4)]

Error.

ENUMREPONECHO, Only one choice is allowed in an enumeration
representation clause [LRM 13.3(4)]

Error.

ENUMREPREPDUP, Therepresentation for entity is already given in this

list [LRM 13.3(4)]

Error.

ENUMREPTOOMANY, ‘Too many representation values are given for entity

[LRM 13.3(4)]

Error.

ERRCOMPILE, Errors compiling unit_namein file file_specification

Error.

ERRORLIMIT, Terminating compilation because ERROR_LIMIT=number
reached

Error.

ERRRECOMPILE, Errors recompiling unit_namein file file_specification

Error.

ERRSUBMITSPR, Internal Ada compiler error—please submit a Software
Performance Report (SPR) for Ada_version and try
compilation with a different value of /ERROR_LIMIT or
use /NOERROR_LIMIT

Fatal.

EXITTARNG, An exit from loop entity is not allowed because of the inter-

vening entity [LRM 5.7(3)]

Error.

Compile-Time Diagnostic Messages F-21

EXPNOTSAFE, Value numberis not in the range of safe numbersof any
floating-point type [LRM 3.5.7(12), F.9.3]

Error.

EXPNOTSTATIC, Expression is not static [LRM 4.9]

Error.

EXPNOTSTATICEXC, Apparent static expression raises an exception
during evaluation; assume nonstatic [LRM 4.9(2)]

Error.

EXPOPMIXED, An operand of exponentiation must not be another expo-
nentiation (without separating parentheses)

[LRM 4.4(2)]

Error.

FIRSTBIT_INVALI, Not a valid first bit position (too large or negative)
[LRM 13.4(5), 9.5]

Error.

FIRSTNAMEDSUBT, Entity is not a first named subtype [LRM 13.1(3)]

Error.

FIRST_NOT_1, Entity cannot be passed by S or UBSdescriptor; the lower
boundis not static with position equal to 1 [LRM 13.9a.1.2]

Warning.

FIXTYPERANGE, A fixed-point type declaration requires a range
constraint [LRM 3.5.9(3)]

Error.

FORMACPTNAME, Illegal form for a name in an accept statement

[LRM 9.5(2)]

Error.

FORMCHOICOMPASS, Illegal form for a choice in a component associa-

tion; only an identifier is allowed [LRM 4.3(5)]

Error.

F-22 Compile-Time Diagnostic Messages

FORMDESIG, Illegal form for a designator [LRM 6.1(2)]

Error.

FORMEXP, Illegal form for an expression [LRM 4.4(2)]

Error.

FORMGENTYPE, Illegal form for a generic formal type [LRM 12.1(2),
12.1.2]

Error.

FORMNAME, Illegal form for a name [LRM 4.1(2)]

Error.

FORMNAMEOBJ, Illegal form for the nameof an object [LRM 2.3, 3.2,

4.1(2)]

Error.

FORMNAMEPROC, Illegal form for the name of a procedure [LRM 6.1(2)]

Error.

FORMNAMERECREPA, Illegal form for the prefix of record representa-

tion attribute attribute_name; only a selected
componentis allowed [LRM 13.7.2(7-10)]

Error.

FORMNAMESTUB, Illegal form for the name of a body stub declaration;
only an identifier is allowed [LRM 10.1(3)]

Error.

FORMNAMEUSECONT, Illegal form for a namein a use clause of a unit
context clause; only an identifier is allowed

[LRM 8.4(2), 10.1.1(2)]

Error.

FORMNAMEWITH, Illegal form for a name in a with clause; only an
identifier is allowed [LRM 10.1.1(2)]

Error.

FORMNOTEXP, Syntactic_form is not a form of expression [LRM 4.4(2)]

Error.

Compile-Time Diagnostic Messages F-—23

FORMNOTEXPATTRF, An attribute function nameis not a form of expres-
sion; an argumentis required [LRM 4.1.4,
4.4(2), A]

Error.

FORMNOTNAME, Syntactic_form is not a form of name [LRM 4.1(2)]

Error.

FORMNOTNAMEOBJ, Syntactic_form is not a form of object name
[LRM 4.1(2)]

Error.

FORMNOTRANGE, Syntactic_form is not a form of range [LRM 3.5(2)]

Error.

FORMNOTSUBTYPEI, Syntactic_form is not a form of subtype indication

[LRM 3.3.2(2)]

Error.

FORMNOTTYPEMARK, Syntactic_form is not a form of type mark
[LRM 3.3.1(2), 3.3.2(2)]

Error.

FORMRANGE, Illegal form for a range [LRM 3.5(2)]

Error.

FORMRANGGENARR, Illegal form for a range constraint in a generic
formal array type [LRM 12.1.2(2)]

Error.

FORMRANGNUMERTY, Illegal form for a range in a numeric type defini-
tion; only a pair of expressions separated by "..
is allowed [LRM 3.5(2), 3.5.4(3-4), 3.5.7(10-12),
3.5.9(8-10)]

Error.

FORMRANGSUB, Illegal form for a type mark or rangein a discrete range
or scalar subtype indication [LRM 3.3.2(2), 3.5(2)]

Error.

F-24 Compile-Time Diagnostic Messages

FORMRANGTYPE, Illegal form for a type mark or range in a membership
test [LRM 4.4(2), 4.5.2(10)]

Error.

FORMSUBAGGR, Illegal form for a subaggregate [LRM 4.3.2(2)]

Error.

FORMSUBTYPEIND, Illegal form for a subtype indication [LRM 3.3.2(2)]

Error.

FORMSUBTYPEINDG, Illegal form for a subtype indication in a generic
formal part; only a type mark is allowed

[LRM 12.1(2,4)]

Error.

FORMTYPEDEF, Illegal form for a type definition [LRM 3.3.1(2), 12.1(2)]

Error.

FORMTYPEMARK, Illegal form for a type mark [LRM 3.3.2(2)]

Error.

FOUNDEXP, Foundlexical_element when expecting lexical_element

Error.

FOUNDEXPID, Foundidentifier when expecting parameter specification

Error.

FOUNDEXPLABEL, Found statement label when expecting one of
{ "accept" "delay" "pragma" "terminate" "when" }

Error.

FOUNDEXPNULL, Foundreserved-word "null" when expecting one of
{ "accept" "delay" "pragma" "terminate"}

Error.

FRAME_ALIGN, The maximum alignment for stack objects is 4 (longword)

[LRM 13.4(4+)]

Warning.

Compile-Time Diagnostic Messages F-—25

FRAME_TOO_BIG, Thestorage allocated in this frame exceeds the imple-
mentation limit of number bytes [LRM F\9.5]

Warning.

FULLTYPEDISCRIM, The full type must be a record type becausethecor-
responding entity has discriminants [LRM 7.4.1(3)]

Error.

FULLTYPEINCOPRI, Full type for entity must not itself be an incomplete
or private type [LRM 3.8.1, 7.4.1]

Error.

FULLTYPELIM, Full type nameis limited, but correspondingentity is not
limited [LRM 7.4.1(3)]

Error.

FULLTYPESUBPOUT, Thefull type for limited private type entity that
occurs in an ’out’ parameter must not be limited
[LRM 7.4.4(4)]

Error.

FULLTYPEUNCARR, Thefull type for entity is an unconstrained array
type [LRM 7.4.1(3)]

Error.

FULLTYPEUNCREC, Thefull type for entity is an unconstrained type
with discriminants [LRM 7.4.1(3)]

Error.

FUNCCALLWOPARAM, Entity is not callable without any parameters

Informational - supplemental.

FUNCMODEIN, A formal parameter of a function declaration must have
mode’in’ (explicit or default) [LRM 6.5(1)]

Error.

FUNCNORET, Entity does not include any return statements [LRM 6.5(1)]

Error.

F-26 Compile-Time Diagnostic Messages

GCS_NOSHARE_BEC, This instantiation will not use a shareable generic
specification or body because entity is not yet
supported

Warning.

GENACNOCONSTDF, £ntity is neither constrained nor a type with dis-
criminants with defaults [LRM 12.3.2(4), AI-00037]

Error.

GENACNOCONSTDF1, The use of corresponding formal entity within
entity requires a constrained actual subtype or a
type with discriminants with defaults

Informational - supplemental.

GENACTACCDESCON, Designated entity for access entity is constrained
source_location, but designated entity for entity is
not constrained [LRM 12.3.5(1)]

Error.

GENACTACCDESTYP, Designated entity for actual entity is not the same
as designated entity for generic formal entity

[LRM 12.3.5(1)]

Error.

GENACTACCESS, Actual entity corresponding to generic formal entity is
not an access type or subtype [LRM 12.3.5(1)]

Error.

GENACTARRAY, Actual entity corresponding to generic formalentity is not
an array type or subtype [LRM 12.3.4(1)]

Error.

GENACTARRCOMCON, Componententity for array entity is constrained
source_location, but componententity for entity is
not constrained [LRM 12.3.4(4)]

Error.

GENACTARRCOMTYP, Componententity for actual entity is not the same
as component entity for generic formal entity
[LRM 12.3.4(4)]

Error.

Compile-Time Diagnostic Messages F—27

F—28

GENACTARRCONSTR, Generic formal entity is constrained, but actual

entity is not constrained [LRM 12.3.4(2)]

Error.

GENACTARRINDNUM, Generic formal entity and actual entity do not
have the same numberof dimensions

[LRM 12.3.4(2)]

Error.

GENACTARRINDTYP, At index position number, generic formal entity has
| index entity while actual entity has index entity

[LRM 12.3.4(3)]

Error.

GENACTARRUNCON, Generic formal entity is not constrained, but actual
entity is constrained source_location

[LRM 12.3.4(2)] |

Error.

GENACTDFLTUNEN, Default actual is unknown becauseof a prior error
related to entity of entity

- Informational- supplemental.

GENACTDISCR, Actual entity corresponding to generic formal entity is not
a discrete type or subtype [LRM 12.3.3(1)]

Error.

GENACTEXCNUM, The numberof actual parameters exceeds the number
of formals in instantiation of entity [LRM 12.3(38-4)]

Error.

GENACTFIXED, Actual entity corresponding to generic formal entity is not
a fixed-point type or subtype [LRM 12.3.3(1)]

Error.

GENACTFLOAT, Actual entity corresponding to generic formal entity is not
a floating-point type or subtype [LRM 12.3.3(1)]

Error.

Compile-Time Diagnostic Messages

GENACTINT, Actual entity corresponding to generic formal entity is not an
integer type or subtype [LRM 12.3.3(1)]

Error.

GENACTLIMITED, Actual entity is limited, but the corresponding generic
formal entity is not limited [LRM 12.3.2(2)]

Error.

GENACTNOCONSTID, Generic formal entity of entity does not allow an
7 - unconstrained actual array type or an uncon-

_ strained actual type with discriminants (with or

without defaults) :

Informational - supplemental.

GENACTNOCONST1U, Generic formal entity does not allow an uncon-
strained actual array type or an unconstrained
actual type with discriminants (with or without
defaults)

Informational - supplemental.

GENACTNOCONST2, Corresponding formal entity is used within entity as
an actual corresponding to formal entity

Informational- supplemental.

GENACTNOTCONSTR, Entity is not constrained [LRM 12.3.2(4), 13.7a.1,
13.10.2(2+)]

Error.

GENACTNUMDISCRI, The numberof discriminants in actual entity does
not equal the numberof discriminants in generic
formal entity [LRM 12.3.2(3)]

Error.

GENACTOBJINLIM, The actual corresponding to entity must not be of
limited_type [LRM 7.4.4(9), 12.3.1(3)]

Error.

GENACTPREV, Error occurs in actual corresponding to generic formal
entity

Informational - supplemental.

Compile-Time Diagnostic Messages F—-29

F-30

GENACTPREVOBJ, Error occurs in actual correspondingto entity

Informational - supplemental.

GENACTPRIVCONST, Entity is constrained source_location

[LRM 12.3.2(3)]

Error.

GENASSNORECSTDF, Entity is neither constrained nor a type with
discriminants with defaults; compiled assuming
generic body for entity does not require such a type
for entity

Informational - compilation note.

GENASSNOREQCST, Entity is not constrained; compiled assuming generic
body for entity does not require such a type for entity

Informational - compilation note.

GENASSOCMATCH, Association matches more than one generic formal of
entity, including entity and entity [LRM 12.3(3)]

Error.

GENASSUMENOPACK, Compiled assuming no generic body for entity

Informational - compilation note.

GENCIRCINST, Recursive generic instantiation [LRM 12.3(18)]

Error.

GENDISCRIMDFLT, A default expression is not allowed for a discriminant
in a generic formal private type [LRM 12.1.2(3)]

Error.

GENINFORMALLIM, Entity of generic formal ’in’ object is limited

[LRM 12.1.1(3)]

Error.

GENNOACTUAL, No actual (explicit or default) is given for generic formal
entity in instantiation of entity [LRM 12.3(3)]

Error.

Compile-Time Diagnostic Messages

GENNOMATCH, Nameis not the name of any formal parameterof entity

[LRM 12.3(3)]

Error.

GENPAREXP, Illegal generic type definition; found expression when ex-
pecting <> [LRM 12.1(2)]

Error.

GENPARREC, Record type definitions are not allowed in generic parameter
: declarations; perhaps a private type was intended

[LRM 12.1(2)]

Error.

GENPARSUB, Illegal generic parameter declaration; a subtype declaration
is not allowed [LRM 12.1(2)]

Error.

GENPRIORACT, An actual parameter for name is already given in this
instantiation of entity [LRM 12.3(3)]

Error.

GENTYPENONSTATI, Entity is, or is derived from, a generic formal type

Informational - supplemental.

GOTOTARNG, Illegal transfer to entity (for example, into compound
statement or outside body) [LRM 5.9(3)]

Error.

IGNORE, Ignored lexical_element

Error.

IGNOREDECL, Declaration ignored due to syntactic errors within it

Informational - supplemental.

IGNOREDECLL, Declaration ignored due to syntactic errors

Informational - supplemental.

IGNOREPARENS, Empty parentheses ignored

Error.

Compile-Time Diagnostic Messages F-31

IGNOREUNEXP, Unexpected lexical_element ignored

Error.

IMPT_VAL_0, Entity is not a string literal of 31 charactersor less;
| SYSTEM.IMPORTVALUE result is undefined

[LRM 13.7a.8]

Warning.

INCONEXP, Inconsistent expression; the required type is entity, but no
| possible meaning has this type [LRM8.7]

Error.

INCONOFULLTYPE, Name has nocorresponding full type declaratio

: [LRM 3.8.1(3)] |

Error.

INCONRESUNIV, Inconsistent overload resolution; the result type is —

neither {universal_integer} nor {universal_real]}
[LRM 3.2.2(1), 8.7]

Error.

INCONRSL, Inconsistency detected during overload resolution [LRM 8.7]

Error.

INDCONSTRPREV, Error occurs in index constraint for entity

Informational - supplemental.

INDCONSTRPREVDE, Error occurs in index constraint for entity, which

designates objects of type

Informational - supplemental.

INDCONSTRTOOFEW, Index constraint has too few constraints

[LRM 3.6.1(1)]

Error.

INDCONSTRTOOMAN, Index constraint has too many constraints

[LRM 3.6.1(1)]

Error.

Compile-Time Diagnostic Messages

INDEXESNOTSTATI, Index subtypes for entity are not static [LRM 4.9(11)]

Error.

_ INDXENTRONEARG, Anindexing of an entry family must have exactly
one argument [LRM 9.5(2)]

Error.

INDXPREV, Error occurs in indexing of entity of type

Informational - supplemental.

INDXTOOFEW, Array indexing has too few indices [LRM 4.1.1(3)]

Error.

INDXTOOMANY, Array indexing has too many indices [LRM 4.1.1(3)]

Error.

INITLIM, Initialization is not allowed for entity of limited type entity

[LRM 7.4,4(6-8)]

Error.

INLINEASSUMED, Pragma INLINE assumedfor entity [LRM 6.3.2;
~ RTR 9.2.2]

Informational - compilation note.

INLINEDEPENDSES, Dependenceestablished on entity for inline expan-
sion of entity [LRM 10.3(7)]

Informational - compilation note.

INLINEEXPAND, Call of entity expanded inline [LRM 6.3.2; RTR 9.2]

Informational - compilation note.

INLINEEXPANDONL, Call of entity expanded inline because no code was
generated for entity when its body was compiled

Informational - weak warning.

INLINEGENALSO, Pragma INLINE will also be ignored for previously
compiled entity

Informational - supplemental.

Compile-Time Diagnostic Messages F-33

INLINEGENASSUME, Pragma INLINE_GENERIC assumedforentity
[LRM 12.1a; RTR 9.3.1]

Informational - compilation note.

INLINEGENBODY, Entity is not inlinable because of some construct
within its body; pragma pragma_name ignored
(LRM 6.3.2; RTR 9.2.1]

Warning.

INLINEINSTBODY, Entity from entity is not inlinable because of some
construct within its body; pragma pragma_name
ignored [LRM 6.3.2; RTR 9.2.1]

Warning.

INLINEINSTPROFI, Entity from entity is not inlinable because ofits
parameteror result profile; pragma pragma_name
ignored [LRM 6.3.2; RTR 9.2.1]

Warning.

INLINEINSTTEMPL, Entity from entity is not inlinable because its generic
body is not available; pragma pragma_name ignored
[LRM 6.3.2; RTR 9.2.1]

Warning.

INLINENOEXPANDC, Call of entity is not expanded inline becauseentity
is a containing subprogram [LRM 6.3.2; RTR 9.2.1]

Informational - compilation note.

INLINENOEXPANDN, Call of entity is not expanded inline because the
generic body is not available or because the subpro-
gram is not inlinable [LRM 6.3.2; RTR 9.2.1]

Informational - compilation note.

INLINENOEXPANDR, Call of entity is not expanded inline becauseit
occurs within an inline expansion of itself
[LRM 6.3.2; RTR 9.2.1]

Informational - compilation note.

INLINEONLY, Code generation suppressed for entity, which is always
expanded inline [LRM 6.3.2; RTR 9.2.1]

Informational - compilation note.

F-34 Compile-Time Diagnostic Messages

INLINESUBPBODY, Entity is not inlinable because of some construct
within its body; pragma pragma_name ignored
[LRM 6.3.2; RTR 9.2.1]

Warning.

INLINESUBPSTUB, Entity is not inlinable because its subunit is not
available; pragma pragma_nameignoredin this unit
[LRM 6.3.2; RTR 9.2.1]

Informational - weak warning.

INLINESUBPTEMPL, Entity is not inlinable because the generic body in
which its body is contained is not available; pragma
pragma_name ignored [LRM 6.3.2; RTR 9.2.1]

Warning.

INLSUBPROF, Entity is not inlinable becauseof its parameteror result
profile; pragma pragma_name ignored
[LRM 6.3.2; RTR 9.2.1]

Warning.

INLSUBPROFPRMT, Entity of entity is, or has subcomponentsof, a task
type

Informational - supplemental.

INLSUBPROFPRMU, Thetypeof entity is unknown due to a previous
error

Informational - supplemental.

INLSUBPROFRECO, Entity of function result is not constrained

Informational - supplemental.

INLSUBPROFRESTK, £ntity of function result is, or has subcomponents
of, a task type

Informational - supplemental.

INLSUBPROFRESUN, Thetype of the function result is not known dueto
a previous error

Informational - supplemental.

Compile-Time Diagnostic Messages F-—35

INOUTEXP, An expression is not allowed as an actual parameter corre-
sponding to entity [LRM 6.4.1(3)]

Error.

INOUTTYPECONV, Operand of type conversion to type_or_subtypeis itself
also a type conversion (to type_or_subtype); only a
variable nameis allowed

Informational - supplemental.

INSBEFORE, Inserted lexical_element before lexical_element

Error.

INSERTNULLE, Inserted "null;" before "end"

Error.

INSERTNULLW, Inserted "null;" before "when"

Error.

INSINCMPLPARUN, Instantiation incomplete because the body for entity,
which contains the generic body for entity, is not —
available | |

Informational - status.

INSINCMPLTMPSUN,_Instantiation incomplete because subunit entity,
| whichis, or is part of, the generic body for entity, is

not available | |

Informational - status.

INSINCMPLTMPUN, Instantiation incomplete because the generic body
for entity is not available

Informational - status.

INSMATCH, Inserted lexical_element to match lexical_element source_

location

Error.

INSMATCHE, Inserted lexical_element to match lexical_element inserted

source_location

Error.

F-36 Compile-Time Diagnostic Messages

INSSEMI, Inserted ";" at end of line

Error.

INSTASSUMENOPAC, Entity is used in entity without a generic package
| body

Informational- compilation note.

INSTASSUNCONSTR, £ntity is used in entity with unconstrained actual
| entity corresponding to generic entity

Informational - supplemental.

INSTASSUNCSTRND, Entity requires a constrained subtype as the actual
corresponding to generic entity [LRM 12.3.2(4),

13.7a.1, 13.10.2(2+)]

Error.

INSTASSUNCSTRWD, Entity requires a constrained subtype or a type
with discriminants with defaults as the actual
corresponding to generic entity [LRM 12.3.2(4),
AI-00037]

Error.

INSTEXPANDINLIN, Entity expandedinline [LRM 12.1a, RTR 9.3.1]

Informational - compilation note.

INSTINCOMPLPARS, Instantiation incomplete because subunit entity,
which contains the generic body for entity, is not
available

Informational - status.

INSTINCOMPLPREV, Instantiation incomplete because the generic body
for entity is not available or is incomplete (for the
reason given in a prior message)

Informational- status.

INSTINCOMPLTEMP, Instantiation incomplete because the body for
entity, which contains the generic bodyfor entity, is
not available

Informational - status.

Compile-Time Diagnostic Messages F-37

F-38

INSTNOTEXPANDIN, £ntity not expanded inline as the generic body for
entity is not available [LRM 12.1a, RTR 9.3.1]

Informational - compilation note.

INTASK, £ntity must be within a task body [LRM 9.9(5-6)]

Error.

INTASKINNERUNIT, Entity is not allowed within inner entity of entity

[LRM 9.5(8)]

Error.

INTDEFNUL, Integer type definition has null range of number .. number

Informational - weak warning.

INVSTORSIZEPRE, Entity is not an access (sub)type, task type, or task
object [LRM 13.2(7-10)]

Error.

LASTBIT_INVALID, Not a valid last bit position (too large or less than
first bit) [LRM 13.4(5), F.9.5]

Error.

LENATTRDES, The length attribute designator must be one of SIZE,
_STORAGE_SIZE, or SMALL [LRM 13.2]

_ Error.

LENDEPSGENFORM, A namelength clause is not allowed for entity,
which is, or depends on, a generic formal type
[LRM 13.1(10+,14), F.4]

Error.

LENGTH_SMALL_GT, Specified small value is finer than the small value
for the parent type entity [LRM 3.4(4), 3.5.6(3),

AI-00099]

Error.

LENGTH_SMALL_TO, Specified small is larger than the delta for entity

[LRM 13.2(12)]

Error.

Compile-Time Diagnostic Messages

LEXAPOST, Invalid apostrophe (’); possible unterminated characterliteral
or string literal delimited by apostrophe (’) instead of by
quotation marks(")

Error.

LEXBASE2_16, Base must be between 2 and 16; base 16 assumed

[LRM 2.4.2(1)]

Error.

LEXBASECOLON, Colon delimiter illegal in sharp-delimited based
number [LRM 2.10(3)]

Error.

LEXBASEDEL, Expecting based digit or sharp_or_colon_character; unex-
pected characters ignored

Error.

LEXBASEDELMISS, Expecting based digit or sharp_or_colon_character;
remainderof line ignored

Error.

LEXBASEINT, Base of based literal must be an integer [LRM 2.4.2(2)]

Error.

LEXBASESHARP, Sharp delimiter illegal in colon-delimited based number
[LRM 2.10(3)]

Error.

LEXCNTLCHAR, Illegal control character (character_value) in character
literal [LRM 2.5(1)]

Error.

LEXCNTLCHARSTR, Illegal control character (character_value) in charac-

ter string [LRM 2.5(1)]

Error.

LEXDOLLAR, Deleted illegal dollar sign ("$") [LRM 2.3(2)]

Error.

Compile-Time Diagnostic Messages F-39

~LEXDOUBUND, Illegal double underline; deleted "_" [LRM 2.3(2)]

Error.

LEXDOUBUNDIGN, [Illegal double underline; deleted "_" [LRM 2.4.1(2),

2.4.2(2)]

Error.

LEXEOLCHAR, Illegal control character (character_value) in character
string; remainderof line ignored [LRM 2.5(1)]

Error.

LEXEXPINT, Exponent must be an integer [LRM 2.4.1(2)]

Error.

LEXIGNAFTERFE, Ignored characters in comment (beginning with char-

acter_value) that follow a format effector sequence
beginning with character_value [LRM 2.2(3+)]

Error.

LEXIGNSPACE, Unexpected space ignored

Error.

LEXILLCHAR, Illegal character (character_value) ignored

Error.

LEXILLDIG, Illegal digit for base number; "0" assumed [LRM 2.4.2(4)]

Error.

LEXINSSPACE, Inserted missing space after number number [LRM 2.2(4)]

Error.

LEXINTEXP, Illegal minus sign in exponentof integer literal ignored

[LRM 2.4.1(4)]

Error.

LEXLEADUND, Deleted illegal leading underline [LRM 2.3(2)]

Error.

F-40 Compile-Time Diagnostic Messages

LEXLEADUNDIGN, Deleted illegal leading underline [LRM 2.4.1(2),

2.4.2(2)] |

Error.

LEXLEADZERO, Missing digit; inserted "0" before "." [LRM 2.4.1(2),
2.4.2(2)]

Error.

LEXLONGNUM, Numberexceeds the implementation limit of number
| characters after correction; "0.0" assumed

Error.

LEXMISSBASED, Missing based number [LRM 2.4.2(1)]

Error.

LEXMISSDIGDOT, Missing digit; inserted "0" after "." [LRM 2.4.1(2),
2.4.2(2)]

Error.

LEXMISSEXP, Missing exponent [LRM 2.4.1(2)]

Error.

LEXQUOTE, Quotation characterillegal in percent-delimited character

string [LRM 2.10(4)]

Error.

LEXREPSPACE, Replaced unexpected space with "0" [LRM 2.4.2(1)]

Error.

LEXREPUND, Missing digit; replaced "_" with "0" [LRM 2.4.2(1)]

Error.

LEXTRAILUND, Deletedillegal trailing underline [LRM 2.3(2)]

Error.

LEXTRAILUNDIGN, Deleted illegal trailing underline [LRM 2.4.1(2),

2.4.2(2)]

Error.

Compile-Time Diagnostic Messages F-41

F—42

LEXUNDIGN, Deleted illegal underline [LRM 2.4.1(2)]

Error.

LEXUNTERMSTR, Unterminated character string

Error.

LOGOPMIXED, Logical operators must not be intermixed (without sepa-
rating parentheses) [LRM 4.4(2,6)]

Error.

MAXARRDIMS, Array type definition has number dimensions, which -
exceeds the implementation limit of number [LRM F.9.5]

Error.

MAXCALLPARAMS, Subprogram has number formal parameters, which
exceeds the implementation limit of number

[LRM F.9.5]

Error.

MAXENUMLITS, Enumeration type definition has numberliterals, which
exceeds the implementation limit of number [LRM F.9.5]

Error.

MERGE, Merged lexical_element and lexical_element to form lexical_

element

Error.

MISMATCON, Constraints on entity do not match those on entity

Informational - weak warning.

MULLOOPBLOCK, Found identifier when expecting one of
{ "declare" "begin" "for" "while" "loop" }

Error.

MUST_HAVE_OTHER, Must have an ’others’ choice [LRM 3.7.3(4), 4.3(5),

5.4(5)]

Error.

NAMENOTVALUED, Nameis not a kind of entity that has a value

Error.

Compile-Time Diagnostic Messages

NAMENOTVALUEDI, Entity is not a kind of entity that has a value

Error.

NAMENOTVAR, Nameis not a variable [LRM 5.2(1)]

Error.

NAMENOTVARI, Entity is not a variable [LRM 5.2(1)]

Error.

NAMERESTYPUNK, Result type of name is unknown dueto a prior error

Error.

NAMERESTYPUNKI1, Result type of entity is unknown due to a prior error

Error.

NOBODY, £ntity has no corresponding body [LRM 6.3(3), 7.1(4), 9.1(1),

12.2(2)] |

Error.

NOBODYIMPT, Entity has neither a corresponding body nor an

INTERFACE pragma [LRM 6.3(3), 13.9(3)]

Error.

NOCODEGEN, This code is not reachable

Informational - compilation note.

NODISCRIM, Entity for entity does not have discriminants
[LRM 3.7.4(2-3)]

Error.

NOENTRYFAMINDX, Entry index for entry family entity is missing

[LRM 9.5(2)]

Error.

NOFULLCONST, Deferred entity has no corresponding full constant

[LRM 7.4.3(1)]

Error.

Compile-Time Diagnostic Messages F—43

NONCTCUPL, Size of aggregate exceeds the implementation limit of
MAX_INT bytes

Error.

NONUNILAB, Entity is not unique as a label, or block or loop namein this
body; it also occurs source_location [LRM 5.1(4)]

Error.

NOPACKSPEC, No packagespecification occurs previously for entity

[LRM 7.1(1)]

Error.

NOSELECTED, Noselected component named nameis defined for any of
the possible meanings of the prefix [LRM 4.1.3]

Error.

NOSELECTED1, No selected component named nameis defined for entity

[LRM 4.1.3]

Error.

NOSELECTEDIRES, No selected component named nameis defined for
entity with result entity [LRM 4.1.3]

Error.

NOSELECTEDIUNK, No selected component named nameis defined for
entity (with result type unknown dueto a prior
error) [LRM 4.1.3]

Error.

NOSELECTEDRENA, Entity is not allowed as a prefix within the renamed
entity [LRM 4.1.3]

Error.

NOSRCINFOANA, Nosourcefile information will be included in the
analysis data file for the recompilation of kind name;
original source file was compiled with the /NONOTE_
SOURCEqualifier

Informational - weak warning.

F-44 Compile-Time Diagnostic Messages —

NOSRCINFODIA, Nosourcefile information will be included in the diag-
nostic file for the recompilation from copied sourcefile
file_specification; original source file was compiled with
the /NONOTE_SOURCEqualifier

Informational - weak warning.

NOTACCTASKTYPE, Entity is neither an access nor a task type or subtype

Error.

NOTACCTYPE, Entity is not an access type or subtype

Error.

NOTALLOCATED, Variable variable_name is not referenced; therefore, it

is not allocated

Informational - compilation note.

NOTARRDISCTYPE, £ntity is neither an array type nor a type with
discriminants

Error.

NOTARRTYPE, Entity is not an array type or subtype

Error.

NOTARRTYPEONEDI, Entity has more than one dimension

Error.

NOTARRTYPOBJ, Entity is not an array object or value, nor an array
type or subtype, nor an access value that designates an

array object

Error.

NOTASKSPEC, Notask specification occurs previously for entity

[LRM 9(4)]

Error.

NOTCONSTR, Entity is not constrained [LRM 3.2.1(1), 4.8(4)]

Error.

NOTDECL, Nameis not declared [LRM 8.3]

Error.

Compile-Time Diagnostic Messages F—45

NOTDECLALLHIDER, All declarations with designator designator are
globally hidden by entity [LRM 8.3(16)]

Error.

NOTDECLALLHIDIN, All declarations with designator designator are
globally hidden by entity [LRM 8.3(16)]

Informational - supplemental.

NOTDECLMUTUAL, Potentially visible declarations from use clauses are
not visible because of mutual hiding, including (at
least) entity [LRM 8.4(6)]

Informational - supplemental.

NOTDECLOPOPND, Entity is not declared for the given operands

[LRM 4.5]

Error.

NOTDFLTINTFORM, Default resolution to the type INTEGERdoes not
apply because one or both expressions is not a
literal, named number, or attribute; however, the

type INTEGERis assumed [LRM 3.6.1(2)]

Informational - supplemental.

NOTDISCRIM, Entity is not a discriminant of the containing record defini-

tion [LRM 3.7.3(1)]

Error.

NOTDISCTYPE, Entity is not a discrete type or subtype

Error.

NOTENCLOOP, Entity is not for a loop that encloses this exit statement

[LRM 5.7(3)]

Error.

NOTENTRY, Entity is not an entry or entry family

Error.

NOTENUMTYPE, Entity is not an enumeration type or subtype

Error.

F-46 Compile-Time Diagnostic Messages

NOTEQOP, Entity is not an equality operator [LRM 6.7(5)]

Error.

NOTERENA, Entity is renamedasentity

Informational - supplemental.

NOTERENAP, Entity is renamed in part as entity

Informational - supplemental.

NOTEVALNONSTATI, Entity is not evaluated due to a prior error; assume
nonstatic

Error.

NOTFIXEDTYPE, Entity is not a fixed-point type or subtype

Error.

NOTFLOATTYPE, £ntity is not a floating-point type or subtype

Error.

NOTINDXCALLABLE, Entity is not a kind of entity that can be indexed or
called as a function.

Error.

NOTINLOOP, Exit statement is not enclosed in a loop statement

[LRM 5.7(1)]

Error.

NOTPACKSPEC, Entity is not a package specification [LRM 7.1(3)]

Error.

NOTPRIVNOW, Attribute CONSTRAINEDisillegal after the full declara-
tion of entity [LRM 7.4.2(9-10)]

Error.

NOTPRIVTYPE, Entity is not a private type or subtype

Error.

NOTREALTYPE, Entity is not a real type or subtype

Error.

Compile-Time Diagnostic Messages F—47

NOTRECCOMP, Entity of entity is not a component of a record

[LRM 13.7.2(7-10)]

Error.

NOTRECCOMPOF, Entity is not a componentof record type entity

[LRM 13.4(5)]

Error.

NOTRECTYPE, Entity is not a record type or subtype

Error.

NOTREFCOPYBACK, Entity of type is not referenced within entity; in
particular, no value is ever assigned to be copied
back to the actual parameter [LRM 6.2(4-6)]

Informational - weak warning.

NOTREFCOPYBACKF, Entity of type, with correspondingfull type, is not
referenced within entity; in particular, no value
is ever assigned to be copied back to the actual
parameter [LRM 6.2(4-6)]

Informational - weak warning.

NOTREFWITHIN, Entity is not referenced within entity

Informational - compilation note.

NOTSAMEPARTSPEC, Entity is not declared in this declarative part,

package specification, or task specification
[LRM 13.1(5)]

Error.

NOTSAMEPROFIL, Entity does not have the same parameter and result
type profile as entity [LRM 6.6]

Error.

NOTSCALTYPE, £ntity is not a scalar type or subtype

Error.

F—48 Compile-Time Diagnostic Messages

NOTSCAORARR, Entity is not a scalar type or subtype, nor an array
object or value, nor an array type or subtype, nor an
access value that designates an array object
[LRM 3.5(7-9), 3.6.2(2-10)]

Error.

NOTSIMPLEPREFIX, Theprefix of the attribute that appears in a length
clause must be a simple name [LRM 13.2, AI-00300]

Error.

NOTSTMTCALLABLE, Entity is not a kind of entity that is callable as an
entry or procedure [LRM 6.4(1), 9.5(6-7)]

Error.

NOTTASKOBJ, Entity is of entity, which is not a task type [LRM 9.9(2-3)]

Error.

NOTTASKTYPE, Entity is not a task type [LRM 9.1(1)]

Error.

NOTTASKTYPEOBJ, Entity is not a task type or single task (task object)

[LRM 9.1(1)]

Error.

NOTTYPORSUB, Entity is not a type or subtype

Error.

NOTVALUED, Entity is not a kind of entity that has a value

Error.

NOTYETDEN, Entity is not yet denotable [LRM 8.3(5,22)]

-Error.

NOT_A_PASSABLE, Entity cannot be passed by an A or NCAdescriptor;
it is not a byte-aligned array of 1-bit or byte-aligned
components [LRM 13.9a.1.2]

Warning.

Compile-Time Diagnostic Messages F—49

F—50

NOT_DESC_PASSAB, Entity cannot be passed by any form of DESCRIPTOR
mechanism [LRM 13.9a.1.2]

Warning.

NOT_EXACT_DELTA, Thespecified small is not an exact power of 2

[LRM 13.2(12+)]

Error.

NOT_EXHAUSTIVE, Missing values in the range of entity [LRM 3.7.3(3),
4.3(5), 5.4(4)]

Error.

NOT_EXHAUSTIVE_, Missing values in range low .. high of entity

[LRM 4.3(6)]

Error.

NOT_REFERENCE_P, Entity cannot be passed by the REFERENCE

mechanism [LRM 13.9a.1.2]

Warning.

NOT_S_PASSABLE, Entity cannot be passed by an S or SB descriptor;it is
not a scalar type, access type, nor a one-dimensional
array of unsigned byte components [LRM 13.9a.1.2]

Warning.

NOT_UBA_PASSABL, Entity cannot be passed by a UBAdescriptor;it is
not an array [LRM 13.9a.1.2]

Warning.

NOT_UBS_PASSABL, Entity cannot be passed by a UBS or UBSB de-
scriptor; it is not a one-dimensional array of 1-bit
components [LRM 13.9a.1.2]

Warning.

NOT_VALUE_PASSA, Entity cannot be passed by the VALUE mechanism

[LRM 138.9a.1.2]

Warning.

Compile-Time Diagnostic Messages

NO_ADEQUATE_PRE, No predefined type is able to satisfy these require-
ments [LRM 3.5.7, 3.5.9, F.9.3]

Error.

NULLCOMPALONE, A null component must occur alone in a component

list [LRM 3.7(2)]

Error.

NULL_RANGE_ILLE, Null range must be the only choice [LRM 4.3.2(3)]

Error.

NUMERICNOCONSTR, When a handler for NUMERIC_ERROR is
provided, it should also include a choice for
CONSTRAINT_ERROR[AI-00387]

Warning.

NUMOPUNARY, Theoperand following a binary adding, multiplying,or
exponentiation operator must not begin with a unary
adding operator (without separating parentheses)
[LRM 4.4(2,6), 4.5(2)]

Error.

OBJECTARRDEFCON, An array type definition that occurs in an object
declaration must be constrained [LRM 3.2(9)]

Error.

OBJECTATTRRES, Theresult of attribute attribute_nameis a value, not
an object [LRM 3.2.1, A]

Error.

OBJECTFUNCRES, Theresult of calling entity is a value, not an object
[LRM 3.2.1, 6.5(1)]

Error.

OBJECTOPRES, The result of operator entity is a value, not an object
[LRM 3.2.1, 4.4(1)]

Error.

Compile-Time Diagnostic Messages F-—51

OPDECLDFLT, A default expression is not allowed for a parameter of an
operator declaration [LRM 6.7(2)]

Error.

OPDECLNG, declaration for operator designator is not allowed
[LRM 6.7(1)]

Error.

OPDECLONE, An operator declaration for designator must have one
parameter [LRM 6.7(2)]

Error.

OPDECLONETWO, An operator declaration for designator must have
either one or two parameters [LRM 6.7(2)]

Error.

OPDECLTWO, An operator declaration for designator must have two
parameters [LRM 6.7(2)]

Error.

OPEQPARAMLIM, Entity of parameter in an equality operator declaration
is not limited [LRM 6.7(4)]

Error.

OPEQRESBOOL, Result type entity is not the predefinedtype
STANDARD.BOOLEAN [LRM 6.7(4)]

Error.

OPEQSAME, Typeentity of entity is not the same as type entity of entity

[LRM 6.7(4)]

Error.

OPGENUNIT, An operator designator is not allowed as the nameof a
generic function declaration [LRM 12.1(4)]

Error.

OPLIBUNIT, An operator designator is not allowed as the name of a
library unit or subunit [LRM 10.1(3)]

Error.

F-52 Compile-Time Diagnostic Messages

OPTIM_SUPPRESSE, Subprogram too large for normal optimization;
compilation continues with some optimization
suppressed

Warning.

OTHSLAST, An ’others’ choice must be the last choice [LRM 3.7.3(4),

4.3(5), 5.4(5), 11.2(5)]

Error.

OTHSNG, An ’others’ choice is not allowed in this context [LRM 4.3.2(4-8)]

Error.

OTHSONLY, An ’others’ choice must be the only choice [LRM 3.7.3(4),

4.3(5), 5.4(5), 11.2(5)]

Error.

OUTLIMNOTPACK, ’Out’ parameteris in a subprogram or entry that is
not declared in the visible declarations of the same
package as limited type entity [LRM 7.4.4(4)]

Error.

OUTLIMNOTPRIV, Type entity of ’out’ parameteris of a limited, but not a
private, type [LRM 7.4.4(4)]

Error.

OUTSIDE_RANGE, Number_or_enumeralis outside the range of allowable
values, number_or_enumeral .. number_or_enumeral
[LRM 3.7.3(3), 4.3(5), 5.4(4)]

Error.

PARASSFORMID, Only an identifier is allowed as a choice in a named
association of a subprogram call [LRM 6.4(2,3)]

Error.

PARASSONECHO, Only one choice is allowed in a namedassociation of a
subprogram call or generic instantiation [LRM 6.4(2,3),
12.3(2,3)]

Error.

Compile-Time Diagnostic Messages F-53

PARDECLACC, Illegal parameter declaration; found access type definition
when expecting a type or subtype name [LRM 6.1(2)]

Error.

PARDECLARRAY, Illegal parameter declaration; found array type defini-
tion when expecting a type or subtype name

[LRM 6.1(2)]

Error.

PARDECLREC, Illegal parameter declaration; found record type definition
when expecting a type or subtype name [LRM 6.1(2)]

Error.

PARSESTACK, ‘Terminating compilation because syntax nesting level is too
: deep

Fatal.

PARTYPCHODFLT, The parent type chosen for nameis the predefined
type LONG_FLOAT(D_floating representation)

Informational - compilation note.

PARTYPCHOFFLT, The parent type chosen for nameis the predefined type
FLOAT(F_floating representation)

Informational - compilation note.

PARTYPCHOGFLT, The parent type chosen for nameis the predefined
type LONG_FLOAT(G_floating representation)

Informational - compilation note.

PARTYPCHOHFLT, The parent type chosen for name is the predefined
type LONG_LONG_FLOAT(H_floating
representation)

Informational - compilation note.

PARTYPCHOINT, The parent type chosen for name is the predefined type
INTEGER(signed longword representation)

Informational - compilation note.

F-54 Compile-Time Diagnostic Messages

PARTYPCHOSINT, The parent type chosen for nameis the predefined type
SHORT_INTEGER(signed word representation)

Informational - compilation note.

PARTYPCHOSSINT, The parent type chosen for nameis the predefined
type SHORT_SHORT_INTEGER(signed byte
representation)

Informational - compilation note.

PASS_MECHL_IS, Selected or specified passing mechanism is mechanism_
name

Informational - compilation note.

PM_NAMDOENOTMAT, Name namedoes not match entity source_location
[LRM 5.5(3), 5.6(3), 6.3(4), 7.1(3), 9.5(7)]

Error.

PM_NOENDID, Name name not specified at end of block_or_loop starting
source_location [LRM 5.5(8), 5.6(3)]

Error.

PM_NOSTARTID, Name namenot specified at start of block_or_loop
source_location [LRM 5.5(3), 5.6(3)]

Error.

POSASSAFTNAM, A positional association must not occur after a named
association [LRM 4.3(4), 6.4(4), 12.3(3)]

Error.

POSSONECOMPAGGR, Possibly an aggregate of entity with one com-
ponent is intended; this requires use of named
notation for the component [LRM 4.3(4)]

Informational - supplemental.

POSSSUBTYPE, Possibly a subtype declaration is intended

Informational - supplemental.

Compile-Time Diagnostic Messages F-—55

POSSUSECALL, Possibly a selected component of (or use clause for)
packageentity is intended; this would makethe following
visible for legal calls

Informational - supplemental.

POSSUSENAME, Possibly a selected componentof (or use clause for) pack-
age entity is intended; this would make the following
visible

Informational - supplemental.

PRAGINPRAG, [Illegal pragma appears as a pragma argument; pragma
ignored

Error.

PRIORADRREP, An address representation clause is already given source_
location for entity [LRM 13.1(4)]

Error.

PRIORASSOC, An association for entity is already given in this parameter
list [LRM 4.3(6), 6.4(5), 12.3(3)]

Error.

PRIORCOMPREP, A component representation is already given for entity
in this record representation clause [LRM 13.4(6)]

Error.

PRIORCONSTR, Entity is already constrained source_location
[LRM 3.6.1(3), 3.7.2]

Error.

PRIORRECREP, A record representation clause is already given source_
location for entity [LRM 13.1(3)]

Error.

PRIORSIZE, A SIZE representation specification is already given source_
location for entity [LRM 13.1(3)]

Error.

F-56 Compile-Time Diagnostic Messages

PRIORSMALL, A SMALLrepresentation specification is already given
source_location for entity [LRM 13.1(3)]

Error.

PRIORSTORSIZE; A STORAGE_SIZE representation specification is
already given source_location for entity [LRM 13.1(3)]

Error.

PRIORSTUBSAMENA, stub declaration named nameis already given
source_location [LRM 10.2(5)]

Error.

PRIORSTUBSUPPL, The simple namesof all subunits that have the same
ancestor library unit must be distinct

Informational - supplemental.

PRIORTERMALT, A terminate alternative is already given source_location

[LRM 9.7.1(3)]

Error.

PRIVNOFULLTYPE, Entity has no corresponding full type declaration
[LRM 7.4.1(1)]

Error.

PRIVTYPEPACKGEN, private type declaration is allowed only in the
visible part of a package specification or a generic

formal part [LRM 7.4(3)]

Error.

RAIWONAM, raise statement without an exception nameis allowed only
in the exception part of block or body [LRM 11.3(3)]

Error.

RANASSUB, Attribute RANGEis not allowed as a subtype indication
[LRM 3.3.2(2), 3.5(2)]

Error.

RANGENOTSTATIC, Range is not static [LRM 4.9(11)]

Error.

Compile-Time Diagnostic Messages F—57

F—58

RANGENOTSTATICE, Apparent static range raises an exception during
evaluation; assume nonstatic [LRM 4.9(2)]

Error.

RANGEUNIVINT, Type {universal_integer} is not allowed for the discrete
range of a constrained array definition, an iteration
rule, or an index of an entry family [LRM 3.6.1(2)]

Error.

READNOTALLOW, Reading from entity is not allowed [LRM 6.2(5)]

Error.

RECAGGRBADVAR, Resolution is not complete because of a prior error
related to the variant part source_location

Informational - supplemental.

RECAGGRNOCHOICE, Value corresponding to entity does not match any
choice of the variant part source_location
[LRM 4.3.1(2)]

Error.

RECAGGRTYPE, Error occurs in record aggregate for entity

Informational - supplemental.

RECREPDERIVED, record representation clause is not allowed for
derived entity whose parent entity has derivable
subprograms(such asentity) [LRM 13.1(3), 13.4]

Error.

REC_ALIGN_BAD, Record alignment number is not a power of 2 between

1 and 512 [LRM 13.4(4+)]

Error.

REC_ALIGN_LEQ_Z, Record alignment must be greater than zero

[LRM 13.4(4+)]

Error.

REC_ALIGN_TOO_B, Record alignmentis too large [LRM 13.4(4+)]

Error.

Compile-Time Diagnostic Messages

REC_TOO_LARGE, CONSTRAINT_ERROR or NUMERIC_ERRORwill be
raised if the size of this (sub)type is computed

[LRM 11.1(6), F.9.5, AI-00387]

Informational - weak warning.

REDECLDERIV, Entity hides entity within its immediate scope

[LRM 8.3(17)]

Informational - compilation note.

REDECLDERIVHIDD, Entity, derived from entity, is hidden by entity

[LRM 8.3(17)]

Informational - compilation note.

REDECLDERIVTYPE, Entity, derived from entity, illegally redeclares
entity, derived from entity [LRM 3.4(11), 8.3(17)]

Error.

REDECLENUM, Entity hides derived entity within its immediate scope
[LRM 8.3(17)]

Informational - compilation note.

REDECLENUMHIDDE, Derived entity is hidden by entity [LRM 8.3(17)]

Informational - compilation note.

REDECLERR, Illegal redeclaration of entity [LRM 8.3(17)]

Error.

REDECLIMPL, Entity hides entity within its immediate scope

[LRM 8.3(17)]

Informational - compilation note.

REDECLLIB, Illegal redeclaration of library entity [LRM 8.3(17), 10.1(3-5)]

Error.

REDECLSAME, Illegal redeclaration of entity given earlier in this type
declaration [LRM 3.5.1(3)]

Error.

Compile-Time Diagnostic Messages F-—59

F-60

REDECLSECLIB, Illegal secondary unit_kind corresponding to library
entity [LRM 10.1(3-5)]

Error.

REDECLSECLIBPRO, Illegal secondary wnit_kind correspondingto library
entity; the specification and body do not have the
same parameter andresult type profile
[LRM 6.6(1), 10.1(3,6)]

Error.

RELOPMIXED, Relational operators must not be intermixed (without

separating parentheses) [LRM 4.4(2,6)]

Error.

RENAATTRRES, The result of attribute attribute_name cannot be renamed

as an object [LRM 8.5(4)]

Error.

RENAFUNCRES, Theresult of calling entity cannot be renamed as an
object [LRM 8.5(4)]

Error.

RENAOBJRENA, Entity cannot be renamed as an object [LRM 8.5(4)]

Error.

RENAOPRES, The result of operator entity cannot be renamedas an object

[LRM 8.5(4)]

Error.

REPABBREV, Replaced abbreviation lexical_element with lexical_element

Error.

REPFORCED, Therepresentation of entity has already been forced source_
location [LRM 13.1(6)]

Error.

REPFORCEDHERE, Therepresentation of entity is forced here

Informational - supplemental.

Compile-Time Diagnostic Messages

REPLACE, Replaced lexical_element with lexical_element

Error.

RESTYPEXPUNKN, Result type of expression is unknown dueto a prior
error

Informational - supplemental.

RESTYPINCON, Result type of expression is inconsistent with its context,
which requires type_or_subtype [LRM 8.7]

Error.

RESTYPNAMUNKN, Result type is unknown due to a prior error related
to entity

Informational - supplemental.

RETEXPPROCACC, A return statement with an expression is not allowed
in a procedure body or an accept statement

[LRM 5.8(4)]

Error.

RETEXPREQ, A return expression is required within a function

[LRM 5.8(4), 6.5(1)]

Error.

RETNOTALL, A return statementis not allowed in this context

[LRM 5.8(3)]

Error.

RSCHINCOPRIERR, Resolution or checking of name is incomplete because
of a prior error related to entity

Error.

RSLINCOPRIORERR, Resolution of name is incomplete becauseof a prior
error related to entity

Error.

SELECTDELAYTERM, Selective wait statement has both a delay alter-
native source_location and a terminate alternative

source_location [LRM 9.7.1(3)]

Error.

Compile-Time Diagnostic Messages F-61

SELECTELSEDELAY, Selective wait statement has both an else part
source_location and a delay alternative source_
location [LRM 9.7.1(3)]

Error.

SELECTELSETERM, Selective wait statement has both an else part
source_location and a terminate alternative source_

location [LRM 9.7.1(3)]

Error.

SELECTNOACPT, Selective wait statement has no accept alternative

[LRM 9.7.1(3)]

Error.

SELREPSMA, Selected representation is discrete representation; selected
small is 2**(number)

Informational - compilation note.

SEPNG, A separate clause is allowed only with a subprogram or package
body or a task body, not a_kind [LRM 10.2(2)]

Error.

SHAREGENASSUMED, Pragma SHARE_GENERIC assumedfor entity

Informational - compilation note.

SHAREGENBODYCRE, A newshareable body has been created for entity,
for use with entity

Informational - compilation note.

SHAREGENBODYUSE, An existing shareable body for entity has been
used for entity

Informational - compilation note.

SHAREGENSPECCRE, A new shareable specification has been created for
entity, for use with entity

Informational - compilation note.

SHAREGENSPECUSE, An existing shareable specification for entity has
been used for entity

Informational - compilation note.

F-62 Compile-Time Diagnostic Messages

SHAREGENSUBCREA, A new shareable body has been created for entity

within entity, for use with entity

Informational - compilation note.

SHAREGENSUBUSE, An existing shareable body for entity within entity

has been used for entity

Informational - compilation note.

SIZE_NOT_BETWEE, The numberofbits to represententity must be be-
tween number and number [LRM 13.2(6+), 13.4(5+)]

Error.

SIZE_NOT_CONSTA, Size specification is not allowed because the size of

entity is not constant [LRM 13.2(6)]

Error.

SIZE_NOT_EXACT, The numberof bits to represent entity must be exactly
number [LRM 13.2(6+), 138.4(5+)]

Error.

SLICEPREV, Error occurs in slice of entity of type

Informational - supplemental.

SOMDISCDEFLT, Some, but not all, discriminants have default expres-

sions [LRM 3.7.1(4)]

Error.

SPECORREP, Replaced lexical_element with lexical_element

Error.

SRC_LINE_TOO_LO, Source line is number characters longer than the |
implementation limit of number—excess characters
ignored

Error.

STATIC_ALIGN, The maximum alignmentfor static objects is 512 (page)

[LRM 13.4(4+)]

Warning.

Compile-Time Diagnostic Messages F-—63

STMTINDECL, Ignored statement appearing within a list of declarations

Error.

STMTINPRAG, [Illegal statement appears as a pragma argument; pragma
ignored

Error.

STORAGE_ERROR, STORAGE_ERRORwill be raised here [LRM 11.1(8)]

Informational - weak warning.

STORAGE_UNIT_IN, Not a valid storage unit (too large or negative)

[LRM 13.4(5+)]

Error.

STORSIZEDERACC, A STORAGE_SIZE representation specification is not
allowed for entity, a type derived from an access type

[LRM 13.2(8)]

Error.

STRING_TOO_LONG, Value of the predefined type STRING, or a type
derived from STRING, exceeds 65535 characters

[LRM 3.6.3(1+), F.9.5]

Informational - weak warning.

STRNOTOP, String string_literal is not an operator designator

[LRM 4.5(2)]

Error.

STUBPOS, A body stub declaration is allowed only in the outermost
declarations of a library unit or subunit body [LRM 10.2(3)]

Error.

SUBPACTPREV, Error occurs in actual correspondingto entity

Informational - supplemental.

SUBPRENAPREV, Error occurs in default expression of entity correspond-
ing to entity

Informational - supplemental.

F-64 Compile-Time Diagnostic Messages

SUBPRENAPREVI, Error occurs in default expression of entity correspond-
ing to implicit formal of entity

Informational - supplemental.

SUBTNOTSTATIC, Expression_range_or_subtype is not static [LRM 4.9]

Error.

SUBTYPENULL, This is a null range

Informational - compilation note.

SUPP*, Possible_meaning

Informational - supplemental. Following detection of an error
in overload resolution for a choice, expression, name, or subtype

indication, a series of supplementary messages report the possible
- meanings that were considered for each component, presented in
left-to-right order. There are multiple variations of this message,
depending on the nature of the component(identifier, parentheses,
attribute, and so on), on the numberof possible meanings (none,
one, or multiple), and on the kind of each meaning (valued entity,
nonvalued entity, call of user function or predefined operator, and
so on). A possible meaning that was determined to be inconsistent
with its use in context is noted as "(discarded)" at the endofits
description.

TERMCONTEXT, Compilation of entity terminated dueto errors in the
context clause

Error.

TERMHERE, Ada compilation terminated here

Informational - weak warning.

TERMHERE2, Compilation terminated here (secondary processing
location)

Informational - weak warning.

TERMSUBUNIT, Compilation of entity terminated due to errors in the
namespecified for the parent unit of entity

Error.

Compile-Time Diagnostic Messages F-65

TERMSUBUNITCONT, Compilation of entity terminated due to errors in
the context clause and in the name specified 1for
the parent unit of entity

Error.

TERMSYNTAX, Terminating compilation due to syntax errors infile file_
specification

Error.

TERMUSER, Ada compilation terminated by user

Informational - weak warning.

TERMUSER2, Compilation terminated by user (secondary processing

location)

Informational - weak warning.

TOOMANYLINES, Numberof lines in source file exceeds implementation
limit of number; terminating compilation

Fatal.

TOO_MANY_DISCRI, The numberof discriminants exceeds the implemen-
tation limit of number [LRM F\9.5]

Error.

TOO_MANY_PSECTS, There are more than the implementation limit
of number program sections; pragma PSECT_

OBJECT ignored [LRM F:9.5]

Warning.

TOO_MANY_UNCONS, The number of unconstrained record parameters

exceeds the implementation limit of number
[LRM F-.9.5]

Error.

TYPECONTEXTUNKN, Type checking is not complete; the type required
from context is unknown due to a prior error

Informational - supplemental.

F-66 Compile-Time Diagnostic Messages

TYPECONVARRCOMC, Component type entity for array type entity is
constrained source_location, but component type
entity for entity is not constrained [LRM 4.6(11)]

Error.

TYPECONVARRCOMT, Componenttype entity of operand of array type
entity is not the same as componenttype entity of
target type entity [LRM 4.6(11)]

Error.

TYPECONVARRDIMS, Array type entity of operand has number dimen-
sions, but target array type entity has number
dimensions [LRM 4.6(11)]

Error.

TYPECONVARRIND, Type entity of index number of operand type entity
is not convertible to index type entity of target type
entity [LRM 4.6(11)]

Error.

TYPECONVFORM, type conversion does not allow a null literal, an
allocator, an aggregate, or a string literal as the
argument [LRM 4.6(3)]

Error.

TYPECONVNOTALL, Type conversion to entity from operand result entity
is not allowed [LRM 4.6]

Error.

TYPECONVNUMERIC, Entity is numeric, but result entity of onverand is
not numeric [LRM 4.6(7)]

Error.

TYPECONVONEARG, A type conversion must have only one argument
[LRM 4.6(2)]

Error.

TYPEDERIVES, Entity is derived from entity [LRM 3.4(11)]

Informational - compilation note.

Compile-Time Diagnostic Messages F—67

F-68

TYPERANGECONT, Type entity of range is not the same as type entity
required from context [LRM 8.7]

Error.

TYPEWODISCRIMS, Entity has no discriminants [LRM 3.7.2(3)]

Error.

UNARYOPMIXED, A unary operator must not precede another unary op-
erator (without separating parentheses) [LRM 4.4(2,6)]

Error.

UNCH_CONV_ACC_1, The representation of access_type is the address
of a descriptor (because the designated typeis
unconstrained), while the representation of access_
type is the address of the designated object

Informational - weak warning.

UNCH_CONV_ACC_2, The representations of access_type and access_type
are the address of descriptors that do not have the
same CLASS and DTYPE

Informational - weak warning.

UNCH_CONV_ACC_A, The representation of access_type is the address
of a descriptor (because the designated type is
unconstrained), not the address of the designated
object

Informational - weak warning.

UNCH_CONV_SUSPE, This unchecked conversion (entity) is suspect

Informational - weak warning.

UNITINWITH, Library entity is named in a with clause source_location

Informational - supplemental.

UNITSOURCE, Library entity originated in sourcefile file_specification

Informational - supplemental.

UNIVFIXCONV, Multiplication or division of values of entity must be ex-
plicitly converted to another numeric type [LRM 4.5.5(11)]

Error.

Compile-Time Diagnostic Messages

UNIVFIXUNIVOPND, Multiplication or division for entity is not allowed
with an operand of type {universal_real]]}

[LRM 4.5.5(10-11)]

Error.

UPDATEATTRRES, Theresult of attribute attribute_name cannot be

updated [LRM 3.2.1, 4.1.4]

Error.

UPDATEDISCRIM, Update of entity is not allowed [LRM 3.2.1, 3.7.1(9)]

Error.

UPDATEFUNCRES, Theresult of calling entity cannot be updated
[LRM 3.2.1, 6.5, 6.7]

Error.

UPDATENOTALLOW, Updateof entity is not allowed [LRM 3.2.1(2),

6.2(1,3)]

Error.

UPDATEOPRES, Theresult of operator entity cannot be updated

[LRM 3.2.1]

Error.

USEDEFCONST, Illegal use of deferred constant entity prior to its full
constant declaration [LRM 7.4.3(2)]

Error.

USEINCO, Illegal use of entity prior to its full type declaration

[LRM 3.8.1(4)]

Error.

USENOWITH, Nameis not namedin a prior with clause [LRM 10.1.1(3)]

Error.

USEPRIV, Illegal use of entity prior to its full type declaration

[LRM 7.4.1(4)]

Error.

Compile-Time Diagnostic Messages F-—69

USEPRIVCOMP, Illegal use of entity, which has subcomponentsof type,
prior to the full declaration of that subcomponent type

[LRM 7.4.1(4)]

Error.

USEPRIVCOMPANON, Illegal use of an anonymous array type, which has
subcomponents of type, prior to the full declaration
of that subcomponent type [LRM 7.4.1(4)]

Error.

USEWITHINSELF, A use of package entity while within that package has
no effect [LRM 8.4(4)]

Informational - weak warning.

VALENUMREPRANG, Value numberis outside the implemented range
number .. number of enumeration representations

[LRM F.9.5]

Error.

VALINTTYPERANG, Value numberis outside the implemented range
number .. number of any integer type [LRM F-.9.5]

Error.

VALOUTIMPLRANG, Value number is outside the implemented
range of number .. number (INTEGER’FIRST..
INTEGER’LAST) [LRM F.9.5]

Error.

VARPARTDISCRIMS, A variant part is allowed only in a record definition
that has discriminants [LRM 3.7.3(3)]

Error.

VARPARTLAST, A variant part must occur last [LRM 3.7(2)]

Error.

WITHSELF, £ntity depends on, but redefines, library entity (from source

file source_file) [LRM 10.1(38-4)]

Error.

Compile-Time Diagnostic Messages

WRONGKIND, Entity is not a_kind

Error.

WRONGKINDAMBIG, Nameis ambiguous; a_kind is required

Error.

WRONGKINDRES, Result of entity is not type_or_subtype

Error.

WRONGKINDWIINGE, Within a generic_kind, the generic acts as a
nongeneric kind [LRM 12.1(5,10)]

Informational - supplemental.

WRONGKINDWIINTS, Within the body of a task, the task namerefers

to the task object that is currently executing the
body; in particular, the name does notrefer to the

task type and cannot be used in a type mark

[LRM 9.1(4)]

Informational - supplemental.

W_CONSTRAINT_ER, CONSTRAINT_ERROR would be raised here, but
the qualifier /NOCHECK or pragma SUPPRESS_
ALLis specified [LRM 11.1(5), 11.7(4+)]

Warning.

XFACENOIMPT, Pragma INTERFACE applies to multiple subprograms,
but one or more import pragmasis missing
[LRM 13.9(4+)]

Warning.

ZEROSIZEOBJ, Object object_name has zero size

Informational - compilation note.

Compile-Time Diagnostic Messages F-71

Appendix G

ACS Diagnostic Messages

VAX Ada diagnostic messages generated by the program library manager
are presented in this appendix. Some messages can occur for both the
program library manager andthe compiler; these are listed both in this
appendix and in Appendix F.

The messagesare listed in alphabetical order by ident. The ident is followed
by the message text and the severity level of the message.

G.1 Diagnostic Message Format

The general format of a program library manager diagnostic messageis as
follows:

sFacilitycode-Severitycode-Ident-Messagetext

Facility_code
Is a four-letter code (ACS) that identifies the VAX Ada program library
manager.

Severity_code
Is a letter (F, E, W, or 1) that indicates the severity of the message. The

meaning of these severity codes is discussed in Section G.2.

ident
Is a name that uniquely identifies the message.

Message_text
Is a description of the event that has taken place. Italicized items in the
message text in this appendix indicate items that are replaced with specific
information when the messageis generated.

ACS Diagnostic Messages G-1

G.2 Diagnostic Message Severity Codes

A VAX Ada program library manager diagnostic message contains one of
four codes—F, E, W, I—which indicate the severity of the error:

e F indicates a fatal error. An F-level message indicates that the intended

request cannot be executed.

e E indicates a user error. An E-level message is often supplemented with

informational (I-level) messages that give additional information about
the error.

e W indicates a warning message. A command may have performed some,
but not all, of your request, and you may haveto verify the command
output.

¢ J indicates an informational message. An I-level message often contains
supplementary information about a preceding or otherwise related
E-level error.

G.3 ACS Diagnostic Messages

CL_ACCLIBDEN, Access to program library directory_specification is

denied dueto file protections associated with the VMS
directory or the library index file

Error.

CL_ACUNOTFOU, Entity not found in file_specification

Error.

CL_BODALREX], Entity already has a body

Error.

CL_BODNOTFOU, Body for name not found in library

Error.

CL_BODNOTFOUI1, Body for name not foundin library

Informational - weak warning.

CL_CHECKOK, All units current; no recompilations required

Informational.

G-2 ACS Diagnostic Messages

CL_CLOSURE, Theclosure of the specified unitsis:

Informational.

CL_CMDERROR, Commanderror - name

Warning.

CL_CMDNOTSUPP, This commandis not supported for this target

Warning.

CL_CNVTEDUNI, Entity is a converted unit and must be (re)compiled
into the library

Error.

CL_COMIGNCTRLC, Commandignored due to CTRL/C

Warning.

CL_COMPILE, The following units need to be compiled from sourcefiles:

Informational.

CL_COMPILE1, Thefollowing units will be compiled from sourcefiles:

Informational.

CL_COMPILEOK, All units andfiles current; no compilations required

Informational.

CL_COMPILING, Invoking the VAX Ada compiler

Informational.

CL_COMPLETE, The following units need to be completed (use ACS
COMPILE or ACS RECOMPILE):

Informational. Incomplete generic instantiations must be com-
pleted before you can link a program that contains such instanti-
ations. An incomplete generic instantiation can occur if the body
or subunits or the body for the corresponding generic unit are not
available when the instantiation of the generic is compiled or if the
generic body is compiled or recompiled after the unit containing the
instantiation is compiled.

CL_COMPLETE1, The following units will be completed:

Informational.

ACS Diagnostic Messages G-3

CL_CONFLICT, Illegal combination of command elements; check

documentation

Error.

CL_COPIED, Entity copied

Informational.

CL_DELDIRENT, Error deleting directory entry for name

Error.

CL_DELETED, Entity deleted

Informational - status.

CL_DELUNITS, Namedeleted

Informational - status.

CL_DIRNOTEMP, Directory file_specification_or_name is not empty

Error.

CL_ENTERED, Entity entered

Informational.

CL_ERRACTCMS, Error activating shareable image CMSSHR

Error.

CL_ERRCREDIR, Error creating directory file_specification

Error.

CL_ERRCRELIB, Error creating program library directory_specification

Error.

CL_ERRDURCNV, Error convertingfile_specification_or_name; not
converted

Error.

CL_ERRDURCOM, Error during compilation

Error.

G-4 ACS Diagnostic Messages

CL_ERRDURCOP, Error copying name; not copied

Error.

CL_ERRDURENT, Error entering name; not entered

Error.

CL_ERRDURENT_CN, Entity not entered in converted library file_

specification

Error.

CL_ERRDURLIN, Error during ACS LINK operation

Error.

CL_ERRDURLOA, Error loading file_specification

Error.

CL_ERRDURMER, Error during merge of name; not merged

Error.

CL_ERRFETCMS, Error fetching source for entity

Error.

CL_ERRINVSUB, Error invoking subprocess

Error.

CL_ERROPELIB1, Error opening program library directory_specification

Error. Either the library index file (ADALIB.ALB) orthe library
version control file (ADA$LIB.DAT) or both are not accessible or
the VMS directory containing the program library is not specified
correctly or not accessible

CL_ERRPRELOA, Error preloading entity in file file_specification

Error.

CL_ERRSEALIS, Error in search list specification file_specification

Error.

CL_ERRSUBMIT, Error submitting batch job

Error.

ACS Diagnostic Messages G—5

CL_EXCNETNOT, Exclusive access to compilation library file_specification
across the networkis not supported

Error.

CL_EXTRACTED, Sourcefile for entity copied to file_specification

Informational.

CL_FILNOTREA, File nameis not reachable from destination library

Error.

CL_FORCOPIED, File_specification copied as entity

Informational.

CL_FORENTERED, File_specification entered as entity

Informational.

CL_FORNOTFOU, Entity (foreign body) not found in file_specification

Error.

CL_ILLFMTDAT, The compilation unit file (ACU) has illegal data format

Error.

CL_ILLFMTDIR, Thelibrary indexfile has illegal format

Error.

CL_ILLFMTHDR, The compilation unit file (ACU) has illegal header

format

Error.

CL_INCREFACU, Date-time mismatch on file_specification for entity in
directory_specification

Error.

CL_INCREFFIL, Date-time mismatchforfile file_specification

Error.

CL_INCREFFOR, Foreign body version mismatch on file_specification for
entity in directory_specification

Error.

G-6 ACS Diagnostic Messages

CL_INCREFUNI, Entity depends on entity, which has been redefined as
kind

Error.

CL_INVACUFMT, The compilation unit file (ACU)file has an invalid
format

Error.

CL_INVLIBFMT, Thelibrary index file (ADALIB.ALB) has an invalid
format

Error.

CL_INVPROCOD, Invalid protection code protection_code

Error.

CL_LIBALREXI, A program library already exists in directory directory_
specification

Error.

CL_LIBCONACS, Library file specification file_specification must not
contain an access control string

Error.

CL_LIBCRE, Library file_specification created

Informational.

CL_LIBCVT1, Version 1.n library file_specification_or_name converted in
place to Version 2.0

Informational.

CL_LIBCVT2, Version 1.n library file_specification_or_name converted to

Version 2.0 library file_specification_or_name

Informational.

CL_LIBCVTBEG2, Beginning conversion of library file_specification for
Version 2.0

Informational.

ACS Diagnostic Messages G-—7

CL_LIBCVTEND2, End of conversion of library file_specification for
Version 2.0

Informational.

CL_LIBDEL, Library file_specification deleted

Informational.

CL_LIBDELABO, Deletion of file_specification aborted, library no longer
consistent

Error.

CL_LIBIS, Current program library is file_specification

Informational.

CL_LIBNOTCVT2, Upgrade of library name for Version 2.0 was
unsuccessful

Warning.

CL_LIBNOTDIR, File_specification is not a valid library directory

Error.

CL_LIBNOTSUB, File_specification is a library, not a sublibrary

Error.

CL_LINKING, Invoking the name for name target

Informational.

CL_LNKOPTCOP, Link option name copied

Informational.

CL_LNKOPTDEL, Link option name deleted

Informational - status.

CL_LOAD, Thefollowing files will be loaded:

Informational.

CL_LOADEDUNI, Entity is a loaded-only unit and must be (re)compiled
into the library

Error.

G-8 ACS Diagnostic Messages

CL_LOPALREXI, Link option namealready exists in library; not replaced

Error.

CL_LOPCOPIED_V, An identical link option name exists in the current
program library; no file transfer required; if actual
file transfer is desired, first delete the link option and
then copy

Informational.

CL_LOPNOTFOU, Link option name not foundin library

Error.

CL_MAIUNIENT, Main unit name has no entry point

Error.

CL_MAIUNIKIN, Main unit nameis kind, not a subprogram body

Error.

CL_MAIUNISIG, Main unit name has parametersor a result type that are

not supported for a main program

Error.

CL_MAIUNISUB, Main unit nameis a subunit, not a library subprogram

Error.

CL_MERGED, Entity merged

Informational.

CL_MISSDEP, Thefollowing units depend on missing units:

Informational.

CL_MISSSUBUNIT, The following units have missing subunits:

Informational.

CL_NAMETOOLONG, Name nameis too long; the implementation limit is

number characters

Error.

ACS Diagnostic Messages G-—9

CL_NEWLIB, Program library directory_specification was created or last
converted by a newer compiler version (version-number) and

cannot be used by the current compiler version (version-
number)

Error.

CL_NEWUNIT, Entity was compiled by a newer compiler (version-number)
and cannot be used by the current compiler (version-
number)

Error.

CL_NEWUNIT1, Entity was compiled by a newer compiler (version-

number) and cannot be used by the current compiler
(version-number)

Informational.

CL_NEWVEREXI, Parent library contains a newer version of entity com-
piled date_time; not merged

Error.

CL_NOENTERED, Entity was made visible by ENTER UNIT command,
and cannot be compiled or recompiled

Error.

CL_NOFILELOADED, Nofile loaded

Warning.

CL_NOMAINUNIT, /NOMAIN qualifier specified, but there are nofiles

in the commandline that might include an image
transfer address

Error.

CL_NOOBJFORUNIT, Noobject file for entity

Informational.

CL_NOSEARCH, Nosource search list (ADA$SOURCE)is defined

Informational.

CL_NOSOURCE, Sourcefile for entity not found

Error.

G-10 ACS Diagnostic Messages

CL_NOTADALIB, File_specification is not a valid Ada program library

Error.

CL_NOTADALIB_V1, File_specification is not a valid Version 1.n Ada
program library

Error.

CL_NOTFORBOD, Entity cannot have a non-Ada body

Error.

CL_NOUNIREC, Nounits specified for RECOMPILE

Informational.

CL_NOWILDNAME, Unit names cannot have wildcard characters in this

context

Error.

CL_OBSENTUNI, Entity has been recompiled in file_specification and

must be reentered

Error.

CL_OBSLIB, Program library directory_specification was created or last
converted by an obsolete compiler version (obs_version) and
cannot be used by the current compiler version (version-
number); use the ACS CONVERT LIBRARY commandto

convert the library to the current version

Error.

CL_OBSLIBUNI, Obsolete library units are detected

Error.

CL_LOBSUNIBOD, Obsolete entity ignored

Informational.

CL_OBSUNIT, Entity was compiled by an obsolete compiler (version-
number) and cannot be used by the current compiler
(version-number); this unit should be compiled using the
current compiler

Error.

ACS Diagnostic Messages G-11

CL_OBSUNIT1, £ntity was compiled by an obsolete compiler (version-
number) and cannot be used by the current compiler
(version-number); this unit should be compiled using the
current compiler

Informational.

CL_ONEMAIUNI, An executable program can have only one main unit

Error.

CL_OPENACU, Error openingfile-specification for entity in directory-
specification

Error.

CL_OPENFOR, Error opening foreign body file_specification for entity in
directory_specification

Error.

CL_PREV20, Program library directory_specification was created by a
VAX Ada version prior to Version 2.0 and cannot be used by
the current compiler version (version-number); use the ACS
CONVERT LIBRARY commandto convert the library to the
current version

Error.

CL_PROLIMEXC, Current program depends on more than implementation
limit of number units [LRM F.9.5]

Error.

CL_QUANOTDEF, Qualifier nameis illegal for this target

Error.

CL_RECOMPILE, Thefollowing units need to be recompiled:

Informational.

CL_RECOMPILE1, The following units will be recompiled:

Informational.

CL_REENTER, Thefollowing units need to be reentered:

Informational.

G-12 ACS Diagnostic Messages

CL_RENAMEERR, Error renaming file_specification

Error.

CL_REORGEFAIL, Reorganization of library file_specification failed

Error.

CL_REORGOK, File_specification_or_name reorganized

Informational.

CL_REQWRIACC, Operation requires write access to library file_
specification

Error.

CL_RETURNED, Control returned to process process_name

Informational.

CL_SEARCHIS, Current source search list (ADA$SOURCE)is search_list

Informational.

CL_SECCONFAI, Multiple connections to the compilation library file_
specification failed

Error. The VAX Ada program library manager may open the

program library more than once for any operation. This messageis
most likely given when accessing a program library over DECnet.
Usually, the cause of the problem is that the node containing the
library is not accepting any morelinks.

CL_SECOPNFAI, Multiple opens of the compilation library file_
specification failed

Error. The VAX Ada program library manager may open the
program library more than once for any operation. This messageis
most likely given when accessing a program library over DECnet.
Usually, the cause of the problem is that the node containing the
library is not accepting any morelinks.

CL_SOURCEFILE, Entity originated in sourcefile file-spec

Informational - supplemental.

ACS Diagnostic Messages G-13

CL_SRCCONACS, Sourcefile specification file_specification must not
contain an access control string

Fatal.

CL_SUBLIBCRE, Sublibrary file_specification created

Informational.

CL_SUBLIBDEL, Sublibrary file_specification deleted

Informational.

CL_SUBMITTED, Job_name

Informational.

CL_SUBNOTFOU1, Separate entity not found in library

Informational.

CL_SUBNOTFOU2, Separate entity not found in library

Error.

CL_SUBNOTLIB, File_specification is a sublibrary, not a library

Error.

CL_SUBUNIDUP, Subunit name name conflicts with prior stub name of
unit name [LRM 10.2(5)]

Error.

CL_SUBUNIDUPSUP, The simple namesof all subunits that have the
same ancestor library unit must be distinct

[LRM 10.2(5)]

Informational - supplemental.

CL_SYSLIBMIS, Program library directory_specification specifies a target

that is not supported (SYSTEM.SYSTEM_NAME= name)
by the current compiler version (version-number)

Error. Either use the compiler or program library manager that
supports the specified target or redefine the value of the program
library characteristic SYSTEM_NAMEto specify a supported
target. You can redefine SYSTEM.SYSTEM_NAMEby compil-
ing the pragma SYSTEM_NAMEorby entering the ACS SET
PRAGMA/SYSTEM_NAME command

G-14 ACS Diagnostic Messages

CL_SYSNOTDEF, Logical name SYS$NODEis needed, butit is not defined

Error.

CL_TARNOTDEF, The TARGETlink option is not defined

Error.

CL_TGTMISMATCH2, Nameis compiled for an unknown target
[LRM 13.7(11)]

Informational.

CL_UNARECONSNAM, Unable to reconstruct full Ada name for subunit

with library name name

Warning.

CL_UNDEFMEMSIZ, Memory size nameis not defined

Error.

CL_UNDEFSYSNAM, SYSTEM.NAMEnameis notdefined for this target

Error.

CL_UNIALREXI, Unit namealreadyexists in library; not replaced

Error.

CL_UNICIRDEP, Circular dependence amongthe following units:

Error.

CL_UNIDEPDFL1, Name depends on pragma LONG_FLOAT(D_FLOAT)),
but that is not the current definition for predefined
type LONG_FLOAT [LRM 3.5.7a]

Informational.

CL_UNIDEPGFL1, Name depends on pragma LONG_FLOAT(G_FLOAT),
but that is not the current definition for predefined
type LONG_FLOAT [LRM 3.5.7a]

Informational.

CL_UNIDEPMEM]1, Name depends on SYSTEM.MEMORY_SIZE, which
has been redefined [LRM 138.7(11)]

Informational.

ACS Diagnostic Messages G-15

CL_UNIDEPNAMI1, Name depends on SYSTEM.SYSTEM_NAME,which
has been redefined [LRM 13.7(11)]

Informational.

CL_UNIELAORD, Compilation units in elaboration order

Informational.

CL_UNILIMEXC, Current compilation unit requires more than implemen-
tation limit of number units [LRM F.9.5]

Error.

CL_UNINOTENT, Unit nameis not an entered unit

Error.

CL_UNINOTFOU, Unit name not foundin library

Error.

CL_UNINOTREE, Entity not foundin file_specification

Error.

CL_UNKREFLOP, Entity references entity, which is not in the library

Informational.

CL_UNKREFUNI, Name dependson entity, which is not in the library

Error.

CL_USESETLIB, Current program library undefined; use the ACS SET
LIBRARY command

Error.

CL_VFYACU, Error in file_specification for entity

Error.

CL_VFYCORR, File_specification_or_nameverified and repaired

Warning.

CL_VFYERR, File_specification_or_name has uncorrected errors

Error.

G-16 ACS Diagnostic Messages

CL_VFYFIL, File_specification is not cataloged in library file_specification

Error.

CL_VFYNDX, Index entry for name has illegal format

Error.

CL_VFYOK, File_specification_or_nameverified

Informational.

CL_VFYPRO, Inconsistent file protection file_specification

Error.

CL_VFYQUIT, Verification of file_specification not completed

Error.

CL_VFYREP, Use the ACS VERIFY/REPAIR commandto revalidate file_

specification

Error.

CL_VFY_RECOMPIL, Units with inaccessible files are obsolete. If repair

(VERIFY/REPAIR) is not possible, then recompi-
lation of these units is necessary; after entering a

VERIFY/REPAIR command, the CHECK command

will show any obsolete units

Informational.

CL_WARDURCOM, Warnings during compilation

Warning.

CL_WARDURLIN, Warnings duringlink

Warning.

ACS Diagnostic Messages G-17

Appendix H

Run-Time Diagnostic Messages

VAX Ada diagnostic messages generated by the Ada run-timelibrary are
presented in this appendix.

The messagesare listed in alphabetical order by ident. The ident is followed
by the message text, the severity level of the message, and a more detailed
description of the message text. A cross-reference of the form “See also”
refers you to the message for the most general category for this type of error.
For example, the explanation at INTDATCORincludes the reference, “See
also PROGRAM_ERROR.”

H.1 Diagnostic Message Format

The general format of a run-time diagnostic messageis as follows:

SFacilitycode-Severitycode-Ident-Messagetext

Facility_code
Is a four-letter code (ADA) that identifies the VAX Ada run-timelibrary.

Severity_code
Is a letter (F, E, W,or I) that indicates the severity of the message. The
meaning of these severity codes is discussed in Section H.2.

Ident
Is a name that uniquely identifies the message. |

Message_text
Is a description of the event that has taken place. Italicized items in the
message text in this appendix indicate items that are replaced with specific
information when the messageis actually generated.

Run-Time Diagnostic Messages H—1

H.2 Diagnostic Message Severity Codes

A VAX Ada run-time diagnostic message contains one of four codes—F, E, W,

I—which indicate the severity of the error:

e F indicates a fatal error. An F-level message indicates that the intended
request cannot be executed.

e indicates a user error. An E-level message is often supplemented with
informational (I-level) messages that give additional information about
the error.

e W indicates a warning message. A command may have performed some,
but not all, of your request, and you mayhaveto verify the command
output.

e [indicates an informational message. An I-level message often contains
supplementary information about a preceding or otherwise related
E-level error.

H.3 VAX Ada Run-Time Diagnostic Messages

ALICOLILL, Requested alignmentfor a collection is illegal

Fatal. The VAX Ada run-time library was asked to allocate a
collection on a storage boundary that is not supported by the
dynamic memory allocation routines (LIB$GET_VM).

The most likely cause of this error is an erroneous value specified
on an alignmentclause.

User Action. Check the value specified for the alignmentclause.
See also PROGRAM_ERROR.

ALREADY_OPEN, File is already open

Fatal. See also STATUS_ERROR.

AMBKEYFORM, Ambiguous keyword in FORM parameter

Informational. A keyword in the FORM parameter of a CREATE
or OPEN operation has not been specified with enough characters
to distinguish it from another keyword acceptable in this context.
Note that VAXELN Ada accepts FORM parameter values that

H-2 Run-Time Diagnostic Messages

are different from VMS RMS File Definition Language (FDL)
statements.

User Action. Replace the keyword, specifying enough characters

to make it unique.

ASTDELTER, An AST was delivered, but the task is terminated

Fatal. In VAX Ada, asynchronous system traps (ASTs) are handled
by using the AST_ENTRY pragma andattribute to transform the
delivery of an AST into a special kind of entry call. In this case, the
task entry to which the AST was delivered belongs to a terminated
task.

Note that this situation cannot be detected in all cases. In particu-
lar, it cannot be detected if the immediate master upon which the
task depends has also terminated.

This error raises an exception declared by the VAX Ada run-time
library. Because there is no reasonable exception handler for this
case, the exception is allowed to propagate so that it can produce a
traceback, or so that you can diagnosetheerror if you are executing
the program underthe control of the debugger.

User Action. Determine why a task that was to receive an AST
entry call was terminated when the AST wasdelivered. See also
PROGRAM_ERROR.

ASTNOTCAL, The task named in an AST_ENTRYattribute is not callable

Fatal. The AST_ENTRYattribute was invoked for an entry in a
task that is completed and therefore cannot receive the AST.

User Action. Keep the task from becoming completed or do not
use the AST_ENTRYattribute on an entry of a completed task. See
alsoPROGRAM_ERROR.

ASTPKTQUO, The AST packet pool has been exhausted

Fatal. The pool of space from which the VAX Ada run-timelibrary
allocates AST packets for the AST_ENTRYattribute has been
exhausted. The ASTs being delivered are not accepted quickly
enough by the task entries that have been designated to handle
them.

User Action. Make tasks receiving AST entry calls accept the

entries more rapidly, perhaps by raising the priority of such tasks.
You can also increase the pool of space from which AST packets
are allocated by calling the VAX Ada run-time library routine

Run-Time Diagnostic Messages H-3

SYSTEM_RUNTIME_TUNING.EXPAND_AST_PACKET_POOL.

See also PROGRAM_ERROR.

ATTUNWREN, An attempt was made to unwind a rendezvousin progress

Fatal. The condition handler that was established by the VAX
Ada run-time library to monitor exceptions propagating from a

rendezvous between tasks has been called with the SS$_UNWIND
condition, but the rendezvousisstill in progress.

The VAX Ada run-time library cannot signal this error because
signaling during an unwindis forbidden by the VMSoperating
system. The program is forced to exit after displaying this error
message.

User Action. The most likely cause of this error is an error
in a call to the VMS SYS$UNWINDsystem service during the
rendezvous. Check any non-Ada code called by the accepting task
to determine if oneof its handlers is requesting too deep an unwind.
See also PROGRAM_ERROR.

ATTUNWTAS, Attempting to unwindthefirst stack frame of a task

Fatal. Thefirst frame of a task is created by the VAX Ada run-time
library and is not normally unwound(that is, it is never removed
from the stack using the VMS SYS$UNWINDsystem service). This
error condition is raised if the SYSSUNWINDsystem service is
called to unwind this frame.

The VAX Ada run-time library cannot signal this error because
signaling during an unwindis forbidden by the VMS operating
system. The program is forced to exit after displaying the error
message.

User Action. The most likely cause of this error is an error in a
call to the VMS SYS$UNWINDsystem service. Check any non-
Ada code called by the task to determineif oneof its handlersis
requesting too deep an unwind. See also PROGRAM_ERROR.

CONSTRAINT_ERRO, CONSTRAINT_ERROR

Fatal. This predefined exception is raised upon an attempt to
violate a range constraint, an index constraint, or a discriminant

constraint; upon an attempt to use a record component that does
not exist for the current discriminant values; or upon an attempt
to use a selected component, an indexed component, a slice, or an
attribute of an object designated by an access value,if the object
does not exist because the access valueis null.

H-4 Run-Time Diagnostic Messages

In response to Ada interpretation AI-00887, VAX Adaalso raises
this exception for integer overflow, floating-point overflow, and
integer and floating-point division by zero. This exception is not
raised by floating-point underflow (floating-point underflow is not
defined as an exception in VAX Ada); underflow can be handled as
an imported VAX condition.

DATA_ERROR, DATA_ERROR

Fatal. This predefined exception is raised by a TEXT_IO GETpro-
cedure if the input character sequencefails to satisfy the required
syntax, or if the value input does not belong to the range of the
required type or subtype. This exception may also be raised in any
input operation (using any of the input-output packages) that would
result in overflowing the item being written to.

DEVICE_ERROR, DEVICE_ERROR

Fatal. This predefined exception is never raised by VAX Ada. See

also USE_ERROR.

DURNOTRAN, Computed duration is not in the range of the type
DURATION

Fatal. See also TIME_ERROR.

END_ERROR, END_ERROR

Fatal. This predefined exception is raised by an attempt to skip
(read past) the endofa file.

ERRONEOUS, Program is erroneous

Fatal. An inconsistency was detected at run time that indicates
that the program is erroneous. Appended messages give more
information about theerror.

User Action. Follow the recommendations given by the appended
‘messages.

EXCCOP, Exception was copied at a raise or accept statement

Fatal. This is the first in a series of exception messages that are
issued when an exception (signal argument list) has been copied.
Exception copying occurs at a raise statement without an exception

name, or when an exception is propagating out of a rendezvous into
the calling task.

Run-Time Diagnostic Messages H-5

VAX Ada ignores this first message when matching the exception
to a choice in an exception handler. The purpose of this messageis
to prevent non-Ada condition handlers from mishandling the copied
exception.

EXCCOPLOS, Exception was copied at a raise or accept statement, but
some details were lost

Fatal. This is the first message in a series of exception messages
that are issued when an exception (signal argumentlist) has been
copied and some detailed information has been lost. Exception
copying occurs at a raise statement without an exception name,

or when an exception is propagating out of a rendezvous into the
calling task. The lost information in the exception messages was
replaced by zeros (that is, some FAO arguments were zeroed) to

avoid copying a pointer into a stack that no longerexists.

VAX Ada ignores this first message when matching the exception
to a choice in an exception handler. The purpose of this message is
to prevent non-Ada condition handlers from mishandling the copied
exception.

EXCDUREXC, An exception occurred in the VAX Ada run-time library
while handling an exception

Fatal. An exception was propagated outof the first frame of a task
or the main program while the task or main program was already
in the process of terminating because of a prior exception.

Because there is no reasonable exception handlerfor this case,
the exception is allowed to propagate so that it can produce a
traceback, or so that you can diagnose theerrorif you are executing
the program underthe control of the debugger.

User Action. The most likely cause of this error is that the stack
has overflowed and the overflow was not detected. Use the debug-
ger to determine what caused the original exception that caused
the task or main program to become terminated. Eliminating this
exception is likely to also eliminate the exception during exception
handling. Also, try enabling Ada checks to detect the error sooner.
See also PROGRAM_ERROR.

EXCEPTION, Exception ident

Fatal. An exception that was declared in an exception declaration
located somewherein the Ada program wasraised.

H-6 Run-Time Diagnostic Messages

EXISTENCE_ERROR, The element does not exist

Fatal. This predefined exception is raised when the element to
be read cannot be found in a relative or indexed file during the
execution of a READ or READ_EXISTINGprocedure.

FAC_MODE_MISMAT, Thefile access does not allow the new mode

Informational. Thefile access attributes specified for the file do
not match the modedesired for the file in a CREATE, OPEN,or

RESET operation. See also USE_ERROR.

FAIMODTIM, Unable to modify time-slice setting

Fatal. An error occurred when the VAX Ada run-time library was
calling a system service to set up timeslicing. The most likely
cause is that the system AST quota has been exceeded. Appended
messages give more information on the error.

User Action. Observe the appended message to determine why
the system service failed. See also PROGRAM_ERROR.

FAISETTIM, Unable to request another time-slice AST

Fatal. The error occurred when the VAX Ada run-timelibrary
called the VMS SYS$SETIMRsystem service to schedule the next

time-slice AST. An appended message gives the reason for the error.
See also PROGRAM_ERROR.

User Action. Examine the appended message to determine why
the VMS SYS$SETIMRsystem service failed. If it failed because
of an exceeded quota (SS$_EXQUOTA), then the mostlikely cause
of this error is that the value of your process’s AST queue limit
(ASTLM) parameter was exceeded. Determine if your program has
generated many ASTs while AST delivery has been disabled by
a call to the VMS SYS$SETASTsystem service. If there are no
such program errors, then ask your system managerto increase the
value of your ASTLM parameter (a UAF parameter). Then try your
‘program again. See the description of SYS$SETIMRin the VMS
System Services Reference Manual for additional situations that can
cause a status of SS$_EXQUOTAto be returned.

FATINTERR, Fatal internal error in the VAX Ada run-timelibrary

Fatal.

User Action. Submit a Software Performance Report (SPR) to

Digital, including a machine-readable copy of your program, data,
and a sample execution showing the problem.

Run-Time Diagnostic Messages H-7

INSSPAALL, Insufficient space to allocate from a collection

Fatal. An explicit (or implicit) allocator cannot allocate from a
collection. See also STORAGE_ERROR.

INSSPACOL, Insufficient space to create a collection

Fatal. See also STORAGE_ERROR.

INSSPATAS, Insufficient space to create a task

Fatal. See also STORAGE_ERROR.

INTDATCOR, Internal data in the VAX Ada run-time library is corrupted

Fatal. The data corruption may have been caused by a VAX Ada
error or by your program.

User Action. If you cannot determine the source of the error,
please submit a Software Performance Report (SPR) to Digital,
including a machine-readable copy of your program, data, and
a sample execution showing the problem. See also PROGRAM_
ERROR.

INVVALFORM, Invalid attribute value in FORM parameter

Informational. The FORM parameter of a CREATE or OPEN
operation contains an attribute value that is not legal for the
attribute’s keyword. Note that VAXELN Ada accepts FORM pa-
rameter values that are different from VMS RMSFile Definition
Language (FDL) statements.

User Action. Either the keyword or its attribute’s value is in-
correct. Replace the invalid attribute value with a legal value, or
replace the attribute’s keyword with one for which the attribute’s
value is legal.

KEYSIZERR, Size of the key is not a multiple of 8 bits

Fatal. A read operation from an indexedfile has specified a key
that is not a multiple of 8 bits. See also KEY_ERROR.

KEY_ERROR, Keyis inappropriate for thefile

Fatal. This predefined exception is raised in an indexedfile if the
key has been changed or duplicated and changes or duplicates are
not permitted. This exception is also raised if a read operation from
an indexedfile has specified a key that is not a multiple of 8 bits.

H-8 Run-Time Diagnostic Messages

KEYMISMATCH, Thefile key does not match the key value specified in
the FORM parameter

Informational. The OPEN operation has detected that the key
specification asserted in the FORM string does not match the key
specification of the file being opened. See also USE_ERROR.

LAYOUT_ERROR, LAYOUT_ERROR

Fatal. This predefined exception is raised by the TEXT_IO
COL, LINE, or PAGE operations if the value returned exceeds

COUNT’LAST; on output by an attempt to set column orline
numbers in excess of specified maximumline or page lengths,re-
spectively (excluding the unboundedcases); by an attempt to write
too many characters to a string with a PUT procedure; and in item
operations of the mixed input-output packages when a GET_ITEM
or PUT_ITEM operation results in reading or writing beyond the
file buffer.

LINEXCMRS, Line will exceed external file’s maximum record size

Informational. The TEXT_IO operation will overflow the maxi-

mum record size of the externalfile. See also USE_LERROR.

LOCK_ERROR, The elementis locked

Fatal. This predefined exception is raised by a READ or READ_
EXISTING procedure if the result is a locked record error in a
relative or indexedfile.

MAXLINEXC, Maximum line length exceeded

Informational. The line length specified by the TEXT_IO.SET_
LINE_LENGTH procedure exceeds the maximum record size of the
file. See also USE_ERROR.

MISKEYFORM, Missing or unrecognized keyword in FORM parameter

Informational. The FORM parameter of a CREATE or OPEN
procedure contains an illegal keyword value. Note that VAXELN
Ada accepts FORM parameter values that are different from VMS
RMSFile Definition Language (FDL) statements.

User Action. Supply the missing keywordor correct the illegal
keyword.

Run-Time Diagnostic Messages H-9

MODE_ERROR, MODE_ERROR

Fatal. This predefined exception is raised by an attempt to read
from, or test for the end of, a file whose current mode is OUT_

FILE, and also by an attempt to write to a file whose current mode
is IN_FILE. In the case of TEXT_IO operations, the exception
MODE_ERRORis also raised by specifying a file whose current
mode is OUT_FILEin a call of SET_INPUT, SKIP_LINE, END_

OF_LINE, SKIP_PAGE, or END_OF_PAGE;andbyspecifying a

file whose current mode is IN_FILE in a call of SET_OUTPUT,
SET_LINE_LENGTH, SET_PAGE_LENGTH, LINE_LENGTH,
PAGE_LENGTH, NEW_LINE, or NEW_PAGE.

MRN_MISMATCH, Thefile maximum record number does not match

the maximum record numberspecified in the FORM
parameter

Informational. The OPEN operation has detected that the max-
imum record numberasserted in the FORM parameter does not
match the maximum record numberofthe file being opened. See
also USE_ERROR.

MRS_MISMATCH, The file maximum record size does not match the

maximum record size specified in the FORM parameter

Informational. The OPENoperation has detected that the maxi-
mum record size asserted in the FORM parameter does not match
the maximum recordsize of the file being opened. See also USE_
ERROR.

NAME_ERROR, NAME_ERROR

Fatal. This predefined exception is raised by a call of a CREATE or
OPEN procedureif the string given for the parameter NAME does
not identify an external file. For example, this exception is raised if

the string is improper,or, alternatively, if either none or more than
one external file correspondsto the string.

NON_ADA_ERROR, NON_ADA_ERROR

Fatal. This exception is declared in the package SYSTEM. When
used as a choice in an Ada exception part, NON_ADA_ERROR
matchesitself or any VMS(that is, non-Ada) exception. It allows
the treatment of non-Ada conditions as a special subclass of Ada
exceptions.

H-10 Run-Time Diagnostic Messages

NOTASTLEV, Namecannot be called at AST level

Fatal.

User Action. Modify your program so that the specified oper-
ation is no longer called from an AST service routine. See also
PROGRAM_ERROR.

NOT_OPEN, File is not open

Fatal. See also STATUS_ERROR.

NUMERIC_ERROR, NUMERIC_ERROR

Fatal. In response to Ada interpretation Al-00387, VAX Ada raises
NUMERIC_ERRORonly whenit is explicitly raised with a raise
statement. Wherever the Ada language standard requires that
NUMERIC_ERRORberaised, CONSTRAINT_ERRORis raised
instead.

ORG_MISMATCH, Thefile organization does not match the organization
specified in the FORM parameter

Informational. The OPEN operation has detected that the VMS
RMSorganization asserted in the FORM parameter does not match
the organization of the file being opened. See also USE_ERROR.

PACNUMILL, Illegal number of AST packets was requested

Fatal. The number of AST packets requested by the SYSTEM_
RUNTIME_TUNING.EXPAND_AST_PACKETPOOLprocedureis

either less than zero or, when added to the numberof existing AST
packets, exceeds the number of AST packets allowed by the VAX
Ada run-timelibrary.

User Action. Modify your program to pass a correct value to the
SYSTEM_RUNTIME_TUNING.EXPAND_AST_PACKET_POOL
procedure. If you need more than the current limit of AST packets
then make tasks receiving AST entry calls accept them more
rapidly, perhaps by raising the priority of such tasks. See also
PROGRAM_ERROR.

Run-Time Diagnostic Messages H-—11

PROGRAM_ERROR, PROGRAM_ERROR

Fatal. This predefined exception is raised upon an attempt to
call a subprogram,to activate a task, or to elaborate a generic
instantiation, if the body of the corresponding unit has not yet been
elaborated. This exception is also raised if the end of a function is
reached; or during the execution of a selective wait that has no else
part, if this execution determines that all alternatives are closed.
Finally, this exception may be raised upon an attempt to execute an
action that is erroneous.

Additional messages are sometimes appendedto this exception to
further identify the reason why it wasraised.

RAT_MISMATCH, Thefile record attribute does not match the record

attribute specified in the FORM parameter

Informational. The OPEN operation has detected that the record
attribute asserted in the FORM parameter does not match the
record attribute of the file being opened. See also USE_ERROR.

RECNOTPOS, Program is erroneous, error recovery by exception handling
is not possible

Fatal. An error that cannot be corrected by an Ada exception han-
dler has been detected at run time. Either there is no appropriate
handler or the error condition would remain after the exception was
handled. The program is presumedto be erroneous.

Typically, the cause of such an error is that the program has become
corrupted because it suppresses Ada checking, it misuses the AST_
ENTRY attribute, or because it improperly uses imported non-Ada
subprograms (such as system services).

Appended messages give more information abouttheerror.

User Action. Determine from the appended messages what the
program did to cause the VAX Ada run-timelibrary to fail. Also,
try enabling checking in the Ada program, and carefully investigate

the use of imported subprograms and the AST_ENTRYattribute.
See also PROGRAM_ERROR.

RFM_MISMATCH, Thefile record format does not match the record format

specified in the FORM parameter

Informational. The OPEN operation has detected that the record
format asserted in the FORM parameter does not match the record
format of the file being opened. See also USE_ERROR.

H-12 Run-Time Diagnostic Messages

SELALTCLS, All select alternatives are closed and there is no else part

Fatal. See also PROGRAM_ERROR.

SIGVECIMP, Signal vector is improperly formatted—one or more FAO
arguments are missing

Fatal. While copying an exception, the VAX Ada run-timelibrary

has detected that the signal arguments are improperly formatted.
Most likely an FAO argument count is incorrect.

If you cannot determine the source of the error, submit a Software
Performance Report (SPR) to Digital, including a machine-readable
copy of your program, data, and a sample execution showing the
problem.

STAOVF, Attempted stack overflow was detected

Fatal. See also STORAGE_ERROR.

STATUS_ERROR, STATUS_ERROR

Fatal. This predefined exception is raised by an attempt to operate

upon a file that is not open, and by an attempt to open file that is
already open.

STORAGE_ERROR, STORAGE_ERROR

Fatal. This predefined exception is raised in any of the following
situations: when the dynamic storage allocated to a task is ex-
ceeded; during the evaluation of an allocator, if the space available

for the collection of allocated objects is exhausted; or during the
elaboration of a declarative item, or the execution of a subprogram
call, if storage is not sufficient.

Appended messages give more information abouttheerror.

User Action. Typically, two situations raise this exception: the
program has no morefree virtual pages for any allocations, or an
attempt was made to exceed the amount of storage specified in a

length clause (in other words, the value specified for TSTORAGE_
SIZE was exceeded).

In the first situation, see if the program has an error that causes a
large numberof allocators to be evaluated; for example, an infinite
loop containing allocator evaluations. If the program has noerror,
ask your system manager to consider increasing the value of the

SYSGEN VIRTUALPAGECNTparameter (maximum number of
virtual pages parameter) on your system.

Run-Time Diagnostic Messages H-13

In the second situation, consider changing the value of a task or
access type length clause STORAGE_SIZE attribute designator.

Use the appended message to further determine the reason for the
exception.

STOSIZILL, Requested value of STORAGE_SIZEfor a collection is illegal

Fatal. Typically, this error can occur if the program specifies
an illegal value for a length clause STORAGE_SIZE attribute
designator, and compiler checks have been suppressed so that the
illegal value is not detected at compile time.

User Action. Check the STORAGE_SIZE value for the appropriate
access type. Try recompiling the program (or compilation unit) with

checking enabled. See also PROGRAM_ERROR.

SUBNOTELA, The body of the called subprogram has not yet been
elaborated

Fatal. See also PROGRAM_ERROR.

SYNERRFORM, Syntax error in FORM parameter

Informational. The FORM parameter of a CREATE or OPEN
procedure cannot be parsed because it contains a syntax error.
Note that VAXELN Ada accepts FORM parameter values that
are different from VMS RMSFile Definition Language (FDL)
statements.

User Action. Correct the syntax error in the FORM parameter.

TASCOMACT, A task completed duringits activation

Fatal. See also TASKING_ERROR.

TASKING_ERROR, TASKING_ERROR

Fatal. This predefined exception is raised when exceptions arise
during intertask communication.

Appended messages give more information abouttheerror.

TASNOTCAL, The task named on an entry call is not callable

Fatal. See also TASKING_ERROR.

TASNOTELA, A task’s body was not elaborated before its activation

Fatal. See also TASKING_ERROR.

H-14 Run-Time Diagnostic Messages

TASSTOSMA, Requested STORAGE_SIZEfor a task is illegal

Fatal.

User Action. Typically, this error can occur if the program speci-
fies an illegal value for a length clause STORAGE_SIZEattribute
designator, and compiler checks have been suppressed so that the
illegal value is not detected at compile time.

Check the STORAGE_SIZEvaluefor the appropriate task type.
Try recompiling the program (or compilation unit) with checking
enabled. See also PROGRAM_ERROR.

TASTERAST, A task is terminating with an AST pending

Fatal. A task that should have waited for an AST to be delivered
is terminating. This situation is erroneous becausethe task’s stack
must not be deallocated (as it would be at task termination) while
a system service is possibly accessing the stack.

User Action. Determine whythe task that was to wait for an AST
is terminating. Use the debugger to determineif the task is being
terminated because of an exception. See also PROGRAM_ERROR.

TIMERFAIL, Insufficient quota for call to SYS$SETIMRat delay statement

Fatal. A status of SS$_EXQUOTA wasreturned by the VMS
SYS$SETIMR system service when it was called by the VAX Ada
run-time library as part of its implementation of a delay statement.

User Action. The most likely cause of this error is that the value
of your process’s AST queue limit (ASTLM) parameter was ex-
ceeded. Determine if your program has generated many ASTs while
AST delivery has been disabled by a call to the VMS SYS$SETAST
system service. If there are no such program errors, then ask your
system managerto increase the value of your ASTLM parameter (a
UAF parameter). Then try your program again. See the description
of SYS$SETIMRin the VMS System Services Reference Manualfor

additional situations that can cause a status of SS$_EXQUOTAto

be returned. See also PROGRAM_ERROR.

TIME_ERROR, TIME_ERROR

Fatal. This predefined exception can be raised by the TIME_OF,
"+', and "-" operations in the predefined package CALENDAR.

TIMPARNOT, TIME_OF parameters do not form a proper date

Fatal. See also TIME_ERROR.

Run-Time Diagnostic Messages H-—15

TOOMANENT, Task type has too many entries

Fatal. The total numberof entries (including membersin entry
families) for some task type exceeds the value of the constant
MAX_INT declared in the package SYSTEM.

User Action. Reduce the total numberof entries, including entry
family members. Perhaps move someof the entries to a different
task type. See also PROGRAM_ERROR.

UNSUPPORTED, The input-output package does not support the intended
operation

Informational. For example, some input-output packages support

only certainRMSfile organizations. See also USE_ERROR.

USE_ERROR, USE_ERROR

Fatal. This predefined exception is raised when an attempted
operation is not possible for reasons that depend on characteristics
of the external file. For example, this exception can be raised by a
CREATEprocedure, if the given mode is OUT_FILE, but the form
parameter specifies an input only device.

YEANOTRAN, Computed year is not in the range of subtype YEAR_
NUMBER

Fatal. The subtype YEAR_NUMBERis declared in the pack-
age CALENDAR. See also CONSTRAINT_ERROR, PROGRAM_
ERROR, and TIME_ERROR.

ZONECORR, The "zone" used to implement the collection for the object
being allocated or deallocated has been corrupted

Fatal. The VAX Ada run-timelibrary implements collections using
the VMS Run-Time Library LIB$ memory allocation operations.
In particular, Ada collections are implemented as zones. This
error code is returned when LIB$GET_VM or LIB$FREE_VM
fails because the zone from which the object is being allocated or
deallocated has been corrupted.

User Action. Make sure that your program is not corrupting

the zone. For example, be sure that your program is noi call-
ing an instantiation of the generic procedure UNCHECKED_
DEALLOCATIONto deallocate an object that has already been
deallocated. One way this can happenis when two access variables
designate the same object, and an instantiation of UNCHECKED_
DEALLOCATIONis called twice, once for each access variable.

H-16 Run-Time Diagnostic Messages

Also, if your program is written in more than one language, make
sure your program is not allocating an object in one language and
deallocating it in another. In addition, ensure that your program
has not disabled array indexing checks; writing at random memory
addresses can also cause the heap to become corrupted. See also
PROGRAM_ERROR.

Run-Time Diagnostic Messages H-—17

Appendix |

Reporting Problems

If an error occurs while you are using VAX Ada and you believe that the
error is caused by a problem with VAX Ada, take oneof the following
actions:

If you purchased VAX Ada within the past 90 days and you think
the problem is caused by a software error, you can submit a Software
Performance Report (SPR).

If you have a Basic or DECsupport Software Agreement, you
should call your Customer Support Center. With these services,
you receive telephone support that provides high-level advisory and
remedial assistance. For more information, contact your local Digital
representative.

If you have a Self-Maintenance Software Agreement, you can submit a
Software Performance Report (SPR).

If you find an error in the VAX Ada documentation, you should fill out and
submit the Reader’s Comments form at the back of the document in which
the error was found. Specify the section and page number wheretheerror
was found.

When you prepare to submit an SPR, please do thefollowing:

1. Describe as accurately as possible the state of the system and the
circumstance when the problem occurred. Include in the description the
version number of VAX Ada being used. Demonstrate the problem with
specific examples.

Reduce the problem to as small a size as possible.

Rememberto include listings of any commandfiles, relevant data files,

and so on.

Provide a listing of the program.

Reporting Problems [-1

5. Ifthe program is longer than 50 lines, submit a copy of the program
on machine-readable media (floppy diskette or magnetic tape). If
necessary, also submit a copy of the program library used to build the
application. Use the VMS BackupUtility to copy the program library to
the machine-readable media. All media will be returned to you when the
SPR is answered.

6. Report only one problem per SPR. This will facilitate a more rapid.
response.

7. Mail the SPR packageto Digital.

Experience shows that many SPRs do not contain sufficient information to
duplicate or identify the problem. Complete and concise information will
help Digital give accurate and timely service to software problems.

I-2 Reporting Problems

Index

A

/ABORT qualifier
SET TASK command (debugger), 7-23

ABORT_TERMINATED debugger event name, 7-31
accept statements

setting breakpoints and tracepoints on, 7-27
Accesscontrol list entries

See ACEs

Accesscontrollists

See ACLs
' Access control string

using across DECnet, 5-21
Access types

examples of debugging, 6-51
ACEs, 5-26
ACLs

protecting program libraries and sublibraries with,
A-56

protecting program libraries with, 5-26, A-52
ACS

See Program library manager, ACS commands
ACS$ symbol prefix, 1-18

ACS commands
and sublibraries, 2-26
conventions for spelling compilation unit namesin,

_ 2-10
defining synonymsfor, 1-17
dictionary of, A-—1 ,

differences from SCA commands, C-30
entering, 1-16

example of passing DCL parameters to, 1-16
general properties of, 2-10
interrupting, 1-17
kinds of program library access required by, 5-21
limits on length of, 1-17

ACS commands(coni'd.)

limits on unit identifiers in, 2-10
overview of, 1-12

parameters for, 1-21
specifying units in, 2-10
types of program library access required by, 5-21
wildcards for unit names in, 2-10

ACTIVATING debugger event name, 7-31

/ACTIVE qualifier
SET TASK command (debugger), 7-10, 7-13,

7-23

%ACTIVE_TASK debugger pseudotask name, 7-10
.ACUfile

See Compilation unit files
ADA$BATCHlogical name

default batch queue for ACS COMPILE and
RECOMPILE, 3-19, A-34, A-138, E-6,
E-13

default batch queue for ACS LOAD, A-113
ADAS$LIB.DAT, A-—-52, A-54, A-56, A-58, D—1
ADASLIB logical name, A-5, A-151

definition of, 2-4
value of in subprocess, 3-20

ADA$PREDEFINEDlogical name

See also Predefined units
and ACS CREATE LIBRARY command, A-—52
automatic entering of units in, A—53
definition of, 2-20

updating references after new release or update of
VAX Ada, 5-37

ADA$SCA_PREDEFINEDlogical name

SCAlibrary for Ada predefined units, C—19
ADA$SOURCElogical name

sourcefile search list for ACS COMPILE, 3-16
ADA command (DCL), 1-7, 1-11, 1-15, A-3 to

A-14

Index—1

ADA command (DCL) (cont’d.)

comparison with other compilation commands,
3-1, 3-14

default file type for, A—4
default qualifiers for, 1-10, 3-25, A-3
determining program portability with, 5-37, A-12
effect on program library, D-—2
generating data analysis files with, A-—5, C—20
optimizing code with, 3—16
required parameters for, A-3
wildcards allowed with, A—4

%ADAEXC_NAMEsymbol (debugger), 6—28
.ADAfile

See Sourcefiles
ADALIB.ALB, A-52, A-54, A-56, A-58, A-60,

A-63, D-1

See also Library indexfile
ADA symbol

definition of, 3-20
ADCfile

See Copied sourcefiles
Address expressions

and debugger EXAMINE command, 6-31
and debugger SET BREAK command, 6-18
and debugger SET TRACE command, 6-21

ADDRESSkeyword
/REFERENCESqualifier (FIND), C—24
/SYMBOL_CLASSqualifier (FIND), C—25

/ADDRESSqualifier

EVALUATE command (debugger), 6-42
/AFTER qualifier

COMPILE command (ACS), A-23
LINK command (ACS), . A-97

RECOMPILE command (ACS), A-128
Aggregates

debugger support for, 6-32, 6-36
ALL keyword

/DEBUG qualifier (ADA), A-6
/DEBUG qualifier (COMPILE), A-26

/DEBUG qualifier (RECOMPILE), A-131

/DECLARATIONqualifier (FIND), C—23
/REFERENCESqualifier (FIND), C—24
/SHOW qualifier (ADA), A-12, A-14

/SHOW qualifier (COMPILE), A-34
/SHOW qualifier (RECOMPILE), A-138
/SYMBOL_CLASSqualifier (FIND), C-—25

/WARNINGSqualifier (ADA), A-13
WARNINGS qualifier (COMPILE), A-36
/WARNINGSqualifier (LOAD), A-117

/WARNINGSqualifier (RECOMPILE), A-—140

Index—2

Allocators

debugger support for, 6-39
/ALL qualifier

CANCEL BREAK command (debugger), 6-17
CANCEL MODULE command (debugger), 6-63
CANCEL TRACE command (debugger), 6-20
SET TASK command (debugger), 7-23
SHOW TASK command (debugger), 7-9, 7-13,

7-17
/ANALYSIS_DATAqualifier, C-—19

ADA command (DCL), A-5

COMPILE command (ACS), A-24
RECOMPILE command (ACS), A-128

wildcards allowed with, A-5, A-24, A-128
Ancestor unit, 1—21

ARGUMENTkeyword
/SYMBOL_CLASSqualifier (FIND), C—25

Arrays
examples of debugging, 6-46, 6-47

ASSIGN command (DCL)
defining a rooted directory with, 5-29
defining concealed-device logical names with,

5-28
Associated Ada declarations (SCA), C-22

ASSOCIATED constructs (SCA)

summary of Ada, C-—23
AST_ENTRYattribute

dependences caused by, 5—43
AST_ENTRYpragma

dependences caused by, 5-43
ATTACH command (ACS), 1-16, A-15 to A-16

example of, A-16, A-171

ATTACH command (debugger), 6—7
Attributes

and debugger EXAMINE command, 6-31
and portability, 5-41

debugger support for, 6-33, 6-36, 6-43, 6-47,
7-12

AUTOGEN commandprocedure
for optimizing system parameter changes, 5-20,

E-8, E-12, E-14

Backing up
program libraries and sublibraries, 5-30

BACKUP command (DCL), 1-18

effect on debugger displays, 6—12
using during programlibrary repair, 5-36

BALSETCNT parameter (SYSGEN)

effect on DECnet access to program libraries,
5-19, E-14

Batch mode
and ACS COMPILE, A-23, A-24, A-27, A-28,

A-29, A-33, A-34, A-35
and ACS LINK, A-97, A-100, A-101, A-102,

A-103, A-106
and ACS LOAD, A-109, A-110, A-111, A-112,

A-113
and ACS NOTIFY, A-—112

and ACS RECOMPILE, A-—127, A-128, A-132,
A-133, A-137

compiling in, 3-18
dedicating an Ada compilation queue for, 3-19,

E-5, E-12
linking in, 4—10
log file created for, A—111, A-112, A—113
system queue parameters for, E-13

/BATCH_LOG qualifier
COMPILE command (ACS), 3-21, A-24
LINK command (ACS), A-97
RECOMPILE command (ACS), 3-21, A-128
wildcards allowed with, A—-24, A-110, A-128

BLUE key (debugger), 6-7
Bodies, 1-19, 1-25

See also Library bodies
/BODY_ONLYqualifier

COPY UNIT command (ACS), A-49
DELETE UNIT command (ACS), 2-10, 2-25,

A-68

DIRECTORY command (ACS), A-72
ENTER UNIT command (ACS), A-81
EXTRACT SOURCE command (ACS), A-90

MERGE command (ACS), A-122
REENTER command (ACS), A-145

SHOW LIBRARY command (ACS), A-159
Breakpoints (debugger)

automatically set, 7-32

canceling, 6-17, 6-20

definition of, 6-17
GO command and, 6-14
interaction with tracepoints, 6-18, 6—20
setting on and within accept statements, 7-27
setting on and within task accept statements,

7-12
setting on handled exceptions and exception

handlers, 6-28

setting on package specifications and bodies,

6-25

setting on task accept statements, 7-27

Breakpoints (debugger) (cont'’d.)

setting on task bodies, entry calls, 7-27
setting on tasks, 7-25

/BRIEF qualifier
DIRECTORY command (ACS), 2-12, A-71, A-73
LINK command (ACS), 4-9, A-97, A-98, A-100

SHOW LIBRARY command (ACS), A-159, A-161
SHOW PROGRAM command (ACS), A-163

BYTLM parameter (UAF)

effect on DECnet access to program libraries,
E-14

C
CALL command (debugger), 6-79
%CALLER_TASK debugger pseudotask name, 7-10,

7-12
CALL keyword

/REFERENCESqualifier (FIND), C—24

/CALLS qualifier
SHOW TASK command (debugger), 7-19, 7-29

CANCEL BREAK command (debugger), 6-17, 7-33
CANCEL MODULE command (debugger), 6—58,

6-63 |

determining effects of, 6-60
CANCEL SCOPE command (debugger), 6-73
CANCEL SOURCE command (debugger), 6-12,

6-77
CANCEL TRACE command (debugger), 6-20
CANCEL TYPE command (debugger), 6—41

CANCEL WATCH command (debugger), 6-22
CHANNELCNTparameter (SYSGEN), E-14

calculating optimal value for Ada compilation,
E-14

CHECK CALLS command (SCA), C-27

CHECK command (ACS), 1-13, 1-25, A-17 to
A-19, A-152, A-173

and generics, 2-16
and read-only program libraries, 2-7

checking program completeness and currency with,
2-15

default qualifiers for, A-17
library errors detected by, 5-32
program library access required by, 5-22

/CHECK qualifier
ADA command (DCL), A-5
COMPILE command (ACS), A~24

RECOMPILE command (ACS), A-129
Closure, 1-24, 3-8

compilation, 1-24

copying a unit’s, 2-19

Index—3

Closure (cont'd.)

definition of, 1-24, 1-25
example of compilation unit, 1-25
execution, 1-25
formed for linking, 4—1

/CLOSUREqualifier
and /NODATE_CHECKqualifier, A-37, A-38,

A-141
COMPILE command (ACS), A-25
COPY UNIT command (ACS), 1-25, 2-10, 2-19,

2-26, A-47, A-50
ENTER UNIT command (ACS), 1-25, 2-26, A-79

RECOMPILE command (ACS), A-129, A-142
CMS, 1-1

using across DECnet, 5-20
CMSS$LIB logical name

example of using with ACS SET SOURCE, A-157
Code Management System

See CMS
Commandfile

compiler, 3-19, A-23, A-25, A-109, A-—110,
A-127, A-129

linker, 4-1, 4-11, A-96, A-98
retaining the compiler, 3-19
saving the linker, 4—11

use of compilation in subprocess, 3-20, A-35,
A-113, A-139

use of linker in processing environment, 4—10
use Oflinker in subprocess, A-105

Command procedures
and ACS commandqualifiers, A—1
controlling debugger sessions with, 6-78

Commandqualifier
definition of, A-—1

/COMMANDqualifier
COMPILE command (ACS), 3-19, A-23, A-25
LINK command (ACS), 4—-9, 4-11, A-96, A-98,

A-102
LOAD command (ACS), A-—109, A-110

RECOMPILE command (ACS), 3-19, A-127,
A-129, A-142

wildcards allowed with, A—-25, A-98, A-111, A-129
Commands

See ACS commands, Debugger commands,
LSE commands, SCA commands,individual

commands by name
Compilation .

ACS commandsfor, 1-14
as source of obsolete units, 1-20
choosing optimization options for, 3-16
comparison of commandsfor, 3-1

Index—4

Compilation (cont’d.)

controlling working set size during, E-5
directing output from, 3-21

effect of network failures on, 5-20
effect of pragma INLINE on, 1-23
effect of unit dependences on, 1-20, 1-23
effect of warnings or errors during, 3-25, A-7,

A-27, A-115, A-131
effect of working set on, E-3
efficient, 3-18, E-1
executing in batch mode, 3-18, E-5, E-12

forcing for a set of units, 3-14

guidelines for memory usage during, E-1
location of batch log file produced by, 3-21
obtaining statistics for, 3-27

_ of generic bodies, 1-24

order-of-compilation rules for, 1-23
organization offiles for efficient, 1-21
placing pragmas that apply to a whole, 1-23
prerequisites for successful, 1-8
processing and output options for, 3-18
products of, 3-1
resource requirements for, E-—7
results of successful, 1-24
separate, 1-19
setting limits on errors during, 3-25
to prepare for debugging, 1-10
virtual memory required for, E-7, E—-10
working set sizes for, E-1

Compilation unit files
as products of compilation, D-2
checking consistency of protection for, A-173
checking existence and accessibility of, A—-173

checking format of, A-173
effect of program library deletion. on, A—60
effect of sublibrary deletion on, A-63
obtaining program library information about, D—4
repair of, 5-34

Compilation units, 1-19

See also Program libraries
Ada rules for naming, 1-21
checking currency and completeness of, 2-15,

A-17

classification of, 1-19
compilation closure of, 1-24
complete set of, 1-24, 1-25
conventions for naming, 1-21

copying, 2-18, A-46
current and obsolete, 1-20
debuggerterminology for, 6-14

deleting, 2-25, A-65

Compilation units (cont'd.)

dependencesaffected by context clauses, 1-20
dependencesaffected by SYSTEM.SYSTEM_

NAME, 1-20
dependences among, 1-20, 1-24
difference from sourcefiles, 1-21
displaying dependence and portability information

on, 2-12, A-12, A-34, A-138, A-163, A-164
displaying information about, 1-9, A-70, A-162
effect of dependences on compiling, 1-23
effect of new release or update of VAX Ada on,

5-36
entering, 2-19, A-78
example offiles associated with, D-3
execution closure of, 1-25
forcing compilation of, 3-14, A-25, A-36, A-37
forcing recompilation of, 3-14, A-129, A—140,

A-141
kinds of, 1-19
making current, 3-6
merging from sublibraries to parent libraries, 2-29,

A-120
modifying and testing in a sublibrary, 2-30
obsolete, 1-21, 1-24, 2-20, 4—1, 5-44, 5-45
organizinginto files, 3—5
relationship to debugger modules, 6-57
replacing copied, 2-19, A—-49
replacing entered, A-81, A-143
sharing among program libraries, 2-17
sourcefile naming conventions for, 1-22
specifying in ACS commands, 2-10
target-related dependences among, 5-43, 5-44
testing in sublibraries, 2-30
VAX Ada predefined, 2-20

COMPILATION_NOTES keyword
/WARNINGSqualifier (ADA), A-13

/WARNINGSqualifier (COMPILE), A-36
WARNINGSqualifier (LOAD), A-—118

/WARNINGSqualifier (RECOMPILE), A-140
COMPILE command

optimizing code with, 3-16

COMPILE command (ACS), 1-11, 1-15, 1-21, 1-25,
A-20 to A-38

comparison with other compilation commands,
3-1, 3-14

compiling a modified program with, 3-13
completing generic instantiations with, 3-9
default batch queue for, 3-19, A-34
default mode for, A-—23

default qualifiers for, 1-12, 3-25, A-20
default searchfile search order for, A-22

COMPILE command (ACS)(cont’d.)

default sourcefile search order for, 3-15, A-156
determing sourcefile search list for, A—-168
determining program portability with, 5-37, A-34

determining sourcefile search list for, 3-16
directing output from, 3-21, A-32
effect of ADA$SSOURCElogical name on, 3-16
effect of SET SOURCE on, 3-16, A-156
effect on program library, D-2
executing in a subprocess, 3-20, A-23, A-35
forcing compilation and recompilation with, A-36
generating data analysis files with, A-24, C—20
how it finds modified source files, A-22, D-2
howit obtains sourcefile information, A-—22
library errors detected by, 5-32
loading units with, A-33

parameters for, A-21
program library access required by, 5—22
retaining commandfile from, 3-19, A-25
source file search list for, 3-16, A-22
specifying default batch log file for, 3-21, A-24
steps performed by, A-21
wildcards allowed with, A-21

COMPILE command (LSE), C-5
changing default qualifiers for, C—6
default ADA command and qualifiers for, C—6

Compiler
diagnostic messages produced by, F-1
exit status of, 3-23
sensitivity to target differences, 5—43
severity of diagnostic messages from, 3-22
use of FILLM quota by, 5-19
virtual memory required by, E-10

Compilerlisting
examples of, 3-25
format of, 3-25

obtaining, A-7, A-12, A-13, A-27, A-34, A-36,

A-116, A-117, A—132, A-138, A—140
obtaining machine code and PSECT mapin,

3-25, A-8, A-28, A-132
Compiling

See also ADA command, COMPILE command,
Compilation, Compiler

a modified program, 1-11, 3-13
a program that will be debugged, 6-4
a VAX Ada program, 1-7

basic concepts behind, 1-18
from within LSE, C-—5
terminology related to, 1-18
with difference optimizations, 3-16

Index—5

Completeness

checking compilation unit, 2-15, A-17
of a set of compilation units, 1-24, 1-25

Completing generic instantiations, 3-9

See also Incomplete generic instantiations
COMPONENTkeyword

/SYMBOL_CLASSqualifier (FIND), C-—25
Concealed-device logical names, 5-28

See also Rooted directories
using to back up program libraries and sublibraries,

5-28
/CONFIRM qualifier, 2-11

COMPILE command (ACS), A-25
COPY UNIT command (ACS), A-48
DELETE LIBRARY command (ACS), A-60
DELETE SUBLIBRARY command (ACS), A-63

DELETE UNIT command (ACS), A-66
ENTER UNIT command (ACS), A-80
EXTRACT SOURCE command (ACS), A-89

LOAD command (ACS), A-111
MERGE command (ACS), A-121
RECOMPILE command (ACS), A-130
REENTER command (ACS), A-144
VERIFY command (ACS), 5-34, A-173

CONTINUE command (DCL), 6-6
CONTROL_C_INTERCEPTIONpackage, 7-37
Conventions

debugger module naming, 6-60
debugger scope and symbol referencing, 6-65
for ACS and ADA commandqualifiers, A-—1

for compilation defaults, symbols, and logical
names, 3-20

for linker defaults, symbols, and logical names,
4-10

CONVERT LIBRARY command (ACS), 1-13
program library access required by, 5-22

Copied sourcefiles
and COMPILE command, A-20, A-22
and debuggerediting, 6—77

and recompilation, 3-2, 3-3
and RECOMPILE command, A-5, A-26, A-114

as products of compilation, A-5, A-26, A-114,
D-2

as products of recompilation, A-130
as source of debuggerdisplays, 6-12

checking consistency of protection for, A-173
checking existence and accessibility of, A-173

checking format of, A—-173
definition of, 3-1

effect of program library deletion on, A-60
effect of sublibrary deletion on, A-63

Index—6

Copied sourcefiles (cont’d.)

importance in recompilation, A-127

obtaining copies of, A-88
obtaining program library information about, D-—4
repair of, 5-34

COPY command (DCL)
copying sublibraries with, 5-30

effect on debuggerdisplays, 6-12
using during program library repair, 5-36

COPY FOREIGN command (ACS), 1-13, 2-23, 4-3,
A-44 to A-45

default qualifiers for, A—44

program library access required by, 5-22
wildcards allowed with, A—44

Copying
foreign objectfiles, 2-23, A-44

program libraries and sublibraries, 5-30

sublibraries, 5-30
units, 2-17, 2-18, 2-19, A-46

COPY UNIT command (ACS), 1-13, 1-25, 2-17,

2-18, A-46 to A-50

copying entered units with, A-48
copying programlibraries with, 5-30
default qualifiers for, A—46
effect on debugger displays, 6-12
program library access required by, 5-22

when to use, 2-18
wildcards allowed with, A-47

/COPY_SOURCEqualifier
ADA command (DCL), A-5

COMPILE command (ACS), A-26
LOAD command (ACS), A-114

RECOMPILE command (ACS), A-—-130
CREATE command (DCL), 1-5
CREATE LIBRARY command (ACS), 1-6, 1-13, 2-3,

A-51 to A-54
changing the value of SYSTEM.SYSTEM_NAME

with, 5-44

default qualifiers for, A-51
differences from ACS CREATE SUBLIBRARY,

2-4
program library access required by, 5-22

using across DECnet, 5-20, A—51
wildcards allowed with, A—51

CREATE LIBRARY command (SCA), C-—19

CREATE SUBLIBRARY command (ACS), 1-13, 2-3,

A-55 to A-58
changing the value of SYSTEM.SYSTEM_NAME

with, 5-44

default qualifiers for, A—55

differences from ACS CREATE LIBRARY, 2-4

CREATE SUBLIBRARY command(ACS) (cont'd.)

program library access required by, 5-22
using across DECnet, 5-20, A-55
wildcards allowed with, A—55

/CROSS_REFERENCEqualifier
LINK command (ACS), 4-9, A-98

CTRL/C
interrupting ACS commands with, 1-17

CTRL/D
equivalent for SCA GOTO DECLARATION

command, C-—26
CTRL/G

equivalent for SCA GOTO SOURCE command,

C-27
CTRL/Y

interrupting ACS commands with, 1-17
interrupting debugger with, 6-6
interrupting tasks in debugger, 7-37

CTRL/Z
exiting from debugger with, 6-7

exiting from the program library managerwith,
1-17, A-83

obtaining LSE> prompt with, C-—2
responding to /CONFIRM qualifier with, A—48,

A-67, A-80, A-89, A-111, A-121, A~144,
A-174

Currency, 1-20, 1-24

See also Compilation units, Obsolete units
checking compilation unit, 2-15, A-17
of entered units, 2-20

Current default directory

defining a, 1-5
Current program library

default, A-5
defining a, 1-7, 2-4, A-150
process logical name for (ADA$LIB), 2-4, A-—5,

A-151
specifying only for the duration of a compilation,

A-4

D

Data analysis files
default directory for, A—5, C—20

generating, A—5, A-24, A-128, C-19
loading into an SCAlibrary, C-—20

Data types

See also specific types by name
examples of debugging VAX Ada, 6-42

/DATE_CHECKqualifier

COMPILE command (ACS), A-36

/DATE_CHECKqualifier (cont'd.)

RECOMPILE command (ACS), A-140
REENTER command (ACS), A-145

DBGSINIT logical name, 6-78
for debuggerinitialization file, 6—77

DCL commands
entering ACS commandsin the form of, 1-16
entering while debugging, 6-6

used in VAX Ada program development, 1-5
using with program libraries, 1-18

Deadlock

and debugger CALL command, 6-79
DEBUG command (DCL), 6-6
Debugger, 1-1, 6-1

additional features of, 6-75
automatic stack checking with, 7-37
changing task characteristics with, 7-23
checks performed by, 6-42
controlling and monitoring program execution with,

6-13
controlling default screen modedisplays in, 6-11

debugging task switching with, 7-25
debugging time-slicing programs with, 7-36, 7-37
default type for data, 6-41

default type for line numbers, 6—41
determining current value of PC with, 6-17

determining variable storage representation with,

6-31
displaying task information with, 7-13

editing sourcefiles from, 6-76
event namesfor tasks, 7-29
examining and manipulating data with, 6-30
examining and manipulating tasks with, 7-22
exiting from, 1-11, 6-5, 6-7

getting started with, 6-3
initialization file for, 6-77, 7-33
interrupting, 6-6

invoking, 6-5
keypad key definitions for, 6-7
logging a session, 6-76
module naming, 6-60
noscreen mode, 6-8

notes on Ada language support, 6-34
obtaining help on, 1-11
obtaining task state information with, 7-14
obtaining virtual addresses with, 6-41
overview of, 6-2

overview of symbol table, 6-55
RST search path, 6-68
scope and symbol referencing conventions, 6—65
setting of modules by, 6-57

Index—7

Debugger(cont'’d.)

source code display considerations in, 6-12
specifying line numbers to, 6—18
support for Ada language expressions, 6-38
support for Ada names, 6-35
support for Ada predefinedattributes, 6-36
symbols created for, 6-56
task-related eventpoints, 7-25
viewing source code from, 6-8

Debugger commands
entering, 6-7

summary of, B-1
using DCL commandswith, 6-6

Debugger symbol table
See DST, 6-56

Debugging, 1-10

See also Debugger
access types, 6-51
Ada exceptions, 6-25

Adalibrary packages, 6-24
Ada types, 6-42
and Adaelaboration, 6-30

and log file command procedure, 6-78
array types, 6-46
controlling with command procedures, 6-78
effect of inline expansion on, 3-17
ending, 6-7
enumeration types, 6-43
integer types, 6-44
monitoring variables during, 6-21
multidimensional arrays, 6-47

multiply defined symbols, 6-69
overloaded enumeration literals, 6—44

overloaded names and symbols, 6-73
overloaded subprograms, 6-75
real types, 6-45
records with variant parts, 6-50
record types, 6—49
recursive programs, 6-68

sample session of general, 6-80
sample session of task, 7-2
scalar types, 6-43
screen mode, 6-10

starting program execution during, 6-14
start-up message for Ada programs, 6-5
string arrays, 6-46
suspending execution during, 6-17
tasking programs, 7-1

tracing program execution during, 6-20
/DEBUG qualifier

ADA command (DCL), 1-10, 6-4, A-6

Index—8

/DEBUG qualifier (cont’d.)

COMPILE command (ACS), 1-12, A-26
creation of debugger symbol table records with,

6-56, A-6, A-26, A-99, A-131
effect on linker traceback information, 6-5, A-6,

A-26, A-131
LINK command (ACS), 4~-9, 6-5, A-99
RECOMPILE command (ACS), A-130

DEC/Test Manager, 1-1
/DECLARATIONSqualifier

FIND command (SCA), C-—22

DECnet
limits on using with program libraries, 2-3, 2-8,

5-20, A-55, A-151
limits on using with sublibraries, A—-51

DECnet parameters

effect on programlibrary access, 5-19, E-13
Defaults

See also individual commands and qualifiers by
name

batch log file, A—-111, A-112
compilation error limit, A—-115, A-131
compilation mode, A-—113
compilation unit replacement, A-117
compiler batch job, A-113
compiler commandfile, A-110
compilerlisting file, A-116
compiler output, A-112
confirmation, A—111

conventions for compilation, 3-20

conventionsfor linker, 4—10
copied sourcefile, A-114, A-130
diagnostics file, A-115
program library, A-116
WARNINGSqualifier (LOAD), A-118

DEFINE command (DCL)
defining a rooted directory with, 5-29
defining concealed-device logical names with,

5-28
DEFINE command (debugger), 6-7, 6-70
DELETE LIBRARY command (ACS), 1-13, 2-8,

A-59 to A-61

and sublibraries, A-59, A—60
default qualifiers for, A-59
program library access required by, 5-22

steps performed by, A-60
DELETE SUBLIBRARY command (ACS), 1-13, A-62

to A-64
and nested sublibraries, A—-62, A-63
and program libraries, A-62, A-63
default qualifiers for, A—-62

DELETE SUBLIBRARY command (ACS) (cont’d.)
program library access required by, 5-22
steps performed by, A-63

DELETE UNIT command (ACS), 1-13, 2-25, A-65

to A-69
default qualifiers for, A—65
deleting entered units with, A-67
program library access required by, 5-22
wildcards allowed with, A-—65

Deleting
libraries, 2-8, A-59

nested sublibraries, A~62, A-63
sublibraries, A-62
units, 2-25, A-65

Dependences

See also Compilation, Compilation units, Obsolete
units, Incomplete generic instantiations

checking for generic unit, 2-16
compilation unit, 1-20, A-163
created by generic units, 3-10

DEPENDENTSEXCEPTION debugger event name,
7-30

DEPOSIT command (debugger), 6-30, 6-32, 6-41
examples of, 6-32, 6-42
special options with, 6—40

DEVELOPMENTkeyword
/OPTIMIZE qualifier (ADA), 3-16, A-9
/OPTIMIZE qualifier (COMPILE), 3-16, A-29

/OPTIMIZE qualifier (RECOMPILE), 3-16, A-134
Devices

concealed logical namesfor, 5-28
Diagnostic messages

ACS VERIFY command, 5-33
Ada run-time library, H-2 to H-17
compilation notes, 3-24, A-13, A-36, A-118,

A-140
compiler, 3-21, F-3 to F-71
compiler informational, 3—24

debugger, 6—13, 6-23, 6-62
displaying with LSE REVIEW command, C-7
fatal, 3-22
in compilerlisting, 3-26, A-13, A-36, A-117,

A-140
informational, 3-23

linker, 4-9
output device for, 3-21
program library manager, G-2 to G—17

severity of compiler, 3-22
status, 3-24, A-13, A-36, A-118, A—140
supplemental, 3-24, A-13, A-36, A-118, A-140
suppressing, 3-22

Diagnostic messages(cont'd.)

user, 3-22

warning, 3-23, A-13, A-36, A-118, A-140
weak warnings, 3-24, A-13, A-36, A-118, A-140

Diagnosticsfiles
as product of compilation, A-6, A-13, A-26,

A-36, A-114, A-117, A-131, A—140

concatenating for review, C-—7
DIAGNOSTICS keyword

WARNINGSqualifier (ADA), A-13
WARNINGSqualifier (COMPILE), A-—-36
/WARNINGSqualifier (LOAD), A-117
WARNINGSqualifier (RECOMPILE), A-140

/DIAGNOSTICS qualifier
ADA command (DCL), A-6

COMPILE command (ACS), A~26
LOAD command (ACS), A-114
RECOMPILE command (ACS), A-131
used by LSE REVIEW command, C-6
wildcards allowed with, A—-6, A-27, A-115

Directories
See also individual types of directories by name

rooted, 5-29
DIRECTORY command (ACS), 1-9, 1-13, A-—70 to

A-74, A-152
and read-only programlibraries, 2~7

default qualifier for, A—70
displaying general information with, 2-11, A-71

identifying entered units with, 2-20, A-71
program library access required by, 5-22
wildcards allowed with, A-70

Directory files
default protection of program library, A-52, A-54
default protection of sublibrary, A—56, A-58
protecting, 5-26, A-52, A-56

Displaying
compilation unit information, 1-9, 2-11
dependenceand portability information, 2-12
informational and warning messages, A-117

Distributed programming, 5-15
DST, 6-56

symbols in, 6—56
Dynamic module setting, 6-57

turning off, 6-58

E

EDIT command (DCL), 1-5
EDIT command (debugger), 6-12, 6-76
Editing

Ada sourcefiles, 1-5

Index—9

Editing (cont’d.)

from the debugger, 6-76
Editors

EDT, 1-5
EVE, 1-5
for editing VAX Ada sourcefiles, 1-5
LSE, 1-5, C-1 to C-—17

VAXTPU, 1-5
/EDIT qualifier

CANCEL SOURCE command (debugger), 6-77
SET SOURCE command (debugger), 6-77
SHOW SOURCE command (debugger), 6-77

EDT
default Ada sourcefile editor, 1-5

ELABORATEpragma
obtaining information on, A-163

Elaboration

See also Initialization code
code for, A-—86, A-102
displaying order of in executable image, A-—-101
displaying order of in exported objectfile, A—-85
effect on debugging, 6-24, 6-30
linker file for package, 4—11

ENQLM parameter (UAF), E-9

recommended value for VAX Ada, E-9
/ENTERED qualifier

COPY UNIT command (ACS), A-48

DELETE UNIT command (ACS), A-67
DIRECTORY command (ACS), A-71

ENTER_UNIT command (ACS), A-80
EXTRACT SOURCE command (ACS), A-90
MERGE command (ACS), A-121
REENTER command (ACS), A-144

SHOW LIBRARY command (ACS), A-159
Entered units

and rooted directories, 5-31
checking, A-18
copying, A-48
creating, A-78
deleting, A—65, A-66, A-67
effect of ACS COMPILE on, A-20, A-22, A-79
effect of ACS RECOMPILE on, A-79, A-124,

A-127

effect on copying program libraries and sublibraries,
5-29

entering, A-80
extracting source for, A-—-90
foreign, A-75

identifying, 2-20, A-71, A-159
library of VAX Ada predefined, 2-20

Index—10

Entered units (cont’d.)

making current after new release or update of VAX
Ada, 5-36

merging, A-121
obsolete, 2-20, A-79, A-124
obtaining device independencefor, 5-31
predefined, A-53
reentering, A-144
repair of, 5-34, A-173
replacing, A-81, A-143

ENTER FOREIGN command (ACS), 1-13, 2-23,
4-3, A-75 to A-77

default qualifiers for, A—75
program library access required by, 5~—22
wildcards allowed with, A-—75

Entering
foreign files, 2-23

units, 2-17, 2-19
ENTER UNIT command (ACS), 1-13, 1-25, 2-17,

2-19, 2-22, A-78 to A-82
and copying program libraries, 5-30
default qualifiers for, A—78

entering entered units with, A-80
program library access required by, 5-22

reentering obsolete units with, 2-20
using after new release or update of VAX Ada,

5-37

when to use, 2-21
wildcards allowed with, A-17, A—-79

Enumerationliterals
debugging overloaded, 6-44

Enumeration types
examples of debugging, 6-43

Environmenttask
debuggerID for, 7-2, 7-10

definition of, 7-2

Errors

compilation, D-3
compiler limits on, 3-25, A-7, A-27, A-115,

A-131
effect of compilation on program library, 3-1
reporting run-time, A-104
reporting VAX Ada, I-+1

/ERROR_LIMIT qualifier

ADA command (DCL), 3-25, A-7
COMPILE command (ACS), 3-25, A-27
default value for, 3-25, A-7, A-27, A~115, A-131
LOAD command (ACS), 3-25, A-115
RECOMPILE command (ACS), 3-25, A-131

_ EVALUATE command (debugger), 6-27, 6-30, 6-33,
6-42

EVALUATE command (debugger) (cont'd.)

and tasks, 7-9
comparison with debugger EXAMINE command,

6-34

examples of, 6—42
special options with, 6—40

Event names (debugger)

See also individual event names by name
ABORT_TERMINATED, 7-31
ACTIVATING, 7-31
DEPENDENTS_EXCEPTION, 7-30
EXCEPTION_TERMINATED, 7-31

for Ada exceptions, 6-29
for Ada tasks, 7-29
HANDLED, 6-29, 7-30
HANDLED_OTHERS, 6-29, 7~30
PREEMPTED, 7-31

RENDEZVOUS_EXCEPTION, 7-30
RUN, 7-31
summary of, 7-30
SUSPENDED, 7-31
TERMINATED, 7-31

Eventpoints (debugger), 7-25

See also Tasks, Debugger
task-independent, 7-26
task-specific, 7-26

/EVENTqualifier
CANCEL BREAK command (debugger), 7-33
examples of, 7-31
SET BREAK command (debugger), 6-28, 7-29
SET TRACE command (debugger), 6-28, 7-29

EXAMINE command (debugger), 6-8, 6-30, 6-41

and tasks, 7-9, 7-22, 7-28
comparison with debugger EVALUATE command,

6-34
debugging overloaded subprograms with, 6-75
displaying different radixes with, 6-52
examples of, 6-31, 6-42
special options with, 6—40
specifying different radixes with, 6-40

Exception conditions
using debuggerto test for, 6-14

EXCEPTION keyword

/SYMBOL_CLASSqualifier (FIND), C—25
/EXCEPTIONqualifier

SET BREAK command (debugger), 6-26

SET TRACE command (debugger), 6—26
Exceptions

debugger symbols for, 6-27

debugging, 6—25
debugging handled, 6-28

Exceptions (cont’d.)

equivalence with VAX conditions, 6-27
EXCEPTIONTERMINATED debugger event name,

7-31
/EXCLUSIVEqualifier

and ACS REORGANIZE, A-148

and ACS VERIFY/REPAIR, A-175
program library access required by, 5-23
SET LIBRARY command (ACS), 2-6, 2-8, A-151

using across DECnet, 5-20, A-151
| %EXC_FACILITY symbol (debugger), 6-28
%EXC_NAME symbol (debugger), 6-28
%EXC_NUM symbol (debugger), 6-28
%EXC_SEVERITY symbol (debugger), 6-28

Executable image
as result of linking, 4-2, A-94, A-99
contents of, 6-56, A-95, A-99, A-101, A-104
default specification for, 4-2
default specification for Ada, 4-2
location of after linking an Ada program, 1-10

/EXECUTABLEqualifier
LINK command (ACS), A-99
wildcards allowed with, A—99

Executing
an Ada program, 1-10
under control of the debugger, 1-10, 6—1
without debugger control, 1-11

Execution
ACS commandsfor, 1-14
starting while debugging, 6—14
suspending during debugging, 6-17
tracing during debugging, 6—20
under control of debugger, 6-13

.EXEfile

See Executable image
EXIT command (ACS), 1-16, 1-17, A-83
EXIT command (debugger), 1-11, 6-7

EXIT command (LSE), C-2
Exit status

compiler, 3-23
EXPLICIT keyword

/DECLARATIONS qualifier (FIND), C—22
EXPORT command (ACS), 1-14, 1-25, 4-3, A-84

to A-87, A-152
and mixed-language linking, 4-7
and read-only program libraries, 2-7
changing the value of SYSTEM.SYSTEM_NAME

with, 5-44, A-86

default object file specification from, 4-8, A-86
default qualifiers for, 4-8, A-84
linking common code with, 4-8

Index—11

EXPORT command (ACS) (cont’d.)

program library access required by, 5-22
result of, 4-7, A—-85

Exported units
creating objectfile for, A—-84
required pragmas for, 4—8, A—85

Exporting
Ada objectfiles, 4-7

a main program, A-84, A-86
compilation units, 4-7, A-84
library packages, 4—7, A-85, A-86
the same unit more than once, 4-8

Export pragmas, A-85
and debugging, 6-5

Expressions (debugger)

See Address expressions, Language expressions,

Universal expressions
External source files

definition of, 3-1
EXTRACT SOURCE command (ACS), 1-14, A-88

to A-91, A-152
and read-only program libraries, 2-7
default qualifiers for, A-88
extracting entered units with, A-—-90

program library access required by, 5-22
wildcards allowed with, A-—88

F

FAL images
affected by SYSGEN parameter settings, E-14
effect on program library logical links, 5-19

File accesslistener images

See FAL images
FILE keyword

/SYMBOL_CLASSqualifier (FIND), C—25
/FILE qualifier

FIND command (SCA), C-—20, C-21

Files

compilation unit, D-2

compiler command, 3-19
conventions for naming Ada source, 1-21
copied source, D-2

creating source, 1-5
detecting inaccessible program library or sublibrary,

5-32, A-173
displaying those associated with compilation units,

A-70
linking Ada units with foreign, 4-6, A-95
naming conventions for Ada source, 1-22
object, D-2

Index—12

Files (cont’d.)

source, D-2
system paging, E-11

FILLM parameter (UAF), E~9, E-14

calculating optimal value for Ada compilation,
E-14

recommended value for VAX Ada, E-9
use of by Ada compiler and program library

manager, 5-19, E-9, E-13
use of by compiler and program library manager,

E~14
FIND command (SCA), C—20, C-21, C—26

entering within LSE, C-21
Fixed-point types

examples of debugging, 6-45
Floating-point types

default representation of LONG_FLOAT, A-—52,

A-53, A-56, A-57, A-154, A-155, A-160,
A-163

displaying portability information on, A—164
examples of debugging, 6-45

/FORCE_BODYqualifier, 3-15
and /CLOSUREqualifier, A-25, A-129
COMPILE command (ACS), A-37, A-141

/FULL qualifier |
DIRECTORY command (ACS), A-71, D-4

LINK command (ACS), 4-9, A-100

SHOW LIBRARY command (ACS), 2-27, A-160
SHOW PROGRAM command (ACS), A-164, D-6
SHOW TASK command (debugger), 7-19

Function calls
debugger support for, 6-36

FUNCTION keyword

/SYMBOL_CLASSqualifier (FIND), C-25

G

Generic bodies
effect of compiling, 1-20, 1-24, 2-16

Generic code sharing
controlling, A—11, A-31, A-136
disabling, A—11, A-31, A-136
maximizing, 3-17, A-11, A-32, A-136

Generic instantiations, 1-19

and compilation unit dependences, 3-10
as obsolete units, 1-20
disabling code sharing for, A-—11, A-31, A-136
incomplete, 1-20, 1-24
sharing code generated for, 3-17, A-11, A-31,

A-136
sourcefile naming conventions for, 1-22

GENERIC keyword

/SYMBOL_CLASSqualifier (FIND), C-—25
Generic units, 1-19

dependences created, 3-10
forming completions of, 3-9

Global symbols

cross-reference information on/image mapfile,
A-98

debuggerrecords for, 6-5
GO command (debugger), 6-6, 6-14
GOLD key (debugger), 6—7
GOTO DECLARATION command (SCA), C-26, C-27
GOTO SOURCE commmand (SCA), C-27

H

HANDLED debugger event name, 6-29, 7-30
HANDLED_OTHERSdebugger event name, 6-29,

7-30

Handlers

debugging exception, 6-28
HELP

debugger, 1-11
LSE, C-2
program library manager, 1-12

HELP command (ACS), 1-16, A-92 to A-93
wildcards allowed with, A-92

HELP command (debugger), B-1

obtaining keypad keydefinitions with, 6-8
HELP key (LSE), C-2

HELP LANGUAGE command (debugger), 6-34
HIDDEN keyword |

/DECLARATIONSqualifier (FIND), C—23
/REFERENCESqualifier (FIND), C-—24

/HOLD qualifier

SET TASK command (debugger), 7-13, 7-24
SHOW TASK command (debugger), 7-17

Identifiers
limits on compilation unit, 2-10

IMAGELIB.OLB, 4-7, A-99, A-100, A-103
IMPLICIT keyword

/DECLARATIONSqualifier (FIND), C-—23

/INCLUDE qualifier

LINK command (ACS), 4-7, A-105
Incomplete generic instantiations, 1-24

as obsolete units, 1-20
checking for, 2-16

completing, 3-2, 3-3, 3-9, A-20, A-22, A-126

Incomplete generic instantiations (cont'd.)

reasons for, 3-9
Incomplete units

effect on linking, 4—1
Indexed components

debugger support for, 6-36
examples of debugging, 6-46

/INDICATED qualifier

FIND command (SCA), C—26
Infinite loop

using debuggerto test for, 6-15
Informational messages

See Diagnostic messages
Initialization code

See also Elaboration
executed during debugging, 6-24
target-specific, A-—104

Initialization file

debugger, 6-77
for debugging tasking programs, 7-33

Inline expansion

controlling generic, A-9, A-30, A-134
controlling subprogram, A-—-9, A-30, A-134
controlling with compiler qualifiers, A—-9, A—30,

A-134
diasabling, A-—-9, A-30, A-134

effect on debugging, 3-17

maximizing, 3-17

maximizing generic, 3-17, A-10, A-11, A-31,

A-135, A-136
maximizing subprogram, 3-17, A-10, A—-11, A-31,

A-135, A-136

obtaining information on generic, A-163
obtaining information on subprogram, A-163

INLINE keyword

/OPTIMIZE qualifier (ADA), 3-17, A-9
/OPTIMIZE qualifier (COMPILE), 3-17, A-30

/OPTIMIZE qualifier (RECOMPILE), 3-17, A-134
INLINE pragma

effect of (NOJOPTIMIZE qualifier on, 3-16, A-9,
A-10, A-29, A-30, A-31, A-134, A-135

effect on compilation, 1-23

effect on compilation unit dependences, 1-20
INLINEGENERIC pragma

effect of (NOJOPTIMIZE qualifier on, 3-16, A-9,

A-10, A-11, A-29, A-30, A-31, A-32, A-134,
A-135, A-136

effect on compilation, 1-24

effect on compilation unit dependences, 1-20
Input-output packages

dependences caused by, 5-43

Index—13

instantiations

See Generic instantiations
Integer types

examples of debugging, 6—44

Item (SCA), C-—20

K

/KEEP qualifier
COMPILE command (ACS), A-27
LINK command (ACS), A-—100
LOAD command (ACS), A-—-111
MERGE command (ACS), A—-122
RECOMPILE command (ACS), A-—-132

Keypad keys
debugger, 6—7
debugger HELP for, 6—8
LSE, C-2, C—4, C-8

/KEY qualifier
DEFINE command (debugger), 6—7

L

LABEL keyword
/SYMBOL_CLASSqualifier (FIND), C—25

Language expressions
as debugger task expressions, 7-7

debugger support for Ada, 6-38
Language-Sensitive Editor

See LSE
Lexical elements

debugger support for, 6-35
Libraries

See Program libraries, Sublibraries, SCA libraries
Library bodies, 1-19

Ada rules for naming, 1-21
and execution closure, 1-25
and unit dependences, 1-20, 1-24

copying or entering foreign, 4-3
creating for non-Ada code, 4—4, A-44, A-75

debugger module setting of, 6-58
effects of compilation order on, 1-23
obsolete, 1-20
order-of-compilation rules for, 1-23
source file naming conventions for, 1-22

Library indexfile, D-—1

and concealed-device logical names, 5-29
as source of protection information, A-173
checking format of, 5-32, A-173

creating, A-52, A-56
default protection for, A-54, A-58

index—14

Library index file (cont’d.)

detecting uncatalogedfiles in, 5-32, A-173
effect of copying units on, A—47
effect of deleting units on, A—66
effect of library deletion on, A—60, A-63
effect of sublibrary merge on, A-—-121
relationship to entered units, A—79
repair of, 5-34, A-175

Library manager

See Program library manager
Library packages

debugger module setting of, 6—58

debugging, 6-24
elaboration code for, 4-7, A-85, A-86, A-102
foreign bodies for, A—44, A-75

objectfiles for, 4-1
relationship to debugger modules, 6-25

/LIBRARY qualifier
ADA command (DCL), A-—-4
ENTER FOREIGN command (ACS), 2-23, A-76
LINK command (ACS), 4-6, A-105
wildcards allowed with, A—4

Library specifications, 1-19, 1-23
Ada rules for naming, 1-21
and obsolete units, 1-20
debugger module setting of, 6—58
dependences on, 1-20, 1-24
displaying information about, A-—71
effect of copying units on, A—47
effect of deleting units on, A-66
effect of entering units on, A-79
effect of reentering units on, A—-144
effect of sublibrary merging on, A-121
extracting source code for, A-89

order-of-compilation rules for, 1-23
organizing sourcefiles for, 1-21
source file naming conventions for, 1-22

Library units, 1-19.

See also Library specifications, Generic

instantiations, Subprograms
Ada rules for naming, 1-21
dependences among, 1-20

Library version controlfile

creating, A-52, A-56
default protection for, A-—54, A-58

Line numbers

in debugger source display, 6—11
specifying in debugger commands, 6-18

%LINE prefix (debugger), 6-18
/LINE qualifier

SET TRACE command (debugger), 6-21

LINK command (ACS), 1-9, 1-15, 1-25, 4-1, 4-2,
A-94 to A-106, A-152

and mixed-language programs, 4-6
and read-only programlibraries, 2-7
changing the value of SYSTEM.SYSTEM_NAME

with, 5-44, A-104
default qualifiers for, A—-94

defaults, symbols, and logicatnames, 4-10
effect of, 4-2, A-94

example of linking Ada units and foreign files with,
4-7

library errors detected by, 5-32
parameterfor, 4-2, A-95
processing and output options for, 4—9
program library access required by, 5-22
steps performed by, 4—1, A-96
wildcards allowed with, A—85, A-95

LINK command (DCL), 1-9

and mixed-language programming, 4—3

and the ACS EXPORT command, 4-7
Linker, 1-1

directing diagnostic messages from, 4-9, A-102
functions of, 4—1
invoking, 4-1, A-96

retaining commandfile for, A-98
saving commandfile for, 4—11

Linking, 1-9, 4—1

See also LINK command,Linker
ACS commandsfor, 1-14

a foreign main program with Ada units, 4-6
against SYS$LIBRARY:IMAGELIB.OLB, 4-7,

A-103

against SYS$LIBRARY:STARLET.OLB, 4-7,
A-103

against user-defined default libraries, A-104

an Ada main program with foreign files, 4-6
a program that will be debugged, 6—4, A—-99

basic concepts behind, 1-18, 1-20, 1-25
default system libraries during, 4-7, A-103
default user-definedlibraries, 4—7
effect of incomplete units on, 1-24
effect of obsolete units on, 1-20

example of exported units for, 4—8
exported Ada units, 4-8

in a subprocess, 4-10, A-105

in a target-specific environment, 5-44
in batch mode, 4-10, A-103
mixed-language programs, 4-2, 4-7

non-Ada object modules, 4-2

objectlibraries, 4—2, 4-6, A-105
object library modules, 4—7

Linking (cont'd.)

optionsfiles, A—-105
preparing for mixed-language, 2-23
shareable image libraries, 4—2, 4-6, A-105
shareable imagelibrary modules, 4-7
shareable images, 4—7, A-106

terminology related to, 1-18, 1-20, 1-24, 1-25
to prepare for debugging, 1-10
VAX Ada units, 4-2

LINK symbol
definition of, 4-10

Listing file

See Compilerlisting
LISTING keyword

/WARNINGSqualifier (ADA), A—13

WARNINGSqualifier (COMPILE), A-36
WARNINGSqualifier (LOAD), A—117

/WARNINGSqualifier (RECOMPILE), A-140
/LIST qualifier

See also Compilerlisting
ADA command (DCL), A-7

COMPILE command (ACS), A-27, A-116
RECOMPILE command (ACS), A—-132
wildcards allowed with, A-—7, A-28, A-116, A-132

Literals

debugger support for, 6-36
LOAD command (ACS), 1-7, 1-15

comparison with other compilation commands,
3-1

default batch queue for, A-113

default mode for, A—109
directing output from, A-112
executing in a subprocess, 3-20, A-109, A-113
program library access required by, 5-22
retaining commandfile from, A-—110

LOAD command (SCA), C-20
/LOAD qualifier

ADA command (DCL), A-7
using with the /SYNTAX_ONLYqualifier, A—12

/LOCAL qualifier

COPY UNIT command (ACS), A-48
DELETE UNIT command (ACS), A-67
DIRECTORY command (ACS), A-72

ENTER UNIT command (ACS), A-80

EXTRACT SOURCE command (ACS), A-90
MERGE command (ACS), A-122
SHOW LIBRARY command (ACS), A-160

Log file

See also Batch mode, /BATCH_LOG qualifier,
/LOG qualifier

debugger, 6-76

Index—15

Logfile (cont’d.)

location of batch mode during compilation, 3-21,
A-24, A-110

location of batch mode during linking, A-97

location of batch mode during recompilation,
A-128

Logging

debugger session, 6—76
Logical links

effect on program library access, 5-19, E-13

Logical names
ADA$BATCH, 3-19, A-34, A-113, A-138
ADA$LIB, 3-20, A-5, A-151

ADA$PREDEFINED, 2-20, A-52, A-53
ADA$SSOURCE, 3-16

concealed device, 5-28
conventions for compilation, 3—20
conventionsfor linker, 4—10
DBG$INIT, 6—77, 6-78
rooted directory, 5-29
SYS$BATCH, 3-19, A-34, A-103, A-113, A-138
SYS$DISK, 4-2, A-22, A-156

SYS$OUTPUT, 3-21, A-18, A-32, A-72, A-86,
A-102, A-112, A-137, A-148, A-160, A-164,

A-174
/LOG qualifier, 2-11

CHECK command (ACS), A-18
COMPILE command (ACS), A-28
COPY FOREIGN command (ACS), A-45
COPY UNIT command (ACS), A-—49
CREATE LIBRARY command (ACS), A-—53
CREATE SUBLIBRARY command (ACS), A-57
DELETE LIBRARY command (ACS), A-61
DELETE SUBLIBRARY command (ACS), A-64
DELETE UNIT command (ACS), A-67

ENTER FOREIGN command (ACS), A-76
ENTER UNIT command (ACS), A-81

EXPORT command (ACS), A-85

EXTRACT SOURCE command (ACS), A-90
LINK command (ACS), A-101
LOAD command (ACS), A-111
MERGE command(ACS), A-122
RECOMPILE command (ACS), 3-8, A-132
REENTER command (ACS), A-145
SET LIBRARY command (ACS), A-152
VERIFY command (ACS), 5-33, A-174

LONG_FLOAT pragma, A-—154
/LONG_FLOATqualifier

CREATE LIBRARY command (ACS), A-53
CREATE SUBLIBRARY command (ACS), A-—-57
SET PRAGMA command (ACS), A-155

Index—16

LSE, 1-1, C-1 to C-—17

as Ada sourcefile editor, 1-5
default debugger editor, 6-76
example Ada session with, C-8
integration with SCA, C-—18, C-26

software development features of, C—1
starting and ending a session with, C-—2

LSE commands
entering, C-4
summary of, C-8

summary of token and placeholder, C—4
LSEDIT command (DCL), C-2

LSE prompt
entering commands at, C—4

obtaining, C4

/MACHINE_CODEqualifier

See also Compilerlisting
ADA command (DCL), A-8

COMPILE command (ACS), A-28
RECOMPILE command (ACS), A-132

MACRO keyword
/SYMBOL_CLASSqualifier (FIND), C—25

Main program, 1-19, 4-6

exporting, A-84, A-86
linking, A-95, A-101

/MAIN qualifier
EXPORT command (ACS), 4-8, A-86
LINK command (ACS), 4-6, A-101

Mapfile
as productof linking, A-97, A-98, A-—100, A—101

/MAP qualifer

wildcards allowed with, A-—101
/MAPqualifier

LINK command (ACS), 4—9, A-101
/MARK_CHANGEqualifier

SET DISPLAY command (debugger), 7-14

MAXPROCESSCNTparameter (SYSGEN)
effect on DECnet access to program libraries,

5-19, E-14
Memory

controlling size of program library, A-—53, A-154,
A-155

controlling size of sublibrary, A—57, A-154, A-155
default size of program library, A-52, A-154

default size of sublibrary, A-56, A-154
determining size of program library or sublibrary,

A-160, A-163
guidelines for using during compilation, E-1

MEMORY_SIZE pragma, A-—154
/MEMORY_SIZEqualifier

CREATE LIBRARY command (ACS), A-—53
CREATE SUBLIBRARY command (ACS), A-—57
SET PRAGMA command (ACS), A-155

MERGE command (ACS), 1-14, 2-29, A-120 to
A-123

default qualifiers for, A—120
merging entered units with, A-121
program library access required by, 5-22
wildcards allowed with, A-—-120

Merging sublibrary and parentlibrary units, 2-29,
A-120

Messages

See Diagnostic messages
Mixed-languagelinking, 4-2

example of, 44
Mixed-language programming, 2-23
Modules (debugger)

canceling, 6-63
determining correct names for, 6-62
directly related, 6-61
dynamic and related setting of, 6—57
effect on Ada package debugging, 6-25, 6-57
explicitly canceling, 6-64

explicitly setting, 6-63
naming conventions for, 6-60
related, 6-61

relationship to Ada compilation units, 6—14, 6-57
setting of, 6-57 .
turning off dynamic setting of, 6-58

N

Name (SCA), C-—20
Named numbers

debugger support for, 6-33
/NAMEqualifier

COMPILE command (ACS), A-28
LINK command (ACS), A-—101

LOAD command (ACS), A-112

RECOMPILE command (ACS), A-132
Names

See also Address expressions, Language
expressions

conventions for Ada sourcefile, 1-21
conventions for compilation unit, 1-21
debuggerfor single tasks, 7-8
debuggerfor task bodies, 7-8
debugger pseudotask, 7-7, 7-10

debugger support for Ada, 6-35

Names(cont'd.)

resolving overloaded debugger, 6-73
task event, 7-29

NCP

setting the maximum numberof logical links with,
5-19

using to set the maximum numberoflogical links,
E-13

Network Control Program utility

See NCP
Networkfailures

effect on program libraries or compilation, 5-20
%NEXT_TASK debugger pseudotask name, 7-10,

7-11
/NOCOPY_SOURCEqualifier

ADA command (DCL), A-5

COMPILE command (ACS), A-26
effect on program library, D-2
LOAD command (ACS), A-114

RECOMPILE command (ACS), A-—-130
/NODATE_CHECKqualifier

See also /DATE_CHECKqualifier
and /CLOSUREqualifier, A—25, A-37, A-38,

A-129, A-141

COMPILE command (ACS), A-36

forcing compilation and recompilation with, A-25,
A-36, A-129, A-141

RECOMPILE command (ACS), A-—140
REENTER command (ACS), A-145

/NODEBUGqualifier

See also /DEBUG qualifier
effect on Ada object modules, 6—5
RUN command (DCL), 1-11, 6-7

/NOHOLDqualifier
SET TASK command (debugger), 7-24

SHOW TASK command (debugger), 7-18

/NOMAIN qualifier

See also /MAIN qualifier

EXPORT command (ACS), 4-8, A-85, A-86
LINK command (ACS), 4-6, A-95, A-96, A-101

NONE keyword

/DEBUGqualifier (ADA), A-6

/DEBUGqualifier (COMPILE), A-26

/DEBUG qualifier (RECOMPILE), A-131
/DECLARATIONqualifier (FIND), C—23

default values of /OPTIMIZE options for, A—11,
A-32, A-136

/OPTIMIZE qualifier (ADA), A-9
/OPTIMIZE qualifier (COMPILE), A-29
/OPTIMIZE qualifier (RECOMPILE), A-134

Index—17

NONE keyword (cont'd.)

/REFERENCESqualifier (FIND), C—24
/SHOW qualifier (ADA), A—-12

/SHOW qualifier (RECOMPILE), A—-138
/SYMBOL_CLASSqualifier (FIND), C—25
/WARNINGSqualifier (ADA), A-13
WARNINGSqualifier (COMPILE), A-36
/WARNINGSqualifier (LOAD), A-117
/WARNINGSqualifier (RECOMPILE), A-140

/NONOTE_SOURCEqualifier
ADA command (DCL), A-8

COMPILE command (ACS), A-28
effect on program library, D-—-2

LOAD command (ACS), A-116
RECOMPILE command (ACS), A-133

Nonstatic variables, 6-23
debugging, 6-30

/NORELATEDqualifier

CANCEL MODULE command (debugger), 6-64
SET MODULE command (debugger), 6-63

Noscreen mode (debugger), 6-8
/NOSHAREqualifier

SET TRACE command (debugger), 6-21
/NOSYSLIB qualifier

LINK command (ACS), 4-7
/NOSYSSHRqualifier

LINK command (ACS), 4-7
/NOSYSTEM qualifier

SET TRACE command (debugger), 6-21
/NOTE_SOURCEqualifier

ADA command (DCL), A-8
COMPILE command (ACS), A-28
LOAD command (ACS), A-116
RECOMPILE command (ACS), A-133

/NOTIFY qualifier

COMPILE command (ACS), A-29
LINK command (ACS), A-102
NOTIFY command (ACS), A-112

RECOMPILE command (ACS), A-133
Null task

debugger ID for, 7-10

O

Objectfiles

as products of compilation, D-2
controlling debugger symbol records in, A-6,

A-26, A-131
controlling traceback information in, A-6, A-26,

A-131

index—18

Objectfiles (cont'd.)

copying foreign into the current program library,
A-44

default file type during linking, 4~6
entering, A-75, A-77
entering foreign into the current program library,

A-75
exporting Ada, A-84
linking, A-95
naming during linking, A—-102
obtaining program library information about, D-4

package elaboration, 4—1, 4-11
repair of, 5-34

Objectlibraries
default file type for during linking, 4-6
entering into the current program library, A-75,

A-76

linking with Ada units, 4-2, A-95, A-105
Object module libraries

default during linking, 4—7, A-103

obtaining information about, A-100
Object modules

contents of, 6-56
linking non-Ada with Ada units, 4-2

obtaining information about, A-—-98, A—100
/OBJECT qualifer

wildcards allowed with, A-—-102
/OBJECT qualifier

ENTER FOREIGN command (ACS), 2-23, A-77

EXPORT command (ACS), 4-8, A-86

LINK command (ACS), 4-11, A-102
wildcards allowed with, A-—-86

.OBJfile

See Objectfiles, /OBJECT qualifier
Obsolete units, 1-20, 1-21, 1-24, 5-44, 5-45,

A-154, A-155

See also incomplete generic instantiations
and foreign units, A-45, A-76

and generic completions, 3-10
created by newrelease or update of VAX Ada,

5-36
effect on linking, 4—1

entered, 2-20, A-22, A-79, A-127, A-145
identifying, A-18
recompiling, 3-2, 3-3, 3-6, A-22, A-124, A-126

verifying, A-175

Occurrence (SCA), C—20
-OLBfile

See Shareable images, Shareable imagelibraries

Operators
debugger support for, 6-38, 6-39

Operators (cont’d.)

querying SCA about Ada, C-—22
OPTfile

See Optionsfiles
OPTIMIZE pragma

effect of /[NOJOPTIMIZE qualifier on, 3-16
effect of compiler qualifiers on, A-—8, A-9, A-29,

A-133, A-134
/OPTIMIZE qualifier

ADA command (DCL), 3-16, A-8
COMPILE command (ACS), 3-16, A-29
effect on debugging, 6-4
effect on recompilation, 1-23, 1-24
RECOMPILE command (ACS), 3-16, A-133

Optionsfiles
default file type for, 4-7
entering, A-76, A-77
entering into the current program library, A—-75
linking with Ada units, 4-2, 4-7, A-96, A-105
simplifying mixed-language linking with, 4—5

/OPTIONS qualifier
ENTER FOREIGN command (ACS), 2-23, A-77

LINK command (ACS), 4-7, A-105
Order of compilation

example of suitable, 1-8
for files specified with the ADA command, A-4

OTHER keyword
/REFERENCESqualifier (FIND), C—24

/SYMBOL_CLASS qualifier (FIND), C—25
OUT display (debugger), 6-10, 6-11
Output

See also /OUTPUTqualifier, /LOG qualifier,
SYS$OUTPUTlogical name

directing linker, 4-9

directing program library manager and compiler,
3-21

options during linking, 4-9
options for controlling compilation, 3-18

/OUTPUTqualifier
CHECK command (ACS), A-18
COMPILE command (ACS), 3-21, A-32
DIRECTORY command (ACS), A-72

EXPORT command (ACS), A-86
LINK command (ACS), 4-9, A-102
LOAD command (ACS), A-112

RECOMPILE command (ACS), 3-21, A-137
REORGANIZE command (ACS), A-148

SHOW LIBRARY command (ACS), A-160
SHOW PROGRAM command (ACS), A-164
VERIFY command (ACS), A-174

/OUTPUTqualifier (cont’d.)

wildcards allowed with, A-18, A-32, A-72, A—86,

A-102, A-112, A~137, A-148, A~160, A-164,

A-174
Overloading

effect on debugging, 6-44
/OVERRIDEqualifier

CANCEL TYPE command (debugger), 6-41
SET TYPE command (debugger), 6-41

p

PACKAGE keyword
/SYMBOL_CLASS qualifier (FIND), C-—25

Packages, 1-19

See also Library packages, individual packages by
name

debugging, 6-61, 6-68, 6—73
elaboration of for linker, 4-11, A-102
saving the elaboration file for linking, 4—11

Paging

effect of working set on, E-3
Parameter qualifier

definition of, A-—1
Parentlibraries

identifying, 2-27, A-160
merging modified units into, 2-29, A-120

protection required for network access of, 5-18
specifying, A-57

/PARENTqualifier
CREATE SUBLIBRARY command (ACS), 2-3,

A-57
Parent units, 1-21

debugger module setting of, 6-58
Path name

in debugging, 6—10, 6-19
Path names (debugger), 6-15, 6-66

abbreviating, 6-70
defining symbols for, 6—70
displaying, 6—69
displaying task, 7-14
effect of SET SCOPE command on, 6-71
format for Ada, 6-66
lookup of, 6—68
numeric, 6—72
syntax for Ada, 6—70

PC

and source display, 6—11
and STEP command (debugger), 6-15

determining current value of during debugging,
6-17

Index—19

PC (cont’d.)

relationship to dynamic modulesetting, 6—57
setting scope, 6-73
using value of to view source code while

debugging, 6—10
PCA, 1-1
PC scope, 6-66
Performance and Coverage Analyzer

See PCA
PGFLQUOTA parameter (SYSGEN), E-—11

recommended value for VAX Ada, E-—-11
Placeholders (LSE), C-—3

commandsfor manipulating, C—4
deleting, C—5
expanding, C—4, C-5
obtaining a list of, C-5
restoring, C—5

Portability
determining for an Ada program, 1-9, 3-25, 3-27,

5-37, A-12, A-34, A-138, A-164

factors affecting, 5-38
features listed in VAX Ada summaries of, 5-39

PORTABILITY keyword
/SHOW qualifier (ADA), A-12
/SHOW qualifier (COMPILE), A-34

/SHOW qualifier (RECOMPILE), A-138
/PORTABILITY qualifier
SHOW PROGRAM command (ACS), 1-9, 2-14,

A-164
Positional qualifier

definition of, A—1

Pragmas

See also individual pragmas by name
and portability, 5-42, A-164
export, A-85

obtaining information about, A-—-13, A-36, A-118,
A-140

placement of whenthey affect a whole compilation,
1-23

redefining values of/with the program library

manager, A-154
required for copied foreign units, A—45
required for entered foreign units, A—76

PRCLM parameter (UAF), E-10

recommended value for VAX Ada, E-10
Predefined attributes

debugger support for, 6-36
Predefinedlibraries

See ADA$PREDEFINEDlogical name, ADA$SCA_

PREDEFINEDlogical name

Index—20

Predefined operators

debugger support for, 6—38, 6-39
/PREDEFINED qualifier

CREATE LIBRARY command (ACS), A-—53
Predefined subprograms

and portability, 5-40, 5-41
Predefined types

and portability, 5-40
Predefined units

and library creation, A—-52, A-53
and portability, 5-40

compiling for debugging, 6—4
updating references after new release or update of

VAX Ada, 5-37
PREEMPTED debugger event name, 7-31
/PRELOADqualifier, 3-14

COMPILE command (ACS), A-33
RECOMPILE command (ACS), A-137

Primary Ada declarations (SCA), C-—22
PRIMARYconstructs (SCA)

summary of Ada, C-23
/PRINTERqualifier

COMPILE command (ACS), A-33
LINK command (ACS), A-103
LOAD command (ACS), A-112
RECOMPILE command (ACS), A-137

Priority

task, 7-13
/PRIORITY qualifier

SET TASK command (debugger), 7-24
SHOW TASK command (debugger), 7-18

Problem reporting, I-1
PROCEDUREkeyword

/SYMBOL_CLASS qualifier (FIND), C—25
Processing

options during linking, 4—9

options for compilation, 3-18
Program counter

See PC
Program development

See also Compiling, Debugging, Editing, Linking,
RUN command

ACS commandsfor, 1-14
basic concepts behind, 1-18
best /OPTIMIZE option for, 3-16
compilation, 1-7

decomposing Ada programs during, 5-1
distributed, 5-15
execution, 1-10
linking, 1-9

managing, 5-1

Program development (cont’d.)

managing source code during, 5-12
modular, 1-19
source codedirectories for, 5-10

structuring, 1-19

system considerations for, 5-15
terminology related to, 1-18

using LSE during, C—1
using SCA during, C-—28

Program development environment, 1-1

See also CMS, Debugger, DEC/Test Manager,
Linker, LSE, PCA, SCA

optional tools for, C—1

Program execution

See Execution
Program libraries, 2-1, 2-2

See also ACS commands, Program library
manager, Sublibraries

access required by ACS commands, 5-21

ACS commands for managing, 1-13

backing up and restoring, 5-30
calculating locks required for, E-—-9
configuring across DECnet, 5-16
contents of, A-70, A-159, A-161, D-1

copying, 5-29, 5-30
creating, 1-6, 2-3, A-51
currency of, 1-24, A-17
DECnet access to, 5-15, 5-18, 5-21, A-51,

A-151

default protection for, 2-3
default protection of directory files for, A-52, A-54
defining a current, 1-7, 2-4, A-150
definition of, 1-6
deleting, 2-8, 2-9, A-59
deleting units from, 2-25, A-65

differences from SCAlibraries, C-30
distributed, 5-15

effect of compilation errors on, D-3
effect of compilation on, 1-8, A—4
effect of logicallink limits on, 5-19
effect of network failures on, 5-20
efficient DECnet accessto, 5-19, E-13
efficient structure for, 5-6

example directory structure for, 1-6
example of structure and contents of, D-3

introducing non-Ada codeinto, 2-23, A-44, A-75
limiting access to, 2-8, A-151, A-152
maintaining, 5-27
making current after new release or update of VAX

Ada, 5-36
making independent references to, 5—28

Program libraries (cont’d.)

namesof units in, 1-21
obtaining copies of copied sourcefiles from, A-88
predefined VAX Ada (ADA$PREDEFINED), 2-20

protecting, 2-9, 5-18, 5-21, 5-23, 5-26, A-53

reorganizing, 5-32, A-147
restrictions on using across DECnet, 5-20, A-51,

A-151
sharing, 2-6

sharing compilation units among, 2-17, A—46,

A-78
structure of, 2-1, D-1
updating, 1-24, 3-1, A-4, A-12, A-35, A-47,

A-66, A-139, D-3
using DCL commands with, 1-18
value of SYSTEM.SYSTEM_NAMEfor, 5-44,

A-52, A-154
verifying and repairing inconsistencies in, 5-32,

A-172, A-173, A-174
when exclusive accessis required for, 5-34

working with read-only, 2-7
Program library manager, 1-1, 1-20, 1-21, 1-23

and concealed-device logical names, 5-29
as interface to VMS Linker, 1-9, 4-1, 4-2
diagnostic messages produced by, G-—1
exiting from, 1-17
file naming conventions for, 1—22
interactive commands for, 1—15

invoking interactively, 1-16
online HELP for, 1-12

overview of, 1-12

sensitivity to target differences, 5-43
use of FILLM quota by, 5-19

Program location

See Address expressions
Program sublibraries

See Sublibraries
Program units, 1-19

See also Compilation units
PROMPTdisplay (debugger), 6—10, 6-11
Protection

checking consistencyoflibrary and sublibraryfile,

5-33
detecting inconsistentfile, 5-32, A-173

effect on distributed program libraries, 5-18
library index file, A—-54, A-58
library version control file, A—54, A-58
program library, 2-9, A-53
program library directory file, A-52, A-54
repairing inconsistentfile, A—-175
required for ACS command access, 5-21

index—21

Protection (cont’d.)

sublibrary, A-56, A-57
sublibrary directory file, A—56
UlC-based program library, 5-23

/PROTECTION qualifier
CREATE LIBRARY command (ACS), 2-3, 2-9,

A-53
CREATE SUBLIBRARY command (ACS), 2-3,

A-57

Proxy accounts
as method of accessing program libraries, 5-18

PSECT keyword
/SYMBOL_CLASSqualifier (FIND), C—25

Pseudotask names (debugger), 7-7, 7-10
%ACTIVE_TASK, 7-10
%CALLER_TASK, 7-12
%NEXT_TASK, 7-11

%VISIBLE_TASK, 7-11

Q

Qualified expressions
debugger support for, 6—39

Qualifiers

See also Command qualifiers, Positional qualifiers,

Parameter qualifiers, individual qualifiers by
name

conventions for placement of, A-—1
kinds of, A-—1

/QUEUE qualifier
COMPILE command (ACS), A-33
LINK command (ACS), A~-103

QUEUE command (ACS), A-113
RECOMPILE command (ACS), A-137

QUIT command (LSE), C-—2

R

Radix

specifying with debugger EXAMINE command,

6—40
READ keyword

/REFERENCESqualifier (FIND), C-23

READYtask state, 7-14
/READ_ONLYqualifier

program library access required by, 5-23
SET LIBRARY command (ACS), 2-6, 2-7, A-152

Real types

examples of debugging, 6-45
Recompilation, 1-21, A-124

and COMPILE command, A-22

Index—22

Recompilation (cont’d.)

and copied sourcefiles, A-—127
and generic completions, 3-10
forcing for a whole program, A-129, A-140

implicit, 5-44
RECOMPILE command (ACS), 1-15, 1-21, 1-285,

A-124 to A-142

and copied sourcefiles, A-124, A-127, A—130,
D-2

compared with other compilation commands, 3-1
completing generic instantiations with, 3-9
default batch queue for, 3-19, A-137
default mode for, A-127
default qualifiers for, 3-25, A-124
determining program portability with, 5-37, A-138
directing output from, 3-21, A-137
effect on program library, D-2
executing in a subprocess, 3-20
forcing recompilation of a set of units with, A-140
forcing the recompilation of a set of units with,

3-14, A-129
generating data analysis files with, A-128, C—20
library errors detected by, 5-32
loading units with, A—-137
making obsolete units current with, 3-6
optimizing code with, 3-16
parameters for, A-125

program library access required by, 5-22
retaining commandfile from, 3-19, A-129
specifying default batch log file for, 3-21, A-128
steps performed by, A—-126
wildcards allowed with, A—125

Recompiling

a complete set of units, 3-14
after a new release or update of VAX Ada, 5-36

an entire program, 3-8
entered units, A-127
generic units, 3-9

obsolete units, 3-6
Record types

examples of debugging, 6-49
Recursion

debugging Ada programsinvolving, 6-68
REENTER command (ACS), 1-14, 2-20, 2-22, 5-29,

A-143 to A-146
copying entered units with, A—-144

default qualifiers for, A—-143

program library access required by, 5-22
wildcards allowed with, A-143

Reentering

See also Entered units, Entering

Reentering (cont'd.)

units, 2-20
REEORGANIZE command (ACS), A-147 to A-149

/REFERENCESqualifier
FIND command (SCA), C-23

Related module setting, 6-57
/RELATED qualifier

CANCEL MODULE command(debugger), 6-64

SHOW MODULE command (debugger), 6-60
RENDEZVOUS_EXCEPTION debugger event name,

7-30
REORGANIZE command (ACS), 1-14

interaction with ACS VERIFY command, A-173
program library access required by, 5~22

/REPAIR qualifier
correcting program library or sublibrary errors with,

5-34, A-173
corrective action taken by, 5-34, A-175
exclusive access required for, 5—34, A-175
program library access required by, 5-23
using across DECnet, 5-21

VERIFY command (ACS), 5-32, A-174
/REPLACEqualifier

COPY FOREIGN command (ACS), A-45
COPY UNIT command (ACS), 2-19, A-49

ENTER FOREIGN command (ACS), A-77
ENTER UNIT command (ACS), 2-20, 2-22, 5-29,

A-81
LOAD command (ACS), A-116

Representation clauses
and portability, 5-41

/RESTOREqualifier _
SET TASK command (debugger), 7-24

REVIEW command (LSE), C-—5
displaying diagnostic messages with, C-—7
using with concatenated diagnostics files, C—7

Rooted directories, 5-29

See also Concealed-device logical names
and entered units, 5-31
and sublibrary trees, 5-28

RST
debugger symbol search of, 6-68

deleting symbols from, 6-63
importance of during debugging session, 6-56
symbols in, 6-56

RUN command (DCL), 1-10, 1-15
and debugging, 6—5
default file type for, 1-10
overriding debugger when executing, 1-11, 6-7

RUN debugger event name, 7-31
RUNNING task state, 7-14

Run-timelibrary (Ada)

diagnostic messages produced by, H-1
Run-time symbol table

See RST

S
SCA, 1-1, C-17 to C-31

Ada-related effects and restrictions with, C-31

Ada-specific considerations with, C—28
classification of Ada tasks by, C—25
cross-referencing features of, C—17
integration with LSE, 1-5, C—18
setting up an environment for, C-—18
Static analysis features of, C-—18

using for cross-referencing, C—20
using for static analysis, C—27

using to navigate through Ada source code, C-—26
SCA commands, C-—19, C—20, C—26, C-27

differences from ACS commands, C-—30
summary of LSE-related, C-21

Scalar types
examples of debugging, 6-43

SCAlibraries

See also ADA$SCA_PREDEFINEDlogical name
creating, C—19
differences from Ada program libraries or

sublibraries, C—30
initializing and setting, C—19

loading, C-20
predefined, C-—19

Scope
canceling settings of debugger, 6-73
debugger, 6-66
debugger conventions for, 6-65
defining searchlist for debugger, 6-72
PC, 6-66
setting debugger, 6-71
showing current debugger, 6-71

Screen mode (debugger), 6-10
scrolling source display in, 6-11

Searchlists
ADA$SOURCElogical name for COMPILE, 3-16
canceling debuggerediting, 6-77
creating for ACS COMPILE, 3-15, A-156

default order for ACS COMPILE, A-156
defining debugger scope, 6-72
determining debuggerediting, 6—77

displaying ACS COMPILE, A-168
for debugger source code displays, 6—12
for debugger source editing, 6-77

Index—23

Secondary units, 1-19

See also Library bodies, Subunits
Selected components

debugger support for, 6-36
examples of debugging, 6—49

Separate compilation, 1-19
SET BREAK command (debugger), 6-17, 6-26,

6-28, 7-29

See also Event names
and tasks, 7-25
event names for, 7-29

SET DEFAULT command (DCL), 1-5

SET DISPLAY command (debugger)
debugging tasks with, 7-14

SET EDIT command (debugger), 6-76
SET EVENT_FACILITY command (debugger), 7-30
SET EXCEPTION BREAK command (debugger),

6-26 :
SET LIBRARY command (ACS), 1-7, 1-14, 2-7,

2-8, A-150 to A-153
default qualifiers for, A-150
program library access required by, 5-22

SET LIBRARY command (SCA), C-—19
SET MESSAGE command (DCL), 3-22
SET MODE command (debugger), 6—8, 6-10
SET MODE NODYNAMIC command (debugger),

6-58
SET MODULE command (debugger), 6-62, 6-63
SET OUTPUT LOG command (debugger), 6-76

SET OUTPUT VERIFY command (debugger), 6-78
SET PRAGMA command (ACS), 1-14, 5-44, A-154

to A-155
default qualifiers for, A-154
program library access required by, 5-23

SET PROTECTION command (DCL), 1-18, 2-9

SET RADIX command (debugger), 6—42
SET SCOPE command (debugger), 6-71

SET SOURCE command (ACS), 1-15, A-156 to
A-157

effecton ACS COMPILE, 3-15, A-156
specifying CMS$LIB logical name with, A-157

SET SOURCE command (debugger), 6-12
for sourcefile search list, 6—77

SET TASK command (debugger), 7-10, 7-11, 7-13,
7-23, 7-37

qualifiers for, 7-23
SET TRACE command (debugger), 6-20, 6-26, 6-28

See also Event names

and tasks, 7-25

event names for, 7-29

Index—24

SET TYPE command (debugger), 6-41
SET WATCH command (debugger), 6-21
Shareable imagelibraries

default during linking, A—-103
default file type during linking, 4—6
entering into the current program library, A-75,

A-76
linking with Ada units, 4—2, A~95, A-105

Shareable images
creating with ACS LINK command, 4-9
default during linking, 4-7

default file type for, 4-7
entering into the current program library, A-—75,

A-76, A-77
linking with Ada units, 4—7, A-95, A-96, A-106

/SHAREABLEqualifier
ENTER FOREIGN command (ACS), 2-23, A-77
LINK command (ACS), 4-7, A-106

SHARE keyword
/OPTIMIZE qualifier (ADA), 3-17
/OPTIMIZE qualifier (COMPILE), 3-17
/OPTIMIZE qualifier (RECOMPILE), 3-17

SHARE_GENERIC pragma
effect of (NOJOPTIMIZE qualifier on, 3-16, A-9,

A-10, A-11, A-29, A-31, A-32, A-134,

A-135, A-136
SHOW BREAK command (debugger)

to identify set task events, 7-33
SHOW CALLS command (debugger), 6-14, 6-16

debugging Ada exceptions with, 6-26
SHOW EVENT_FACILITY command (debugger),

7-30
SHOW KEY command (LSE), C-2
SHOW LIBRARY command (ACS), 1-7, 1-14, 2-5,

A-152, A-158 to A-161

and read-only program libraries, 2-7
default qualifiers for, A—-158
determining the value of SYSTEM_NAMEwith,

5-44, A-160
displaying library contents with, A—-161

example of using, 2-5
identifying entered units with, A-159
identifying parentlibraries with, 2-27, A-160

program library access required by, 5-23
wildcards allowed with, A—-158

SHOW MODULE command(debugger), 6-59, 6-60
treatment of packages by, 6-61

SHOW OUTPUT command (debugger), 6—76
SHOW PLACEHOLDER command (LSE), C-2
SHOW PROGRAM command (ACS), 1-14, 1-25,

2-12, A-152, A-162 to A-167

SHOW PROGRAM command (ACS) (cont'd.)

and read-only program libraries, 2-7
default qualifiers for, A-162
determining target dependences with, 5—44

displaying dependenceinformation with, A—-163
identifying entered units with, A-164
obtaining portability information with, 5-39, A-164
program library access required by, 5-23
wildcards allowed with, A-162

/SHOW qualifier
ADA command (DCL), A-12

compilation commands, 3-25
COMPILE command (ACS), A-34

determining program portability with, 5-37

obtaining portability information with, 5-39
RECOMPILE command (ACS), A-138

SHOW SCOPE command (debugger), 6-71
SHOW SOURCE command (ACS), 1-15, A-168

determining ACS COMPILEsearchlist with, 3-16

SHOW SOURCE command (debugger)
determining editing search list with, 6-77

determining source searchlist with, 6-12
SHOW STEP command (debugger), 6-16
SHOW SYMBOL command (debugger), 6-31, 6-36,

6-71

debugging overloaded task accept statements with,
7-28

distinguishing among overloaded symbols with,
6-74

obtaining path names with, 6-69
SHOW TASK command (debugger), 7-9, 7-13, 7-16

debugging overloaded task entry calls with, 7-29
highlighting state changes with, 7-14

information-selection qualifiers for, 7-18
mixing task list and task selection qualifiers with,

7-18
task selection qualifiers for, 7-17

SHOW TOKEN command (LSE), C-2

SHOW TRACE command (debugger)
to identify set task events, 7-33

SHOW VERSION command (ACS), 1-14, A-169
and read-only program libraries, 2-7
program library access required by, 5-23

SHOWWATCH command (debugger), 6-22
/SILENT qualifier

effect on automatic stack checking, 7-38
SET TRACE command (debugger), 6-21

Slices

debugger support for, 6-36
examples of debugging, 6-46

Software Performance Report (SPR), I-1

/SOURCE
EXAMINE command (debugger), 7-28

Source code
analyzing, C-17
displaying from debugger, 6-8, 6-12, 6-13

editing, 1-5, C—1
extracting from program libraries or sublibraries,

A-88

Source Code Analyzer

See SCA
Sourcefiles, D-2

See also Copied sourcefiles

ACS COMPILEsearchlists for, 3-15, 3-16,
A-156

and ACS COMPILE command, A-20, A-28, A-36,

A-116, A-133

and compilation, 3-2, A-4
canceling debugger searchlists for, 6-77

debuggersearchlists for, 6-12, 6-77

determining ACS COMPILEsearchlists for, 3-16,
A-168

determining debuggersearchlists for, 6-77
editing from within the debugger, 6-76, 6-77
obtaining program library information about, A-—71,

D-5
/SOURCEqualifier

EXAMINE command (debugger), 6-8, 6-75
SPACE keyword

default values of /OPTIMIZE options for, A-11,

A-32, A-136
/OPTIMIZE qualifier (ADA), A-8

/OPTIMIZE qualifier (COMPILE), A-29
/OPTIMIZE qualifier (RECOMPILE), A-133

SPAWN command (ACS), 1-16, A-170 to A-171
SPAWN command (debugger), 6-7

Specifications

See also Library specifications
Ada, 1-19, 1-25

/SPECIFICATION_ONLY qualifier
and /CLOSUREqualifier, A-25, A-129

COMPILE command (ACS), A-34
COPY UNIT command (ACS), A-49
DELETE UNIT command (ACS), A-68
DIRECTORY command (ACS), A-72

ENTER UNIT command (ACS), A-81
EXTRACT SOURCE command (ACS), A-91

MERGE command (ACS), A-123
RECOMPILE command (ACS), A-138
REENTER command (ACS), A-145
SHOW LIBRARY command (ACS), A-160

Index—25

SPR

requirements for submitting, |—1

SRC display (debugger), 6-10, 6-11

Stack checking
automatic debugger, 7-37

STARLET.OLB, 4-7, A-99, A-100, A-103
/STATE qualifier
SHOW TASK command (debugger), 7-18

Static variables, 6-23
ISTATISTICS qualifier

SHOW TASK command (debugger), 7-19
STATUS keywoyd

WARNINGSqualifier (ADA), A-13
WARNINGSqualifier (COMPILE), A-36
/WARNINGSqualifier (LOAD), A-118
WARNINGSqualifier (RECOMPILE), A—140

STATUS messages, 3-24
STEP command (debugger), 6-15
String arrays

examples of debugging, 6—46

Sublibraries, 2-1

See also Program libraries

ACS commandsfor, 2-26

backing up and restoring, 5-30
calculating locks required for, E-9
copying, 5-29, 5-30
creating, 2-3, A-55
default protection of directory files for, A-56, A-58
defining a parentlibrary for, 2-3, A-57
deleting, A-62
differences from SCAlibraries, C-—30

distributed, 5-15
identifying the parent library of, 2-27, A-160
library index file, A—-56, A-58

library version control file, A—-56, A-58
maintaining, 5-27

making current after new release or update of VAX

Adaon, 5-36
merging modified units from, 2-29, A-120

modifying and testing units in, 2-30
nested, 2-27, A-56, A-62, A-63
protecting, 5-18, 5-21, 5-23, 5-26, A-56, A—57
reorganizing, 5-32
restrictions on using across DECnet, 5-20, A-151
structure of, 2-1

testing units in, 2-30
updating, 1-24
value of SYSTEM.SYSTEM_NAMEfor, 5-44,

A-56, A-58, A-154
verifying and repairing inconsistencies in, 5-32,

A-172, A-173

Index—26

Sublibraries (cont’d.)

working with, 2-26
SUBMIT command (DCL), 3-19, 4-11

/SUBMIT qualifier, 3-19
COMPILE command (ACS), A-34
LINK command (ACS), 4-9, 4-10, A-103
LOAD command (ACS), A-113
RECOMPILE command (ACS), A-138

Subprocess
and compilation information, 3-20
and linker information, 4-10
attaching to program library manager from, A-—-15
executing ACS COMPILEin, 3-20, A-23, A-35

executing ACS LOADin, 3-20, A-109, A-113

executing ACS RECOMPILEin, 3-20, A-127,

A-139
linking in, 4-10, A-96, A-103, A-105

spawning from the program library manager,
A-170

Subprograms, 1-19

Calling from the debugger, 6-79

debugger module setting of, 6-58
debuggerterminology for, 6-14
resolving overloaded for the debugger, 6-73

Subtypes

debugger support for, 6-39
Subunits, 1-19

Ada rules for naming, 1-21
and execution closure, 1-25 —
as secondary units, 1-19
compilation unit dependences among, 1-20

copying, A-47

debugger module setting of, 6—58
deleting, A—-66
effects of compilation order on, 1-23
entering, A-—-79

forcing compilation of, A-36
forcing recompilation of, A—-140

obsolete, 1-20
order-of-compilation rules for, 1-23
reentering, A-144

sourcefile naming conventions for, 1-22
SUPPLEMENTALkeyword

WARNINGSqualifier (ADA), A-13
/WARNINGSqualifier (COMPILE), A-36
WARNINGSqualifier (LOAD), A—-118
‘WARNINGSqualifier (RECOMPILE), A-140

SUPPLEMENTAL messages, 3-24

SUPPRESSpragma
and /[NO]JCHECK compilation qualifier, A-5, A-24,

A-129

SUPPRESS_ALL pragma

and /[NO]JCHECK compilation qualifier, A-5, A-24,
A-129

SUSPENDED debugger event name, 7-31
SUSPENDEDtask state, 7-14

Symbolic Debugger

See Debugger
Symbols

ADA, 3-20

and debugger path names, 6—15, 6-66, 6—70
controlling references to in debugger, 6—55
conventions for compilation, 3-20
conventions for linker, 4-10

creating for debugger, 6—56, A-6, A—-26, A-99,
A-131

debuggerrecordsfor global, 6—5, 6-56
debuggerrecordsfor local, 6—56
definition of debugger, 6-55
deleting from RST, 6-63
for exceptions during debugging, 6-27
in DST, 6-56
in RST, 6-56
LINK, 4-10
lookup of debugger, 6-68
making visible to debugger, 6-57
obtaining information on linker, A-100
obtaining linker cross-reference for, A—-98

resolving multiply-defined debugger, 6-65, 6-69,
6-73

resolving undefined linker, A—-105
setting debugger scope for, 6-71
showing debugger scope for, 6-71

SYMBOLSkeyword

/DEBUG qualifier (ADA), A-6
/DEBUGqualifier (COMPILE), A-26
/DEBUG qualifier (RECOMPILE), A-131

Symbol table

See also DST, RST
overview of debugger, 6-55

/SYMBOL_CLASSqualifier

FIND command (SCA), C~20, C-21, C—24

required use of quotation marks with, C-25
/ISYNTAX_ONLYqualifier-

ADA command (DCL), A-12

COMPILE command (ACS), A-35
RECOMPILE command (ACS), A-139

SYS$BATCH

default system batch queue, A-—138
SYS$BATCHlogical name

default batch queue for ACS COMPILE and
RECOMPILE, 3-19, E-6, E-13

SYS$BATCHlogical name (cont’d.)

default system batch queue, A-34, A-103, A-113

SYS$DISK logical name
and COMPILE search order, A-—22, A-156
involvementin linking, 4-2

SYS$LIBRARYlogical name, 4-7
SYS$OUTPUTlogical name

default for compilation output, 3-21, A-32, A-112,
A-137

default for linker output, A-102
default for program library manager output, A-—18,

A-72, A-86, A-148, A-160, A-164, A-174
SYSGENparameters, E-8

See also individual parameters by name
effect on program library access, 5-19, E-13

/SYSLIB qualifier
LINK command (ACS), A-103°

/SYSSHRqualifier
LINK command (ACS), A-—-103

SYSTEM (predefined package)
and portability, 5-40
implicit recompilation of, 5-44

restoring after accidental deletion, A-66
System libraries

default during linking, 4-7, A-103
System name

See SYSTEM_NAMEconstant
System pagingfile, E—11

recommended size for VAX Ada, E-11
SYSTEM_NAMEconstant(in package SYSTEM),

5—43

default value of, 5-44, A-52, A-56, A-154
dependences caused by, 5-43
determining value of, 5—44, A-160

effecton ACS EXPORT, 4-9, A-86
effect on compilation unit dependences, 1-20
establishing value of, A-54, A-58

permanently setting the value of, 5-44, A-154
temporarily setting the value of, 5—44, A-86,

A-104

SYSTEM_NAMEpragma, 5-44, A-86, A-104, A-154
/SYSTEM_NAMEqualifier

CREATE LIBRARY command (ACS), A-—54
CREATE SUBLIBRARY (ACS), A-58
EXPORT command (ACS), 4-9, A-86
LINK command (ACS), A-104
SET PRAGMA command (ACS), A—-155

Index—27

T

Target systems

See also SYSTEM_NAMEconstant
working with more than one, 5-37

Task bodies
debugger namesfor, 7-8
implementation of, 7-8
treatment of by debugger, 7-8

%TASK debugger task ID, 7-9
Task IDs

See also %TASK debuggertask ID
debugger, 7-2, 7-7, 7-9

TASK keyword |

/SYMBOL_CLASS qualifier (FIND), C-—25

Tasklist
debugger, 7-17

Task objects
definition of, 7-8
treatment of by debugger, 7-8

/TASK qualifier
EXAMINE command (debugger), 7-22

Tasks

See also Environment task, Null task, Task bodies,
Task objects

as program units, 1-19
caller, 7-12
changing characteristics of in debugger, 7-23
cycling through during debugging, 7-11
debugger eventpoints for, 7-25
debugger expressions for, 7—7
debugger namesfor single, 7-8
debuggerstates for, 7-14
debugger substates for, 7-15
debugger support of Adaattributes for, 7-12
debugging, 7-1

See also Pseudotask names, Task IDs
debugging nonexistent, 7-9

debugging time-sliced, 7-36
definition of, 7-7
determining debugger task IDs for, 7-9
displaying information about/in the debugger, 7-13
effect on debugger CALL command, 6-79
effect on watchpoints, 7-37
examining and manipulating with debugger, 7-22
initialization file for debugging, 7-33
monitoring using the debugger, 7-29

next, 7-11
obtaining state information from debugger, 7-14

sample program for debugging, 7-2
SCAclassification of, C—25
selecting for display during debugging, 7-16

selection qualifiers for debugging, 7-17

Index—28

Tasks (cont'd.)

separation compilation of, 1-19
setting breakpoints and tracepoints on, 7-27
specifying list of/to debugger, 7-17
stack checking using debugger, 7-37

visible, 7-11
Task selection qualifiers

debugger, 7-17
Task states, 7-14

Task substates, 7-15
Task switching

debugging, 7-25
$TASK_BODYdebuggersuffix, 7-8, 7-27

TERMINAL keyword
WARNINGSqualifier (ADA), A-13
WARNINGSqualifier (COMPILE), A-36
WARNINGSqualifier (LOAD), A-117
WARNINGSqualifier (RECOMPILE), A-140

TERMINATED debugger event name, 7-31

TERMINATEDtask state, 7-14
TIME keyword

default values of /OPTIMIZE options for, A-—11,

A-32, A-136
/OPTIMIZE qualifier (ADA), A-8

/OPTIMIZE qualifier (COMPILE), A-29
/OPTIMIZE qualifier (RECOMPILE), A-133

Time slicing
debugging programsinvolving, 7-36

TIME_SLICE pragma
dependences caused by, 5-43
effect on debugging tasking programs, 7-36
obtaining information on, A-—-163
setting new value of/with debugger, 7-37

target dependences of, 5—45
/TIME_SLICE qualifier

SET TASK command (debugger), 7-24, 7-37
SHOW TASK command (debugger), 7-19

TITLE pragma
effect on compilerlisting, 3-26

Tokens (LSE), C-3
commands for manipulating, C—4

deleting, C—5
expanding, C-—3, C-—5
obtaining list of, C—5
restoring, C—5

Traceback
effect of /DEBUG qualifier on linker, 6-5

TRACEBACKkeyword
/DEBUG qualifier (ADA), A-6
/DEBUG qualifier (COMPILE), A-26

/DEBUG qualifier (RECOMPILE), A-131

~ [TRACEBACKqualifier
LINK command (ACS), 4~-9, A-104

Tracepoints (debugger)
definition of, 6-20
GO command and, 6-14
interaction with breakpoints, 6—18, 6-20
setting on handled exceptions and exception

handlers, 6-28
setting on package specifications and bodies,

6-25
setting on task bodies, entry calls, accept

statetments, 7-27
setting on tasks, 7-25

TYPE command(debugger), 6-8
Type conversions

debugger support for, 6-39
TYPE keyword

/SYMBOL_CLASSqualifier (FIND), C-—25
/TYPE qualifier

SHOW SYMBOL command (debugger), 6-31,
6-36

Types

See Data types and individual types by name

U

UAF parameters, E-8

See also individual parameters by name
UNBOUNDkeyword

/SYMBOL_CLASSqualifier (FIND), C-—25
UNCHECKED_CONVERSION(predefined function),

5-41

UNCHECKED_DEALLOCATION(predefined

procedure), 5-40 |
/UNITS qualifier

SHOW LIBRARY command (ACS), A-161

Universal expressions

debugger support for, 6-39
User Authorization File parameters

See UAF parameters
User-defined operators

debugger support for, 6-38
/USERLIBRARY qualifier

LINK command (ACS), 4-7, A-104
/USE_CLAUSEqualifier

SHOW SYMBOL command (debugger), 6-71

V
VARIABLE keyword

/SYMBOL_CLASSqualifier (FIND), C—25
Variables

determining storage representation of, 6-31
displaying in debugger, 6-30
monitoring with debugger, 6-21
nonstatic, 6-23

static, 6-23
Variant parts

examples of debugging, 6-50
VAX Ada

See also Program development environment
accounting for differences from VAXELN Ada,

5-43
effect of new release or update on program libraries

or sublibraries, 5-36
getting started with, 1-2

integration with other VAX tools, 5-10

new and changedfeatures for Version 2.0, xxi
notes on debuggersupport for, 6—34
predefined units, 2-20
problem reporting for, |—1

VAX DEC/Code Management System

See CMS
VAX DEC/Test Manager

see DEC/Test Manager
VAXELN Ada

accounting for differences from VAX Ada, 5-43
VAXELN_SERVICES package

dependences caused by, 5-43
VAX Information Architecture, 1-2
VAX Language-Sensitive Editor

See LSE
VAX Performance and Coverage Analyzer

See PCA
VAX Source Code Analyzer

See SCA

VERIFY command (ACS), 1-14, 5-32, A-172 to
B-1

and read-only program libraries, 2-7
default qualifiers for, A-172

exclusive access required for, 5-34

library error conditions checked by, 5-32
program library access required by, 5-23
repairing programlibraries after network failure

with, 5-20

wildcards allowed with, A-172
VIEW CALL_TREE command (SCA), C-—27
Virtual addresses

obtaining with debugger, 6-41

Index—29

Virtual address space
during Ada compilation, E-7

Virtual memory usage, E-10
VIRTUALPAGECNTparameter (SYSGENparameter),

E-11
recommended value for VAX Ada, E-11

NISIBLE ©
SET TASK command (debugger), 7-11

VISIBLE keyword
/DECLARATIONSqualifier (FIND), C-—23
/REFERENCESqualifier (FIND), C—24

/VISIBLE qualifier
SET TASK command (debugger), 7-24

%VISIBLE_TASK debugger pseudotask name, 7-10,

7-11

VMS Debugger

See Debugger

W

WAIT qualifier
COMPILE command (ACS), 3-20, A-35
LINK command (ACS), 4-9, 4-10, A-—105
LOAD command (ACS), A-113
RECOMPILE command (ACS), 3-20, A-139

Warnings
during compilation, D-3

WARNINGS keyword
WARNINGSqualifier (ADA), A-13
WARNINGSqualifier (COMPILE), A-36
WARNINGSqualifier (LOAD), A-118
/WARNINGSqualifier (RECOMPILE), A-140

WARNINGSqualifier
ADA command (DCL), A-12
compilation commands, 3-24

COMPILE command (ACS), A-35
controlling informational and warning messages

with, 3-24

defaults for (ADA), A-13
defaults for (COMPILE), A-36
defaults for (LOAD), A-118
defaults for (RECOMPILE), A-140
LOAD command (ACS), A-117
possible code values for, 3-24
RECOMPILE command (ACS), A-—-139

Watchpoints (debugger)

canceling, 6—22
conditionalizing, 6-22
definition of, 6-21
displaying, 6-22

GO command and, 6-14

Index—30

Watchpoints (debugger) (cont’d.)

in tasking programs, 7-26, 7-37

on static and nonstatic variables, 6-23
setting on nonstatic variables, 6-23

WEAK_WARNINGSkeyword
WARNINGSqualifier (ADA), A-13

WARNINGSqualifier (COMPILE), A-36

_ WARNINGSqualifier (LOAD), A-118
WARNINGSqualifier (RECOMPILE), A-140

WEAK_WARNINGS messages, 3-24

Wildcards
in ACS commands, 2-10

in debugger commands, 6-69
in SCA commands, C-—20

with clauses
and closure of a set of compilation units, 1-25
and obsolete units, 1-20
and order of compilation, 1-23

Working directory
creating a, 1-5
definition of, 1-5

Working set
effect on compilation rate, E-3
effect on paging rate, E-3
setting size of for compilation, E-1
suggestions for controlling during compilation, E-—-5

WRITE keyword
/REFERENCESqualifier (FIND), C—23

WSEXTENTparameter (SYSGEN), E-12

WSMAX parameter (SYSGEN), E-13
recommended value for VAX Ada, E-13

WSQUOTAparameter (SYSGEN), E-12
recommended value for VAX Ada, E-12

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs,call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephoneand Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal?

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMO/E15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Developing Ada Programs on VMS Systems
AA-EF86B-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem andareeligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual’s: Excellent Good Fair Poor

Accuracy (software works as manual says) O LJ LJ CI

Completeness (enough information) CO O LJ C

Clarity (easy to understand) LI O a) LJ

Organization (structure of subject matter) C C] L a)

Figures (useful) CJ O O LJ

Examples (useful) LJ CL C CJ

Index (ability to find topic) | CL) C) C CL)

Page layout (easy to find information) LJ LJ O C

I would like to see more/less

WhatI like best about this manual is

WhatI like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.
Name/Title Dept.

Company Date

Mailing Address

Phone

SOSHR80"

—— Do Not Tear - Fold Here and Tape _-— | |

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
Z2K01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

-—— Do Not Tear - Fold Here —— —

No Postage

Necessary

if Mailed

in the

United States

So

ee

ee

ae

ae

SE

as

Se

ee

ae

“
U
i
n
e t

A
l
o
n
g
D
o
t
*

Reader’s Comments Developing Ada Programs on VMS Systems
AA-EF86B-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem andareeligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual’s: Excellent Good Fair Poor

Accuracy (software works as manual says) LJ CJ L CI

Completeness (enough information) O C] L CO

Clarity (easy to understand) O C C CO

Organization (structure of subject matter) CJ OJ L ‘=

Figures (useful) OJ CJ C LJ

Examples (useful) UO LI LJ LJ

Index (ability to find topic) C CO L O

Page layout (easy to find information) LJ CJ C) LJ

I would like to see more/less

WhatI like best about this manual is

WhatI like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.
Name/Title Dept.

Company Date

Mailing Address

Phone

SOSHR80"

-—— Do Not Tear - Fold Here and Tape _-—- ——

——-— Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

No Postage

Necessary

if Mailed

in the

United States

SE
ae

a

as

ae

a

Pe

Pe

Pe

ae

~“
o
p
a
e
e
e
e
e
e
e

a
n
s

 L
i
n
e

 ut
A
l
o
n
g
D

ifaliftlalt

	Cover
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	A-71
	A-72
	A-73
	A-74
	A-75
	A-76
	A-77
	A-78
	A-79
	A-80
	A-81
	A-82
	A-83
	A-84
	A-85
	A-86
	A-87
	A-88
	A-89
	A-90
	A-91
	A-92
	A-93
	A-94
	A-95
	A-96
	A-97
	A-98
	A-99
	A-100
	A-101
	A-102
	A-103
	A-104
	A-105
	A-106
	A-107
	A-108
	A-109
	A-110
	A-111
	A-112
	A-113
	A-114
	A-115
	A-116
	A-117
	A-118
	A-119
	A-120
	A-121
	A-122
	A-123
	A-124
	A-125
	A-126
	A-127
	A-128
	A-129
	A-130
	A-131
	A-132
	A-133
	A-134
	A-135
	A-136
	A-137
	A-138
	A-139
	A-140
	A-141
	A-142
	A-143
	A-144
	A-145
	A-146
	A-147
	A-148
	A-149
	A-150
	A-151
	A-152
	A-153
	A-154
	A-155
	A-156
	A-157
	A-158
	A-159
	A-160
	A-161
	A-162
	A-163
	A-164
	A-165
	A-166
	A-167
	A-168
	A-169
	A-170
	A-171
	A-172
	A-173
	A-174
	A-175
	A-176
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	E-9
	E-10
	E-11
	E-12
	E-13
	E-14
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	F-9
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	F-25
	F-26
	F-27
	F-28
	F-29
	F-30
	F-31
	F-32
	F-33
	F-34
	F-35
	F-36
	F-37
	F-38
	F-39
	F-40
	F-41
	F-42
	F-43
	F-44
	F-45
	F-46
	F-47
	F-48
	F-49
	F-50
	F-51
	F-52
	F-53
	F-54
	F-55
	F-56
	F-57
	F-58
	F-59
	F-60
	F-61
	F-62
	F-63
	F-64
	F-65
	F-66
	F-67
	F-68
	F-69
	F-70
	F-71
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	H-1
	H-2
	H-3
	H-4
	H-5
	H-6
	H-7
	H-8
	H-9
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	I-1
	I-2
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Index-9
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Index-30
	Additional Documentation
	Comments
	Back

