lilgliltiall

VAXELN Internals Manual

Order Number: AA-NC72A-TE

This manual describes the internal data structures and operations of the VAXELN
Kernel and its associated subsystems.

This is a preliminary version of the VAXELN Internals Manual. The complete
edition of the manual is forthcoming and can be ordered separately.

Revision/Update Information: This is a new manual.

Software Version: VAXELN, Version 4.0

digital equipment corporation
maynard, massachusetts

First Printing, July 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software, if any, described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license. No
responsibility is assumed for the use or reliability of software or equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1989. All rights reserved.

Printed in U.S.A.

The READER'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVMS ULTRIX-32m
DECmate P/OS UNIBUS
DECnet PDP VAX
DECsystem—10 PDT VAX DEC/CMS
DECSYSTEM-20 Professional VAX DEC/MMS
DECUS Q-bus VAX Rdb/ELN
DECwriter Q22-bus VAX Rdb/VMS
DEQNA Rainbow VAXBI

DEUNA RSTS VAXcluster
DIBOL RSX VAXELN
EduSystem RT VAXstation

1AS rtVAX 1000 VMS
MASSBUS ThinWire VT

MicroVAX ULTRIX Work Processor

lilgliltlal |

MLO-S913

This document was prepared using VAX DOCUMENT, Version 1.1.

Contents

PREFACE xxi
CHAPTER 1 OVERVIEW: THE ROLE OF THE VAXELN KERNEL 1-1
1.1 KERNEL STRUCTURE AND OPERATION 1-2
1.2 FUNCTIONS PROVIDED BY THE KERNEL 14
1.2.1 VAXELN System Image 14
1.2.2 System Initialization 1-5
1.2.3 Jobs and Processes 1-5

1.24 Software Interrupts, Kernel Synchronization, and Time
Services 1-6
1.2.5 Condition Handling 1-6
1.2.6 Error and Event Reporting 17
127 Kernel Procedure Dispatching 1-7
1.2.8 Memory Management 1-7
1.2.9 Object Management 1-8
1.2.10 Job and Process Scheduling 1-9
1.2.11 Job and Process Synchronization 1-10
1.2.12 Device Handling 1-10
1.2.13 Interjob Communication 1-1
13 NOTES ON THE KERNEL AND THE VAX HARDWARE 1-12
CHAPTER 2 THE VAXELN SYSTEM IMAGE 2-1
2.1 ROLE OF THE SYSTEM BUILDER 2-2

2.2 SYSTEM IMAGE HEADER

2-8

v

23 KERNEL IMAGE: VECTORS, DATA, PARAMETERS, AND CODE

2.3.1 Kernel Vectors
2.3.2 Kernel Date
233 Kernel Parameters

2.3.4 Kernel Code

24 PROGRAM IMAGES

24.1 Data Structures for image Processing
24141 Program Descriptors and the Program
List « 2-16

2412 VMS Image Structures Used in image
Processing ¢ 2-21

2413 Kernel Section Descriptors for Program
Images * 2-25

2.4.2 Processing Program Images

2421 Processing 1SDs of Type
ISD$K_USRSTACK - 2-28

2422 Processing ISDs of Type
ISD$K_SHRPIC - 2-28

2423 Processing 1SDs of Type
ISD$K_NORMAL - 2-29

24231 ISDs with No Applicable Flags Set —
Code Sections * 2-29

24232 ISDs with the ISD$V_DZRO Flag Set —
Demand-Zero Sections ¢ 2-30

24233 ISDs with the ISD$V_WRT and

ISD$V_CRF Flags Set — Data
Sections ¢ 2-30

24234 ISDs with the 1ISD$V_FIXUPVEC Flag Set
— Fixup Vector Sections * 2-30

25 DEVICE LIST

26 SHAREABLE IMAGES
2.6.1 Data Structures for Shareable Image Processing

26.141 Shareable Image Descriptors and the
Shareable Image Table * 2-36

2.6.1.2 Kernel Section Descriptors for Shareable
Images * 2-38

26.1.3 VMS Image Structures Used in Shareable
Image Processing * 2—41

2-8
2-10
2-12
2-12
2-13

2-14
2-15

2-27

2-31

2-33

26.2 Processing Shareable Images 2-42
2.6.2.1 Creating Shareable Image Descriptors and

KSDs « 2—44

2.6.2.1.1 No Applicable Flags Set — Shareable
Code Sections * 2-46

2.6.2.1.2 ISD$V_WRT and ISD$V_CRF Flags Set
— Data Sections * 2-47

2.6.2.1.3 ISD$V_WRT Flag Set and ISD$V_CRF
Clear — Shareable Data Sections « 247

2.6.2.1.4 ISD$V_FIXUPVEC Flag Set — Fixup
Vector Sections * 2-48

2.6.2.1.4.41 Shareable Images Without Writeable

Sections » 2—49
2.6.2.1.4.2 Shareable Images with Writeable

Sections * 249
2622 Address Relocation Fixup * 2-52
2.6.3 A Shareable Image Example 2-55

CHAPTER 3 SYSTEM BOOTSTRAP, KERNEL INITIALIZATION, AND

APPLICATION START-UP 3-1

3.1 PRIMARY BOOTSTRAP: VMB 3-2
3.2 SECONDARY BOOTSTRAP: INITIALIZING THE KERNEL 3-6
3.21 Processor-Specific Factors 3-10

3.2.2 Unmapped Initialization 3-1

3.2.21 Step 1 — Find the First Writeable Page and
Copy ROM Data » 3-12

3.22.2 Step 2 — Initialize the Console * 3—14

3.223 Step 3 — Initialize the Boot-Time SCB ¢ 3-14

3224 Step 4 — Determine the Processor
Type « 3-15

3225 Step 5 — Copy Parameters to the Data
Block = 3-16

3226 Step 6 — Initialize the PFN Bitmap * 3-16

3227 Step 7 — Compute the Sizes of System Data
Structures « 3-16

3228 Step 8 — Initialize the System Page Table and
Map Existing Components ¢ 3-19

3.23 Enabling Memory Management 3-22

3.24 Mapped Initialization
3.2441 Step 1 — Switch Execution to the Interrupt
Stack « 3-28
3.24.2 Step 2 — Initialize the Machine-Check Data
Block » 3-28

3.24.3 Step 3 — Initialize the SCB « 3-28

3.244 Step 4 — Configure I/O Address Space * 3—30

3.245 Step 5 — Initialize Processor-Specific and
Console Registers « 3-31

3.2.4.6 Step 6 — Create and Map Remaining System
Structures * 3-31

3.24.7 Step 7 — Initialize Scheduler and Job
Queues * 3-34

3.2.48 Step 8 — Create the Start-Up Job » 3-34

3249 Step 9 — Announce the System ¢ 3-36

3.24.10 Step 10 — Start the Interval Clock « 3-36

3.2.4.11 Step 11 — Log the System Start-Up 3-36

3.2.4.12 Step 12 — Begin Job Scheduling « 3-36

3-27

33 APPLICATION START-UP: THE START-UP JOB 3-37
3.3.1 Creating Jobs Sequentially 3-37

3.3.2 Job Initialization and KERSINITIALIZATION_DONE 3-40
CHAPTER 4 JOB AND PROCESS CREATION AND DELETION 4-1
4.1 PROCESS EXECUTION ENVIRONMENT 4-3
42 JOB AND PROCESS DATA STRUCTURES 4-3
4.2.1 Job Control Block 4-6

4.2.2 Process Control Block 4-11

4.2.3 Process Hardware Context Block 4-16

43 JOB AND PROCESS VIRTUAL MEMORY 4-20
4.3.1 Job Virtual Address Space 4-20

4.3.2 Process Virtual Address Space 4-23

44 JOB CREATION 4-26

vi

4.4.1 Phase 1: Creating Minimal Job and Master Process
Context 4-27
4411 Step 1 — Verify Call Arguments = 4-28
4412 Step 2 — Create the Job Control Block ¢ 4-29
4413 Step 3 — Create Object Management
Structures * 4-32
4414 Step 4 — Initialize JCB Fields for PO Memory
Management « 4-33
4415 Step 5 — Create the Master Process ¢ 4-33
4416 Step 6 — Create the Job's Job Port *+ 4-35
4417 Step 7 — Allocate the PO Page Table for
KA620-Based Systems « 4-36
4418 Step 8 — Initiate a Scheduling Pass * 4-36
4.4.2 Phase 2: Finishing Creation of the Job Environment 4-36
4421 Step 1 — Allocate the Process Stacks ¢ 4-37
4422 Step 2 — Map the Job's Image
Sections * 4-37
4423 Step 3 — Store the Job’s Program Arguments
for Jobwide Access * 4-40
4424 Step 4 — Begin Program Execution * 4-40

4.4.3 Phase 3: Entering the Program Code 4-41
PROCESS CREATION 4-42
4.5.1 Phase 1: Creating Minimal Process Context 4-43

45.11 Step 1 — Verify Call Arguments « 4—44

4512 Step 2 — Create the Process Control
Block * 4-45

4513 Step 3 — Create the Process Hardware
Context Block « 4-46

451.4 Step 4 — Allocate a P1 Page Table * 448

45.1.5 Step 5 — Allocate the First Page of Kernel

Stack « 4-49
45.1.6 Step 6 — Enter the PCB into the Job's Object
Table « 449
4517 Step 7 — Initiate a Scheduling Pass « 449
4.5.2 Phase 2: Finishing Creation of the Process
Environment 4-50

4521 Step 1 — Allocate the Process Stacks * 4-50
4522 Step 2 — Begin Program Execution « 4-51

453 Phase 3: Entering the Process Code 4-52
JOB AND PROCESS EXIT AND DELETION 4-53
4.6.1 Process Deletion 4-55

vil

4.6.2 Master Process Deletion 4-56

CHAPTER 5 SOFTWARE INTERRUPTS, KERNEL SYNCHRONIZATION, AND

TIME SUPPORT 5-1
5.1 SOFTWARE INTERRUPTS 5-2
5.1.1 Software Interrupt Mechanism 5-3
5.1.2 VAXELN Software Interrupt Service Routines 5-3
5.2 KERNEL SYNCHRONIZATION 5-5
5.2.1 Iinteriocked Instructions 5-6
5.2.2 Elevated IPL 5-6
5.23 Spinlocks 5-8
5.24 Interprocessor Interrupts 5-10
53 TIME SUPPORT 5-11
5.3.1 Interval Clock 5-12
53.2 Timekeeping Under VAXELN 5-14
533 Timer Queue and Timer Wait Control Blocks 5-15
5.3.4 Interval Ciock Interrupt Service Routine 5-16
5.3.5 Software Timer Interrupt Service Routine 5-18
5.3.6 Time-Related Kernel Procedures 5-19

5.3.6.1 KERS$SET_TIME - 520

5.3.6.2 KER$GET_TIME - 5-22

5.3.6.3 KER$GET_UPTIME « 5-22

CHAPTER 6 CONDITION HANDLING 6-1
6.1 CONDITIONS DETECTED BY HARDWARE AND SOFTWARE 6-2
6.2 DATA STRUCTURES FOR CONDITION HANDLING 6-3
6.2.1 Call Frames 64
6.2.2 Condition-Handler Argument List 6-7
6.2.3 Signal Arrays 6-8
6.24 Mechanism Arrays 6-10

vill

6.3

64

6.5

6.7

EXCEPTION CONDITIONS

6.3.1
6.3.2

initial Processor Actions

initial Kernel Actions

6.3.2.1 Access Control Violation Exceptions « 616
6.3.2.2 Arithmetic Exceptions * 6-17

6.3.2.3 Kernel-Stack-Not-Valid Exceptions « 6-18
6.3.24 Reserved Instruction Exceptions » 6-19

SOFTWARE CONDITIONS

ASYNCHRONOUS EXCEPTION CONDITIONS

6.5.1

6.5.3
6.5.4

Data Structures and Hardware Features for
Asynchronous Exceptions

6.5.1.1 REI Instruction » 6-22

6.5.1.2 ASTLVL Register « 6-22

6.5.1.3 Hardware Context Block * 6-23

6.5.1.4 Process Control Block « 6-24

Uses of Asynchronous Exception Conditions
6.5.2.1 Process Signal Exception « 6-25

6.5.22 Process Attention Signal Exception * 6-26
6.5.2.3 Power-Failure Exception 6-26

6.5.24 Debugger HALT Command * 6-26
Requesting an Asynchronous Exception
Delivering an Asynchronous Exception: The IPL 2
interrupt

Disabling and Enabling Asynchronous Exceptions

UNIFORM CONDITION DISPATCHING

6.6.1
6.6.2
6.6.3

6.6.4

Bullding the Mechanism Array and Argument List
Reflecting the Condition Back to the Originator’s Mode
Dispatching the Condition

6.6.3.1 Establishing a Condition Handler » 6-39
6.6.3.2 Searching the Call Stack « 6-40

6.6.3.3 Dealing with Multiple Active Signals » 6—41
Dealing with Unhandled Conditions

6.6.4.1 Calling the Last-Chance Handler « 6-46
6.6.4.2 Forcing Process Exit « 646

CONDITION HANDLER ACTIONS

6.7.1

Continuing or Resignaling

6-12
6-12
6-15

6-19

6-20

6-21

6-25

6-27

6-28

LELE

6-47

Ix

6.7.2

Unwinding the Call Stack: KER$UNWIND

6.7.2.1 Interface to KERSUNWIND « 6-48
6.7.2.2 A Sample Unwind ¢ 6-50

6.7.2.3 Unwinding Multiple Active Signals » 6-54

CHAPTER 7 ERROR AND EVENT REPORTING

71

7.2

ERROR LOGGING SUBSYSTEM

7.1.1

7.1.2

7.1.3

Errors and Events Reported by the Error-Logging

Subsystem

Components of the Error-Logging Subsystem

7.1.21 Error-Logging Data Structures * 7-4

71211 Error Message Buffers « 7-5

74.21.2 System Data ltems « 7-7

7122 Kernel Error-Logging Components « 7-8

7123 ERRFORMAT Job » 7-9

7124 System Dump Facility « 7-9

7125 Error-Logging Server « 7-10

Error-Logging Operation

7.1.3.1 Posting an Error or Event « 7-10

7.1.3.11 Posting Error-Log Entries from
Kernel Level: KER$ALLOCEMB and
KER$RELEASEMB ¢ 7-11

71312 Posting Errors and Events from Job Level:

KER$POST_ERRORLOG -« 7-12
7.1.3.2 Awakening the ERRFORMAT Job with
KER$WAKEUP » 7-13
7.1.33 Operation of the ERRFORMAT Job « 7-14

BUGCHECK HANDLING

MACHINE-CHECK HANDLING

7.3.1
7.3.2

Machine-Check Handiers

Machine-Check Recovery:
KER$MACHINECHK_PROTECT

7-1

7-1

7-2
7-4

7-10

7-16

7-18
7-19

7-20

CHAPTER 8 KERNEL PROCEDURES AND PROCEDURE DISPATCHING 8-1
8.1 KERNEL VECTORS AND PROCEDURE ENTRY POINTS 8-2
8.2 DISPATCH TO PROCEDURES THAT EXECUTE IN KERNEL MODE 8-5
83 DISPATCH TO PROCEDURES THAT EXECUTE IN THE CALLER’S

MODE 8-9
8.3.1 Routines Invoked with a CALL Instruction 8-10
8.3.2 Routines Invoked with a Subroutine Instruction 8-11
8.4 RETURN OF KERNEL PROCEDURE VALUES AND STATUS 8-13
8.4.1 Return of Procedure Values 8-14
8.4.2 Return of Status Values 8-15
8.5 CHANGE-MODE SERVICE FOR USER-MODE JOBS —
KERS$SENTER_KERNEL_CONTEXT 8-17
CHAPTER 9 MEMORY MANAGEMENT AND DYNAMIC ALLOCATION 9-1
9.1 MEMORY MANAGEMENT DATA STRUCTURES 9-2
9.1.1 Allocation Bitmaps and Bitmap Descriptors -3
9.1.2 Page Tables and Page Table Entries 9-7
9.1.2.1 VAXELN Page Tables * 97
8.1.2.1.1 SO Page Table * 9-7
9.1.2.1.2 PO Page Tables « 9-8
9.12.1.3 P1 Page Tables « 9-12
9.1.22 VAXELN Page Table Entries « 9-15
9.1.3 System, Job, and Process Structures 9-18
9.1.3.1 System Memory Management
Structures » 9-18
8.1.3.2 Job Memory Management Structures » 9-20
9.1.3.3 Process Memory Management
Structures * 9-21
9.2 ALLOCATING PHYSICAL MEMORY 9-23

xi

93 ALLOCATING VIRTUAL MEMORY 9-24
9.3.1 Allocating System Virtual Memory 9-25
9.3.1.1 KER$ALLOCATE_REGION and
KER$FREE_REGION Subroutines « 9-26
9.3.1.2 KER$ALLOCATE_SYSTEM_REGION and
KER$FREE_SYSTEM_REGION Kernel
Procedures * 929
9.3.2 Aliocating User Virtual Memory 9-31
9.3.2.1 Allocating and Dealiocating User Page Table
Entries « 9-32
9.3.2.2 Allocating User Memory Under Program
Control: KER$ALLOCATE_MEMORY - 9-37
9.4 ALLOCATING SYSTEM POOL 942
9.4.1 Initializing System Pool 943
9.4.2 Allocating and Deallocating Pool Blocks 9-43
CHAPTER 10 KERNEL OBJECTS AND THEIR MANAGEMENT 10-1
10.1 CREATING, MANAGING, AND DELETING KERNEL OBJECTS 10-2
10.1.1 Structures and Data for Managing Kernel Objects 10-3
10.1.1.1 Jobwide Data ltems « 104
10.1.1.2 Base Table « 104
10.1.1.3 Object Pointer Tables « 10-6
10.1.1.4 Object Identifiers « 108
10.1.1.5 Kernel Object Structures * 10-12
10.1.2 Creating Kernel Objects 10-14
10.1.3 Translating Object Identifiers 10-18
10.1.4 Deleting Objects 10-21
10.1.4.1 Deleting an Individual Kernel Object * 1022
10.1.42 Deleting Object Structures at Job Exit « 10-25
102 CREATING, MANAGING, AND DELETING PORT OBJECTS 10-26
10.2.1 Structures for Managing Port Objects 10-27

xli

10.2.1.1 Systemwide Data ltems * 10-28
10.2.12 Port Address Table « 10-28
10.2.1.3 Port Object Identifiers « 10-30
10.2.1.4 Port Object Structure * 10-33
10.2.1.5 Job Port Queue » 10-34

10.2.2 Creating Port Objects 10-34
10.2.3 Translating Port Object Identifiers 10-39
10.24 Deleting Port Objects 10-42
10.2.4.1 Deleting an Individual Port Object » 10-42
10.24.2 Deleting Port Objects at Job Exit = 10-43
CHAPTER 11 JOB AND PROCESS SYNCHRONIZATION 11-1
1.1 DATA STRUCTURES FOR JOB AND PROCESS SYNCHRONIZATION 11-3
11.1.1 Walt Control Block 114
11.1.2 Process Control Block 11-9
1.1.3 Kernel Objects 11-10
11.1.3.1 Event Object * 11-10
11.1.3.2 Semaphore Object » 11-13
11.1.3.3 Process Object » 11-17
11.1.3.4 Area Object » 11-17
11.1.3.5 Port Object » 11-18
11.1.3.6 Device Object » 11-19
11.1.4 KERS$SWAIT Kernel Vectors 11-20
11.1.5 Timer Queue 11-21
11.2 KERSWAIT PROCEDURES 11-22
11.2.1 Step 1 — Enter the Procedure 11-23
11.2.2 Step 2 — Establish WCBs for the Wait 11-23
11.23 Step 3 — Establish the Timer WCB 11-25
11.24 Step 4 — Save the Address of the First WCB 11-26
11.2.5 Step 5 — Test the Wait Conditions 11-26
11.2.6 Step 6 — Test for a Pending Asynchronous Exception 11-27
127 Step 7 — Insert the WCBs Into Wait Queues 11-28
11.2.8 Step 8 — Remove the Process from Execution 11-30
11.3 SATISFYING A PROCESS WAIT 11-31
11.3.1 KER$SIGNAL Procedure 11-32
11.3.1.1 Signaling an Area Object * 11-33
11.3.1.2 Signaling an Event Object « 11-34
11.3.1.3 Signaling a Process Object * 11-35
11.3.1.4 Signaling a Semaphore Object « 11-36
11.3.2 KER$SIGNAL_DEVICE 11-36

11.3.3 Kernel Subroutines to Support Object Signaling 11-39
11.3.3.1 KERS$TEST_WAIT » 11-39
11.3.3.2 KERS$SATISFY_WAIT « 1141
11.3.3.3 KERSUNWAIT - 1142
APPENDIX A KERNEL PARAMETERS AND DATA A-1
A1 KERNEL PARAMETERS A-1
A2 KERNEL DATA A-3
APPENDIX B KERNEL DATA STRUCTURES B-1
B.1 ACB — AREA CONTROL BLOCK B-1
B.2 ADP — ADAPTER CONTROL BLOCK B-5
B.3 ARA — AREA OBJECT B-7
B.4 BMP — ALLOCATION BITMAP DESCRIPTOR B-9
BS5 DEV — DEVICE OBJECT B-9
B.6 EMB — ERROR-LOGGING MESSAGE BUFFER HEADER B-14
B.7 ERL — EMB RECORD HEADER B-15
B.8 EVT — EVENT OBJECT B-16
B.9 IDB — INTERRUPT DISPATCH BLOCK B-16
B.10 KSD — KERNEL SECTION DESCRIPTOR B-20

xiv

B.11

B.12

B.13

B.14

B.15

B.16

B.17

B.18

B.19

B.21

B.22

B.23

B.24

MSG — MESSAGE OBJECT

NAM — NAME OBJECT

NETCON — NETWORK CONNECTION MESSAGE

NS — NAME SERVICE REQUEST MESSAGE

JCB — JOB CONTROL BLOCK

JPB — JOB PARAMETER BLOCK

PCB — PROCESS CONTROL BLOCK

PRT — PORT OBJECT

PRG — PROGRAM DESCRIPTOR

PTX — PROCESS HARDWARE CONTEXT BLOCK

SCR — SYSTEM CONFIGURATION RECORD

SEM — SEMAPHORE OBJECT

SHT —~ SHAREABLE IMAGE DESCRIPTOR

WCB — WAIT CONTROL BLOCK

B-21

B-24

B-26

B-28

B-30

B-31

B-31

B-37

B-37

INDEX Index-1

FIGURES

2-1 VAXELN System image 2-5
2-2 Program List and Program Descriptors 2-19
2-3 Structure of a VMS Image 2-22
24 General Structure of a VMS ISD 2-23
2-5 Structure of a Private KSD 2-25
2-6 Structure of a Shareable KSD 2-38
2-7 Structure of a Global KSD 2-40
2-8 A Global KSD Refers to Shareable KSDs 2-40
2-9 Structure of an Image Fixup Vector 2-43
2-10 Multiple Fixup Vectors in Writeable Shareable images _________ 2-50
2-11 Multiple .ADDRESS Sections in Writeable Shareable images 2-52
3-1 State of Physical Memory After VMB Executes 33
3-2 Mapping of the SO Region by the Kernel 3-7
33 Kernel Code That Enables Memory Management 3-23
3-4 Enabling Memory Management Through the Temporary PO Page

Table, Part 1 3-24
3-5 Enabling Memory Management Through the Temporary PO Page

Table, Part 2 3-25
3-6 Relationship Between the SCB and the Unexpected-Event Dispatch

Block 3-30
4-1 Execution Context of a Process a4
4-2 Structure of a Job Control Block 4-7
4-3 Structure of a Process Control Block 4-13
44 Structure of a Process Hardware Context Block 4-18
4-5 Structure of PO Virtual Memory 4-21
4-6 Structure of P1 Virtual Memory 4-24
5-1 General Layout of a VAX SCB 5-2
5-2 Timer Queue 5-17
6-1 VAX Call Frame for CALLG and CALLS 6-5
6-2 Condition-Handler Argument List 6-7
6-3 Signal Array 6-9
64 Mechanism Array 6-11

xvi

6-5 Condition Stack 6-37
6-6 Locating and Calling a Condition Handler 6-38
6-7 Common Call Site for Condition Handlers 641
6-8 Modified Search with Multiple Active Signals, Part1 ____ = 6-44
6-9 Modified Search with Multiple Active Signals, Part2 _________ 645
6-10 Call Frame Modification by KER$UNWIND 6-51
6-11 Modified Unwind with Multiple Active Signals 6-55
7-1 The Use of KERSMACHINECHK_PROTECT 7-21
8-1 Structure of a Kernel Vector 83
8-2 Control Flow in Dispatching Kernel Procedures That Use Kernel

Mode 8-7
8-3 CHMK Dispatch — KER$KERNEL_SERVICES 8-8
84 Structure of a Kernel Vector for Caller-Mode Procedures Invoked

with a CALL Instruction 8-10
8-5 Control Flow in Dispatching Kernel Procedures That Use the

Caller’s Mode: CALL Invocation 8-12
8-6 Structure of a Kernel Vector for Caller-Mode Procedures Invoked

with a Subroutine Instruction 8-13
8-7 Control Flow in Dispatching Kernel Routines That Use the Caller’s

Mode: Subroutine Invocation 8-14
8-8 Common Procedure Exit Code: KERSRETURN_STATUS _____ 8-16
8-9 KERS$SENTER_KERNEL_CONTEXT Procedure 8-18
9-1 An Allocation Bitmap for 128 Pages of Memory 84
9-2 Structure of a Bitmap Descriptor -5
9-3 Layout of PO Page Table Slots -8
-4 Structure of a VAXELN Page Table Entry 9-15
10-1 Base Table 10-5
10-2 First Object Pointer Table, after Initialization 10-6
10-3 First Object Pointer Table after the Creation of Five Objects _ 10-8
104 Structure of an Object identifier 10-8
10-5 Formation of an Object Identifier 10-12
106 Structure of an Event Object 10-13
10-7 Creation of an Event Object 10-15
10-8 Kernel Object Management Structures after the Creation of 34

Objects 10-19
10-8 Kernel Object Translation with KERSTRANSLATE_OBJECT __ 10-21

xvil

xviii

10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
1-1
11-2
13
114
11-5
11-6

PITERE

B-7

B-10
B-11
B-12
B-13
B-14
B-15
B-16

Use of KERSTRANSLATE_OBJECT by KER$CLEAR_EVENT

Deleting an Object with KER$DELETE

Port Address Table

Structure of a Port Object Identifier

Creation of a Port Object
Port Address Table after the Creation of 3 Ports

Port Object Translation with KER$TRANSLATE_PORT
Use of KER$TRANSLATE_PORT by KER$RECEIVE
Structure of a Wait Control Block

Relationship of WCBs to the PCB

Structure of an Event Object

Structure of a Semaphore Object

Kernel Vector for KER$WAIT_ANY
Two Processes in the Waiting State

Structure of an Area Control Block

Structure of an Adapter Control Block

Structure of an Area Object

Structure of a Device Object
Structure of an Error-Logging Message Buffer Header
Structure of an EMB Record Header

Structure of an Interrupt Dispatch Block
Structure of a Message Object

Structure of a Name Object

Structure of a Network Connection Messsage

Structure of Name Service Request Messsage

Structure of a Job Parameter Block

Structure of a Port Object

Structure of a Program Descriptor

Structure of a System Configuration Record

Structure of a Shareable Image Table Entry

10-21
10-24
10-30
10-31
10-36
10-38
10-40
10-41
11-5
11-8
11-11
11-14
11-20
11-29
B-2
B-5

B-10
B-14
B-15
B-17
B-22
B-24
B-26

TABLES
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2

00 5 O 0 A O U A0 4 A 5 O S S

7-1
7-2

Elements of a System Image

VAXELN Kernel images

Program Descriptor Fields
Job Parameter Block Fields

Private KSD Fields

System Configuration Record Fields

Shareable Image Descriptor Fields

Shareable and Global KSD Fields

Characteristics of Shareable KSDs

KSDs and Image Sections for TEST.EXE

Bootstrap Elements in Memory After VMB Executes
System Components Mapped into SO Address Space
Job Control Block Fields

Process Control Block Fields

Process Hardware Context Block Fields

Job Components Mapped into PO Address Space
Process Components Mapped into P1 Address Space
VAXELN Software Interrupts and Service Routines

Common IPL Values Used by the Kernel for Synchronization _____

Kernel Spinlocks

Interprocessor Interrupts
Time-Related Kernel Values

Structure of a VAX Call Frame

Structure of the Condition-Handler Argument List

Structure of the Signal Array

Structure of the Mechanism Array
Selection of Exception Stack

VAX Exception Vectors Under VAXELN

Exceptions Serviced by Module EXCEPTION
Signal Names for Arithmetic Exceptions

EMB Header Fields

EMB Record Header Fields

2-6

2-8
2-16
2-18
2-26
2-31
2-36
2-39
2-46

LEeh

4-14
4-19
4-22
4-25

5-7

5-11
5-14

6-10
6-11
6-13
6-13
6-16
6-18

7-5

7-5

xix

7-3 Error-Log Entry Types and Their Values 7-6

7-4 System Data ltems That Support Error Logging 7-7
7-5 Machine-Check Recovery Function Masks 7-21
9-1 Bitmap Descriptor Fields 9-5
9-2 Bitmap Allocation Subroutines 9-6
9-3 VAXELN PTE Fields 9-15
a4 PTE Memory-Access Protection Codes 9-16
9-5 PTE Type Codes 9-17
9-6 Memory Management Data Stored in the Kernel Data Block 9-18
9-7 Job Memory Management Data Stored in the JCB 9-20
9-8 Process Memory Management Data Stored inthe PCB ______ 9-22
9-9 Process Memory Management Data Stored inthe PTX ___ 9-22
10-1 Bit Fields Within the Object Identifier 10-9
10-2 Assembly-Time Symbois Representing Object Identifier Bit Fields . 10-10
10-3 Kernel Constants That Identify Object Types 10-13
10-4 Bit Fields Within the Port Object Identifier 10-32
10-5 Assembly-Time Symbols Representing Port Identifier Bit Fields __ 10-33
11-1 WCB Fields 11-6
11-2 PCB Fields to Support Process Walting 11-9
11-3 Event Fields 11-12
114 Semaphore Fields 11-15
11-5 Walit Tests Performed by KERSTEST_WAIT 11-40
11-6 Changes to Objects Performed by KER$SATISFY WAIT ___ 1142
A-1 Kernel Parameters A-1
A-2 Kernel Data A3
B-1 Area Control Block Fieids B-3
B-2 Adapter Control Block Fields B-6
B-3 Area Fieids B-8
B-4 Device Object Fields B-11
B-5 interrupt Dispatch Block Fields B-18
B-6 Message Fields B-23
B-7 Name Fields B-25
B-8 Network Connection Message Fields B-27
B-9 Name Service Request Message Flelds B-28

B-10 Port Fields B-34

Preface

Manual Objectives

The VAXELN Internals Manual describes the data structures, algo-
rithms, and internal components of Version 4.0 of the VAXELN Kernel
and a number of its associated subsystems. The detailed information
presented in this manual should help VAXELN system designers and
programmers understand how a VAXELN system functions and how
best to take advantage of certain features of the VAXELN software.

There is no guarantee that any data structure or subroutine described
in this manual will remain the same in subsequent releases of the
VAXELN software. Therefore, the ultimate authority on how the kernel
or any other component of the system works is the source code for that
component.

Intended Audience

This manual is for VAXELN system architects and programmers who
understand VAXELN programming and the VAX architecture and

assembly language in depth and who need to understand the internal
implementation of the VAXELN Kernel and its associated subsystems.

Structure of This Document

xxii

The VAXELN Internals Manual contains the following chapters and
appendixes:

Chapter 1, Overview: The Role of the VAXELN Kernel, introduces
the internals of the VAXELN Kernel.

Chapter 2, The VAXELN System Image, describes the structure
and function of a VAXELN system image.

Chapter 3, System Bootstrap, Kernel Initialization, and Application
Start-Up, describes the kernel’s initialization and the start-up of
applications jobs.

Chapter 4, Job and Process Creation and Deletion, describes
the data structures and operations that support job and process
creation and termination.

Chapter 5, Software Interrupts, Kernel Synchronization, and Time
Support, describes the data structures and operations that support
the software interrupts, kernel synchronization, and time services.

Chapter 6, Condition Handling, describes the data structures and
operations that enable the kernel to detect, deliver, and handle
exceptions, asynchronous exceptions, and software conditions.

Chapter 7, Error and Event Reporting, describes the data structure
and operations that support error logging, machine-check handling,
and bugchecks.

Chapter 8, Kernel Procedures and Procedure Dispatching, describes
how the kernel dispatches calls to its procedure code.

Chapter 9, Memory Management and Dynamic Allocation, describes
the data structures and operations that support virtual address
translation and the allocation of physical and virtual memory.

Chapter 10, Kernel Objects and Their Management, describes the
data structure and operations that support the creation, use, and
deletion of kernel objects.

Chapter 11, Job and Process Synchronization, describes the data
structures and operations that enable processes to synchronize
their execution by waiting for kernel objects.

Appendix A, Kernel Parameters and Data, describes the System
Builder parameters and dynamic data used by the kernel.

Appendix B, Kernel Data Structures, summarizes the data struc-
tures manipulated by the kernel.

Associated Documents

In addition to the VAXELN Internals Manual, the VAXELN documen-
tation set contains the following guides and reference manuals:

VAXELN Release Notes. These notes describe enhancements made
to the last version of VAXELN, current restrictions, and additions
to documentation.

VAXELN Installation Guide. This manual describes the VAXELN
installation procedure.

Introduction to VAXELN. This manual surveys the features of the
VAXELN Toolkit, introduces VAXELN programming concepts and
practices, and illustrates the design, coding, building, and running
of a sample VAXELN application.

VAXELN Development Utilities Guide. This manual explains how
to use the VAXELN Host System Software and other utilities to
develop and run VAXELN applications.

VAXELN Run-Time Facilities Guide. This manual is a guide to
using the VAXELN Run-Time Software.

VAXELN Application Design Guide. This manual contains sample
VAXELN applications for use and reference in designing VAXELN
applications.

VAXELN Pascal Language Reference Manual. This manual de-
scribes the components of the VAXELN Pascal language and the
Pascal program-development process.

VAXELN Pascal Run-Time Library Reference Manual. This man-
ual describes the VAXELN Pascal interface to kernel and utility
procedures.

VAXELN C Run-Time Library Reference Manual. This manual is
a guide to C programming under VAXELN and describes the C
interface to kernel and utility procedures.

VAXELN FORTRAN Run-Time Library Reference Manual. This
manual is a guide to FORTRAN programming under VAXELN and
describes the FORTRAN interface to kernel and utility procedures.
VAXELN Guide to DECwindows. This manual describes how

to program and build dedicated, real-time applications that use
VAXELN and DECwindows software in concert.

xxili

¢ VAXELN Messages Manual. This manual describes the messages
issued by the VAXELN Toolkit. Each message description in-
cludes an explanation and, where applicable, a suggested recovery
procedure.

* VAXELN Master Index and Glossary. This index and glossary
include index entries and glossary terms for the manuals in the
VAXELN documentation.

The following documents are relevant to a discussion of VAXELN
internals and will enhance your understanding of the information
presented in this manual:

® VAX Procedure Calling and Condition Handling Standard. This
document, part of the VMS documentation, defines the standards
for all external interfaces that can be called from Digital’s sup-
ported, standard system software and all external procedure calls
generated by standard Digital language processors.

®* VMS Linker Reference Manual. This manual describes how the
VMS Linker works and how to use it.

® VAX Architecture Handbook. This handbook provides a detailed
technical description of the VAX architecture, including virtual
addresses, data representations, instruction formats, addressing
modes, interrupt schemes, and memory management.

* VAX Hardware Handbook. This handbook provides general tech-
nical information for the VAX hardware product line. It includes
descriptions and specifications for the VAX processors, data storage
systems and devices, VAXcluster configurations, and communication
products.

* VAX/VMS Internals and Data Structures. This book describes in
detail the operation of the VMS operating system executive and its
associated subsystems.

xxiv

Conventions

The following conventions are used throughout this manual:

Convention

Meaning

kernel

module

data structures

<15:56>

The term kernel refers to the VAXELN Kernel, the real-
time executive software that enables VAXELN systems
to execute. In some usages, the term refers to the
kernel’s image file, such as QBUSKER.EXE. In others,
it refers to the characteristics or actions of a procedure,
subroutine, or service routine that resides within the
kernel image portion of a VAXELN system image and is
mapped into system virtual address space at run time.

The term module refers to a VAXELN system source
file. A module name that appears without a facility
name prefix ([facility]) is assumed to be a part of the
[KERNEL] facility. Modules that are not part of the
kernel are further identified by their facility names;
for example, module [DEBUGJLOCALNUC refers to a
module that is part of the VAXELN debugger.

Unless otherwise noted, illustrations of data struc-
tures and memory are aligned on longword boundaries.
Furthermore, the lowest addresses appear at the top
right portion of the diagram and increase toward the left
and bottom.

Bit fields are shown between angle brackets. The upper
and lower bounds of the field are shown from left to
right, separated by a colon. For example, the notation
<15:5> represents a bit field that contains bits 5 through
15 in a word.

Convention

Meaning

Lists

decimal notation

UPPERCASE
characters

The following conventions apply to lists:

e In lists that convey information with no order or
hierarchy, list elements are indicated by bullets (e).
Sublists without hierarchy are indicated by dashes
(=)

o In lists that convey ordered operations, list ele-
ments are numbered. Sublists that indicate ordered
operations are lettered.

e In numbered lists that relate to numbered items in
a figure, element numbers are enclosed in circles,
for example, @.

Numeric values are represented in decimal notation
unless otherwise noted.

Vertical ellipsis points in a figure or example indicate
that unnecessary or repetitive information has been
omitted.

VAXELN and language-specific reserved words and iden-
tifiers are printed in uppercase characters, except for

reserved words in C, which is a case-sensitive language.
These terms are presented in bold lowercase characters.

Chapter 1

Overview: The Role ofthe VAXELN
Kernel

The VAXELN Internals Manual describes the essential data structures
and operations of the VAXELN real-time executive software, called
the VAXELN Kernel. Viewed by the VAXELN programmer, the kernel
presents an interface composed of a set of objects, representing such
real-time entities as devices and synchronization points, and a set of
procedures for creating and manipulating those objects.

The VAXELN programmer requires no special knowledge of these ob-
jects and procedures beyond their functional characteristics and calling
sequences, as described in the user documentation, to create sophis-
ticated real-time applications entirely in high-level languages. One

of the major advantages of the VAXELN Toolkit is just this packag-
ing of complex operations in a simple programming and development
interface.

This manual presents information beyond that strictly required by
VAXELN programmers in the belief that detailed technical knowledge
of the kernel allows users to perform the following kinds of tasks more
effectively:

¢ Design and code real-time and dedicated applications for maximum
performance

¢ Tune System Builder parameters for optimized use of system re-
sources

¢ Understand run-time behavior and troubleshoot problems

¢ Match processor and peripheral capacities to application require-
ments

Overview: The Role of the VAXELN Kernel 1-1

® Understand overall system operation and interpret source code
listings
¢ Modify and customize system components

To this end, the VAXELN Internals Manual focuses almost exclusively
on the data structures and operations of the kernel, to the exclusion
of other system components, such as common device drivers, run-time
libraries, and file service. The System Builder and debugger utilities
are discussed inasmuch as they significantly support or interact with
the kernel. This focus on the VAXELN Kernel emphasizes its central
role in the VAXELN programming environment.

This first chapter begins the close examination of the kernel by provid-
ing an overview of its role in supporting the execution of a VAXELN
application. The following sections survey the structure and opera-
tion of the kernel (Section 1.1), the functions provided by the kernel
(Section 1.2), and the kernel’s relationship to the VAX architecture
and hardware (Section 1.3). This overview material, however, can in
no way substitute for a thorough knowledge of VAXELN derived from
the user documentation and actual VAXELN programming experience.
The VAXELN Run-Time Facilities Guide provides a starting point for
preparation for the profitable use of this manual.

The remaining chapters of the manual fall roughly into three parts.
Chapters 2 through 4 describe the foundation on which VAXELN ap-
plications execute: the structure and function of the system image,
system initialization, and the creation of jobs and processes. Chapters
5 through 10 describe the kernel’s control mechanisms: internal syn-
chronization and timing, condition-handling logic, error and event
reporting, kernel procedure dispatching, memory management, and
kernel object management. A chapter on scheduling will join this part
in a later edition. Chapter 11 returns attention to the job and process
level by describing synchronization mechanisms. Chapters on device
handling and communication will round out this part in a later edition.

1.1 Kernel Structure and Operation

The VAXELN Kernel was designed to provide a core of real-time func-
tionality, such as multitasking and synchronization, that takes full
advantage of the VAX architecture with a minimum of system over-
head. The kernel image and a program provided by the user can
potentially constitute the entire application system. More elaborate
services, such as a file system or a terminal driver, can be added as
they are needed. This leaves the programmer free to decide when the

1-2 Overview: The Role of the VAXELN Kernel

cost of adding a service is too high. The core of functionality remains
and can be used to build additional features the programmer requires.

The general philosophy behind the structure and operation of the
kernel can be summarized as follows:

* Provide a small, efficient core of real-time functions. This allows
applications to run on small memory targets and eliminates much
of the overhead associated with conventional operating systems.

¢ Provide a simplified approach to real-time programming through
the use of kernel objects and procedures to represent real-time
entities and operations. This approach gives programmers full
access to the VAX hardware from high-level languages, a distinct
advantage in productivity and maintainability, especially for device-
handling applications.

e Exploit fully the VAX hardware to provide assistance in accomplish-
ing system tasks. For example, the kernel employs the VAX mem-
ory management hardware to perform virtual address translation
and memory protection.

¢ Keep system and user components memory-resident at all times.
Eliminating memory paging simplifies memory management and
scheduling, makes address-translation times fast and predictable,
and allows VAXELN systems to run in a diskless environment.

The kernel further increases its efficiency by not competing with user
processes for system resources and processor cycles. The kernel itself
creates no processes for its own use; that is, it does not function as
an independently executing monitor program. Rather, it is a highly
structured collection of data, procedures, and interrupt and exception
service routines that execute when they are called from user code or
activated in response to process or system events. The kernel runs
exclusively at boot time to initialize the system and activate the user’s
application. Thereafter, the kernel is strictly driven by events. Its code
is executed when kernel procedures are called, when hardware devices
generate interrupts, or when processor or device controller microcode
detects an error or anomaly.

Overview: The Role of the VAXELN Kernel 1-3

1.2 Functions Provided by the Kernel

This section summarizes the major functions provided by the VAXELN
Kernel. These kernel functions fall roughly into three classes:

¢ Initialization mechanisms: the system image (Section 1.2.1); sys-
tem initialization (Section 1.2.2); and job and process creation
(Section 1.2.3)

¢ Control mechanisms: software interrupts, kernel synchronization,
and time services (Section 1.2.4); condition handling (Section 1.2.5);
error and event reporting (Section 1.2.6); kernel procedure dis-
patching (Section 1.2.7); memory management (Section 1.2.8);
object management (Section 1.2.9); and job and process scheduling
(Section 1.2.10)

* Job-level support: job and process synchronization (Section 1.2.11);
device handling (Section 1.2.12); and interjob communication
(Section 1.2.13)

As the following sections indicate, these functions are also the subjects
of the remaining chapters of this manual.

1.2.1 VAXELN System Image

A VAXELN system image is a file created by the System Builder, which
combines the appropriate kernel image and data, system software, user
programs, and shareable images into an image that can be loaded and
executed on a target VAX processor. In general, the System Builder
lays the groundwork for the efficient operation of the kernel by ar-
ranging system components and data to be readily accessible at run
time. For example, the System Builder resolves program references to
locations in shareable images so that this operation does not have to be
performed during the creation of a VAXELN job.

Data stored as part of the image records the user’s input to the System
Builder’s menus. When the image is booted on the target processor,
the kernel establishes characteristics of the run-time system based on
certain of these menu entries. For example, it creates the number of
system pool blocks and page table slots that the user requests on the
System Characteristics Menu.

1-4 Overview: The Role of the VAXELN Kernel

The system image contains an image header (for some booting meth-
ods); the kernel image itself; program images, containing global data
and code; the device list, which contains a series of device descriptions;
and the shareable images against which the programs in the system
image were linked. Chapter 2 describes the components of a system
image and their function in an executing system.

1.2.2 System Initialization

Execution of a VAXELN system is initiated by the VAX processor’s boot-
strap program, called VMB, which loads the system image into physical
memory and transfers control to the kernel. The kernel then begins ex-
ecuting its initialization sequence to establish essential data structures,
create system virtual address space, enable VAX memory management,
configure I/O adapters, and activate system and application programs
to run as VAXELN jobs.

Chapter 3 describes these stages of system initialization and illustrates
the structure of system virtual address space.

1.2.3 Jobs and Processes

Under VAXELN, most code is executed by entities called processes.

A VAXELN process is defined by its hardware and software context.
The hardware context is the set of processor registers defined by the
VAX architecture. The software context includes some information
unique to the process’s execution and some that the process shares with
other processes that are executing portions of the same program image.
Together, these processes are called a job.

A VAXELN job represents the activation of a program image by the
kernel and a collection of processes. A job is not itself an executable
entity; rather, it is a set of data structures used to manage the creation,
resources, and scheduling of its processes. A job’s collection of processes
contains a single master process and zero or more subprocesses to
execute the program’s code. The master process, which is created as a
part of job creation, executes the program’s main code, beginning at its
transfer address. The master process can in turn create subprocesses
to execute other procedures or functions in the program image. Each
process can then execute independently of all other processes. When
the master process terminates, the job and all its subprocesses are
deleted from the system.

Overview: The Role of the VAXELN Kernel 1-5

All the processes associated with a job share the same PO virtual
address space (through a single PO page table). During job creation,
the kernel maps the program image — its global data and code —
into this PO region. Also stored in this shared region are the job’s
program arguments, its dynamic heap, and its message buffers. For
each process in a job, the kernel creates a private P1 virtual address
space (through a unique P1 page table). This address region maps a
process’s stack space, which can be used to hold local data, procedure
call frames, exception information, and debugger context data.

Chapter 4 describes the data structures and operations associated
with the creation and deletion of jobs and processes. This chapter
also describes the structure and use of job and process virtual address
space.

1.2.4 Software Interrupts, Kernel Synchronization, and Time Services

The kernel exploits VAX hardware resources to manage services such as
job rescheduling, synchronized access to data, and system timekeeping.
The software interrupt mechanism allows the kernel to perform neces-
sary services only as the need arises; for example, job rescheduling is
initiated through an interrupt — the kernel has no need to monitor the
scheduling data base periodically in search of idle jobs. Synchronized
access to the kernel’s data base is enforced through the use of VAX
interrupt priority levels (IPLs) and multiprocessor spinlocks, which are
based on VAX interlocked instructions. The VAX interval clock enables
the kernel to maintain the system time by interrupting with every clock
interval so that the time can be updated by the appropriate interval.

Chapter 5 describes the kernel’s use of these hardware-based mecha-
nisms.

1.2.5 Condition Handling

VAXELN delivers conditions — hardware exceptions, software condi-
tions, and asynchronous exceptions — to processes according to the
VAX Procedure Calling and Condition Handling Standard. This stan-
dard defines condition-handling data structures — the signal and
mechanism arrays — and the ways in which a condition handler is
located and can respond to a condition. In addition, VAXELN exploits
the VAX hardware’s support for asynchronous system traps (ASTs) to
deliver signals asynchronously to a process’s execution.

1-6 Overview: The Role of the VAXELN Kernel

Chapter 6 describes condition handling under VAXELN.

1.2.6 Error and Event Reporting

The VAXELN error-logging subsystem enables the occurrences of pro-
cessor, bus, and device events and errors to be recorded in a local or
remote file for later analysis with the VMS Error Log Utility. Some of
these errors, such as machine checks, require the system to bugcheck
~— to be shut down in an orderly manner. Chapter 7 describes the
kernel’s error-logging, bugcheck, and machine-check mechanisms.

1.2.7 Kernel Procedure Dispatching

VAXELN processes manjpulate kernel objects and control their ex-
ecution by calling kernel procedures. Each of these procedures has

a public entry point, called its kernel vector, at the beginning of the
kernel image. The procedure’s vector contains the VAX instructions
required to dispatch execution to the actual procedure code, elsewhere
in the kernel image. Most vectors place the caller’s process into kernel
access mode by using the CHMK (Change Mode to Kernel) instruction.
This enables the procedure to execute privileged instructions and alter
kernel data structures. Other vectors simply dispatch execution with
subroutine or branch instruction, so that the procedure executes in the
access mode of the caller. When a procedure has completed, control
returns to the vector, which then returns the procedure’s results and
completion status to the caller.

Chapter 8 deseribes the structure of these different kernel vectors, how
they dispatch control to kernel procedure code, and how they return
status values to their callers.

1.2.8 Memory Management

VAXELN employs the VAX memory management hardware to perform
virtual address translation using page tables established during system
initialization and job and process creation. Translation is simplified
under VAXELN, because VAXELN systems are always entirely resident
in physical memory. Therefore, no paging from a disk is required before
a page of memory can be accessed after address translation.

Overview: The Role of the VAXELN Kernel 1-7

The kernel’s memory management is based on a simple data base
comprised of bitmaps, which record the allocation state of every page
of physical and virtual memory in the system. The use of bitmaps
minimizes the amount of memory devoted to memory management
itself and simplifies the algorithms used to allocate and deallocate
physical and virtual memory. Bitmaps are also used to control the
allocation of a fixed number of PO and P1 pages tables.

The kernel divides a portion of system memory into fixed-length blocks
called the system dynamic pool. These pool blocks are used in the
creation of kernel objects. Creating an object removes a block from the
available pool; deleting an object returns the block to the pool.

Chapter 9 describes the kernel’s memory management data structures
and operations. The allocation of system pool blocks is also described.

1.2.9 Object Management

Kernel objects provide VAXELN programmers with a simple way of
coding real-time operations such as synchronization, communication,
and device control in their applications. The kernel objects — area,
device, event, message, name, port, process, and semaphore — allow
otherwise complex programming operations to be carried out with
simple calls to kernel procedures.

When an object is created, the kernel assigns it a unique identifier.
When an object is used in a procedure, the information encoded in
the identifier allows the kernel to locate the address of the object in a
table. The kernel manages all objects except ports with the context of
a job. This means that an object identifier can be shared among all the
processes in a job; their object addresses are stored in the job’s private
address table. Port objects, which can represent message destinations
across a local area network (LAN), are managed on a systemwide
basis; therefore, an identifier for a port is valid for the whole system
(and LAN) and contains the network address of the node on which the
port was created. The addresses of port objects are stored in a single
systemwide table.

When the kernel creates an object, it removes a block from the system
pool, marks it with the object type, initializes the object, assigns it an
identifier, stores the address of the object in a table, and returns the
identifier to the calling process. When deleting the object, the kernel
disassociates the object from any processes that might have been using
it, returns the block to the system pool, and removes the address of the
object from the table.

1-8 Overview: The Role of the VAXELN Kernel

Chapter 10 describes the data structures and operations that enable
the kernel to create, manage, and delete kernel objects. The function of
individual objects, however, is described separately. For example, the
function of the event object, used for synchronization, is described in
Chapter 11, Job and Process Synchronization.

1.2.10 Job and Process Scheduling

A process is selected to execute by the kernel’s scheduling mechanism.
Scheduling under VAXELN is based on a simple scheme called pre-
emptive priority-based scheduling. This means that the process with
the highest priority runs before any lower-priority process can run.
Priorities are assigned on a job and process basis. The programmer
assigns a job a priority based on its relative importance in the system.
Within each job, the processes created are then assigned priorities
based on their importance to the fulfillment of the job’s mission. The
scheduler selects a process to run on the basis of its combined job and
process priorities.

In general, the highest-priority process in the highest-priority job runs
until it waits for an event or resource or until a process with a higher
combined priority becomes eligible to run. In the first case, the process
postpones execution so that it may synchronize with another process.
In the second case, the process is preempted from execution. The
scheduler preempts a process only when a higher-priority process must
run; preemption based on execution time never occurs. Programmers,
however, can build time-based preemption into their applications using
simple synchronization techniques.

The kernel maintains a scheduling data base that reflects the schedul-
ing state and priority of every job and process in the system. Much of
this data is summarized in simple bit masks, which allow the kernel
to scan the data base quickly in search of the highest-priority job and
process.

Job and process scheduling is not discussed in detail in this edition of
the VAXELN Internals Manual.

Overview: The Role of the VAXELN Kernel 1-9

1.2.11 Job and Process Synchronization

Synchronization enables a process to coordinate its execution with
real-world events, such as device interrupts, and with other processes.
Synchronization techniques can be used to cause events to occur in
the correct order or to ensure exclusive access to shared data. Under
VAXELN, synchronization points in an application are represented by
kernel objects, and processes synchronize by waiting for these objects to
change state. Area, device, event, port, process, and semaphore objects
can be used to develop the synchronization schemes that real-time
applications require. Chapter 11 describes the kernel objects and other
data structure used for synchronization and the operations provided by
the kernel to allow processes to wait for those objects to change their
states.

1.2.12 Device Handling

Under VAXELN, an 1/O channel to a device is represented by a device
object. Creating a device object in a device driver program associates
the device’s interrupt vector in the system control block (SCB) with an
interrupt service routine (ISR) and maps the device’s control/status reg-
isters into system virtual address space accessible to both the ISR and
the device driver. The driver synchronizes access to this device com-
munication region by waiting for the device object to be signaled from
the ISR. When the device interrupts, the kernel dispatches execution to
the ISR to service the interrupt, which may involve moving data to or
from the communication region. Once the interrupt is serviced, the ISR
can inform the driver by signaling the device object, which allows the
waiting driver to continue execution.

Drivers can create multiple device objects to represent separate I/O
channels for the same device. For example, a driver that controls a
serial-line device might create one device object for an input line and
another for an output line. Each device function, then, can have a
separate ISR and driver process to service its operation. Device objects
also support polled I/0, a technique used for drivers that control devices
without the use of interrupts.

The kernel’s support for device handling is not discussed in detail in
this edition of the VAXELN Internals Manual; however, the kernel data
structures that support device handling — the adapter control block,
the device object, and the interrupt dispatch block — are illustrated
and described in Sections B.2, B.5, and B.9, respectively.

1-10 Overview: The Role of the VAXELN Kernel

1.2.13

Interjob Communication

Independently executing VAXELN jobs can communicate with one an-
other using areas and messages. Area objects represent a contiguous
region of physical memory that can be accessed, using virtual ad-
dresses, by multiple jobs in a VAXELN system. Access to the shared
area is confrolled through a binary semaphore built into the area con-
trol structures. Jobs can use the area as an efficient way to share data
or to synchronize execution using only the area’s semaphore. The ker-
nel’s support for shared areas is not discussed in detail in this edition
of this manual; however, the data structures that support areas — the
area control block and the area object — are described in Sections B.1
and B.3, respectively.

VAXELN messages can be sent and received between processes, jobs,
and DECnet nodes in a local area network. A message is a data buffer
in physical memory represented by a message object. Messages are
transmitted to queues called ports. Ports can be given names that
are known on a local node or throughout a local area network. Ports
can be connected in logical links called circuits. Communication over
circuit connections uses a protocol that guarantees the orderly delivery
of messages over an intact link.

To send a message to a local port, the kernel simply unmaps the data
buffer from the sending job’s virtual address space and queues it to
the destination port. When the process waiting for a message in the
port receives the message, the kernel maps the message buffer into the
receiving job’s virtual address space. To send a message to a remote
port, the kernel uses the local-sending method to transmit the message
to the local node’s network service. The network service then uses its
datalink driver to route the message across the physical network link
to the remote node. At the destination node, the local network service
sends the message locally to the kernel, which then queues the message
into the destination port.

The kernel’s support for message passing is not discussed in detail in
this edition of the VAXELN Internals Manual; however, the kernel data
structures that support message passing — the message, name, and
port objects — are illustrated and described in Sections B.11, B.12, and
B.18, respectively. Two structures involved in circuit connections and
name support — the network connection message and the name service
message — are described in Sections B.13 and B.14, respectively.

Overview: The Role of the VAXELN Kernel 1-11

1.3 Notes on the Kernel and the VAX Hardware

The VAXELN Kernel takes ready advantage of many features provided
by the VAX processor. The richness and advantages of the VAX ar-
chitecture are documented in detail in the VAX Architecture Reference
Manual and have been used extensively by other VAX-based software
executives, such as the VMS operating system (see VAX/VMS Internals
and Data Structures). The following notes highlight features of the
VAX architecture and hardware used by the VAXELN Kernel:

* System bootstrap. VAXELN employs the generic VAX bootstrap
program called VMB to load a system image over a network link
or from disk, tape, or read-only memory. Once VMB has loaded the
image into main memory, it transfers control to the kernel to begin
system initialization.

¢ Memory management. VAXELN employs the VAX memory manage-
ment hardware to perform virtual address translation. Because the
kernel does not require support for memory paging, certain aspects
of this mechanism, such as the page-fault mechanism, are unused.

* Protection mechanisms. The VAX memory management and protec-
tion scheme are used to protect code and data used by the kernel
and kernel-mode programs from user-mode programs. Note that
VAXELN requires only two of the four VAX access-control modes:
kernel and user. Kernel procedures, ISRs, exception service rou-
tines, and system jobs, such as device drivers usually execute in
kernel mode. The user can specify the access mode of a program
by using the System Builder. Implicit protection is built into spe-
cial instructions that can only be executed from kernel mode, such
as MTPR (Move to Privileged Register), LDPCTX (Load Process
Context), and HALT.

¢ Exceptions, interrupts, and the REI (Return from Exception or
Interrupt) instruction. The VAX exception and interrupt mecha-
nisms are critical to the operation of the kernel. The exception
mechanism transfers control to a specific service routine when the
hardware detects a specific anomaly during the execution of an
instruction. The interrupt mechanism transfers control to a specific
service routine when a software- or hardware-generated interrupt
occurs. The REI instruction provides a common exit path for both
mechanisms. REI also offers the only valid means of returning
access mode from kernel to user mode.

1-12 Overview: The Role of the VAXELN Kernel

Interrupt priority level (IPL). The kernel raises the processor’s IPL
to block interrupts of equal or lower levels. IPL is also elevated

to synchronize access to kernel data. The assignment of various
hardware and software interrupts to specific IPL values establishes
an order of importance to the interrupt services that the kernel
performs.

Asynchronous system traps (AST). The VAX AST mechanism allows
the execution of a process to be diverted asynchronously using the
ASTLVL processor register and the REI instruction. VAXELN uses
this technique to deliver called asynchronous exceptions, which
supply services such as the process-quit signal and power-failure
notification.

Procedure-calling mechanism. The VAX general-purpose calling
mechanism is the primary path into the kernel from system and
user programs. The kernel’s services are coded as VAX procedures,
so that they can potentially be called from any higher-level VAX
language.

Process structure. The VAX architecture defines a data structure
called a hardware process control block that contains copies of
all a process’s registers when a process is not executing. Under
VAXELN, this structure is commonly referred to as the hardware
context block, or PTX. When a process is selected for execution,
the contents of its PTX are copied into the actual registers inside
the processor with a single instruction, LDPCTX. A corresponding
instruction, SVPCTX, saves the contents of the general registers
when the process is removed from execution.

Process and system context. Normal execution under VAXELN
takes place within the bounds of a process, a state called process
context. Most kernel procedures and exception service routines
execute in this context.

Some portions of the kernel, however, execute outside the context
of a specific process. This limited-context state is called system or
interrupt context, because the only stack available in this context
is the systemwide interrupt stack. Interrupt service routines are
the most common code to execute in system context. Portions of the
initialization sequence execute in this state because no process yet
exists. The scheduler also executes on the interrupt stack between
the time that it removes one process from execution and places
another into execution. Most kernel procedures require process
context for execution and therefore cannot be called from code that
may execute outside of process context, such as device ISRs.

Overview: The Role of the VAXELN Kernel 1-13

¢ Multiprocessing. Certain VAX products, such as the VAX 8000 and
VAX 6000 series, can provide multiprocessing configurations. The
kernel takes advantage of these configurations with a mechanism
called tightly coupled symmetric multiprocessing. This scheme
provides one copy of the kernel and its data in memory shared by
all processors. Synchronization techniques built into the kernel
ensure the integrity of system data, and the scheduling software
enables different jobs to execute concurrently on the multiple
processors.

Another scheme, called closely coupled symmetric multiprocessing,
allows multiple KA80O single-board processors to be linked together
with a VAX 8000- or VAX 6000-series processor over an I/O bus.
Each KA800 processor runs a private VAXELN system and can
communicate with the other processors through shared memory
and VAXELN messages. The primary processor in the system can
run under VAXELN or under VMS using the VAX RTA software.
The VAXELN Run-Time Facilities Guide provides more information
on these multiprocessing configurations.

1-14 Overview: The Role of the VAXELN Kernel

Chapter 2

The VAXELN System Image

A VAXELN application, or part of a distributed application, exists on a
target VAX processor as a system image. A VAXELN system image is
not in fact a VAX executable image; rather, it is a composite of system
and user code and data preceded by an image header appropriate for
the system’s intended boot method. A system image may contain many
individual executable and shareable images accompanied by blocks

of system and program information required by the VAXELN Kernel.
These images and information are placed in the system image by the
VAXELN System Builder.

Since all nondynamic components of a VAXELN system reside in the
system image, familiarity with its structure is basic to understand-
ing the dynamic operation of the kernel. This chapter first describes
how the System Builder creates the system image (Section 2.1) then
describes each major element in the image:

The image header, which enables a system to be booted from certain
devices (Section 2.2)

The kernel image, which contains the kernel’s data and code
(Section 2.3)

Program images, which contain code and data for system and user
programs (Section 2.4)

The device list, which contains information about the devices con-
figured for a system (Section 2.5)

Shareable images, which contain code and data that can be shared
among the programs in a system image (Section 2.6)

The VAXELN System Image 2-1

2.1 Role of the System Builder

The VAXELN System Builder is a utility that runs on the host develop-
ment system in response to the EBUILD command. The main function
of the utility is to construct the system image specified by the user.
The System Builder accepts user input interactively through a series of
menus and from a data file that contains information generated during
earlier interactive sessions. The System Builder potentially generates
three output files:

® The system image file containing the system to be executed on the
target computer

* A map file describing the content of the system image

® A data file recording the menu settings made during an interactive
session

In creating a system image, the System Builder performs, to some
degree, the roles that the SYSGEN utility, the linker, and the image
activator play under the VMS operating system.

The System Builder accepts menu input specifying the following aspects
of a VAXELN system:

® Target processor. The identity of the target processor determines
which kernel image the system image will contain.

* System characteristics. These menu entries determine global as-
pects of the completed system, including the availability of the
debugger, the console, and VAX instruction emulation; the boot
method for the system; the maximum number of jobs and subpro-
cesses that can exist simultaneously in the system and the largest
amount of virtual memory available to those jobs and processes;
the number of system pool blocks and message ports available; and
the size of the interrupt stack and dynamically allocated system
memory.

* Network characteristics. These entries determine the nature of a
system’s participation in a local area network.

® Program descriptions. These entries specify the name and char-
acteristics of a program image that will be incorporated into the
system image. Characteristics include whether the program will be
started up automatically at system initialization, whether the de-
bugger will take initial control, the execution mode of the program,
the priorities assigned to the job and processes that will execute the

2-2 The VAXELN System Image

program’s code, and any textual arguments passed to the job as it
is created.

¢ Device descriptions. These entries determine the characteristics of
a device that can be accessed from the executing system, such as
the name of the device, its register and interrupt vector addresses,
and its hardware interrupt priority.

¢ Terminal descriptions. These entries determine the characteristics
of a terminal or other serial device that can communicate with the
executing system, such as its controller type, baud rate, and parity.

¢ Console characteristics. These entries determine the setup of the
console terminal attached to the target processor.

¢ Error log characteristics. These entries determine the destination
of error log entries and the number of error log buffers available to
the error logging service.

¢ DECwindows Server characteristics. These entries determine the
configuration of the DECwindows Server on a VAXstation target.

The System Builder supplies defaults for many of these characteristics.
In addition, the System Builder supplies program and device descrip-
tions required by the system but not explicitly requested by the user.
For example, if a user requests remote debugging capability but does
not request the inclusion of the Network Service, the System Builder
determines that the service is required, builds a program description
for it, and includes its image in the system image.

In creating a system image, the System Builder takes the following

steps:

1. Obtains the kernel image appropriate for the selected target proces-
sor

2. Creates a list of descriptors describing the programs to be included
in the image

3. Creates a list of configuration records describing the devices to be
included in the system

4. Creates a shareable image table describing the shareable images
referenced by programs and other shareable images within the
system

5. Copies the programs, program descriptors, device and terminal
descriptors, shareable image table, and shareable images into the
system image

6. Initializes parameter and data cells within the kernel

The VAXELN System Image 2-3

7. Resolves the program’s references to shareable images by adjusting
the referenced addresses to reflect the location of the shareable
image within program or system address space, a process called
address relocation

8. Writes out the completed system image and, optionally, a map file
describing the system image, and an updated data file

The resulting system image is structured along the lines of Figure 2-1.

Table 2-1 briefly defines each element of the system image. These
elements are described in greater detail in subsequent sections.

2-4 The VAXELN System Image

Figure 2-1:

VAXELN System Image

System image Header
(Excluding Disk)

Kernel Vectors

Kernel Data

Kernel Parameters

Kernel Code

Program #1 Data

Program #1 Code

Program #n Data

Program #n Code

> Kernel Image

> Program Images

Program Descriptors
{Including KSDs)

Device Descriptors

Shareable Image
Descriptors
(Including KSDs)

Shareable Image #1

Shareable Image #n

Program List

Device List

Shareable Image
Table

System and User
Shareable images

MLO-003203

The VAXELN System Image

2-5

Table 2-1: Elements of a System Image

Element

Description

System image header

Kernel vectors

Kernel data

Kernel parameters

Kernel code

Program data and code

Program descriptors

2-6 The VAXELN System Image

A page containing information used by the VAX
VMB bootstrap program to load the system image
into a processor’s memory. The need for and type of
header is determined by the boot method selected
for the system. Systems booted from ROM or over
the network require an image header; those booted
from disk or tape do not.

Entry points for KER$ kernel procedures. These
vectors transfer control to the location of the actual
procedure code by executing a Change Mode to
Kernel (CHMK) instruction.

Cells that hold global data elements for use by the
kernel and its support routines, such as listheads,
Boolean flags, and the system time.

Cells that hold values established by the System
Builder that record menu settings and other sys-
temwide values, including the size of the current
system and the locations of program and device
descriptors within the system image.

The executable code of the kernel. The code starts
with the kernel’s initialization sequence and con-
tains, among other routines, the code for the kernel
procedures whose entry points appear in the kernel
vectors.

The data and executable code of the user’s pro-
grams and support programs such as device
drivers. (Programs linked against object libraries
also contain the code and data of the routines they
reference in those libraries.)

A list of elements describing the programs loaded
into the system image by the System Builder.
Each program descriptor is accompanied by the
text of parameters to be passed to the program
and a series of kernel section descriptors (KSDs)
that describe the program’s image sections. Taken
together, this information allows the kernel to
create a job to execute the program’s code.

Table 2-1 (Cont.):

Elements of a System Image

Element

Description

Device descriptors

Shareable image de-
scriptors

Shareable images

A list of elements describing the devices to be
supported by the system.

A list of elements describing the shareable im-
ages loaded into the system image by the System
Builder. Each descriptor is accompanied by a se-
ries of KSDs that describe the shareable image’s
image sections. The information in the descriptors
is used in address relocation for dynamically loaded
programs that reference shareable images. The
KSDs enable the kernel to map writeable shareable
images into a referencing program’s address space.

The actual code and data for the shareable im-
ages loaded into the system image by the System
Builder. In the case of VAXELN run-time libraries,
the code is preceded by a block of transfer vectors
through which the actual code of the run-time pro-
cedure is located. The images included are those
referenced by the programs in the program list
(and linked against shareable libraries), those spec-
ified on the Guaranteed Image List, the VAXELN
console I/O routines, and VAX instruction emula-
tion images selected on the System Characteristics
Menu.

If the /MAP and /FULL qualifiers are specified on the EBUILD com-
mand line, the System Builder produces a map file describing the
contents and layout of the system image. In a full system map, the
following information is provided:

¢ The name of the system image file and the time of its creation.

¢ The name of the VAXELN Kernel image included and the starting
address of the vector, parameter, and code blocks.

e Names of programs included in the system, including system pro-
grams (such as device drivers) that are not explicitly specified on
the Program Description Menu. The characteristics of the program
(for example, its mode and job priority) and its image sections
(section type, base address, and size) are shown. If the program
references any writeable shareable images — which will be mapped
into the program’s address space — those images are identified as

well.

The VAXELN System Image 2-7

e Device descriptions reflecting the device entries created on the
Device Description Menu and descriptions supplied by the System
Builder.

* Terminal descriptions reflecting the terminal entries created on
the Terminal Description Menu and showing the characteristics
selected for each terminal.

¢ Names of shareable images implicitly or explicitly included in the
system image. The descriptions show the image identification,
whether the image is mapped into a referencing program’s address
space (that is, whether the image is writeable), and the type, base
system virtual address, and size of the shareable image sections.

¢ Network characteristics, reflecting the entries on the Network Node
Characteristics Menu.

* System characteristics, reflecting the entries on the System
Characteristics Menu.

¢ DECwindows Server characteristics, reflecting the entries on the
DECwindows Server Characteristics Menu.

¢ The size of the system image in pages and bytes.
¢ The System Builder command line.

Consulting a sample System Builder map can help illuminate the
structure of the system image as discussed in the sections that follow.

2.2 System Image Header

The user selects the boot method for a VAXELN system on the System
Characteristics Menu, selecting disk, ROM, or down-line loading. The
menu selection determines whether the system image will have a
system image header and the type of that header. Only Q-bus targets
can be booted from ROM, using the MRV11 Q-bus module.

If a VAXELN system image is booted from ROM or over the network,
the System Builder adds a one-page header to the start of the system
image, preceding the kernel image. For ROM systems, a Q-bus ROM
header is written; for network systems, a standard VMS image header
is written. Systems to be booted from disk or tape require no image
header.

2-8 The VAXELN System Image

The system image header supplies the information required by the
bootstrap loader — such as the size of the image — to load the system
image into the memory of the target computer. Down-line loading of a
target is performed using the DECnet maintenance operation protocol
(MOP). The down-line loading sequence (initiated by a MOP message
requesting a program load from the target) expects to find an ordinary
VMS image header.

The bootstrap sequence on a Q-bus target will boot the VAXELN system
from the MRV11 PROM module if it finds a special ROM footprint on
a 4K-byte boundary in the target’s memory. This unique bit pattern is
provided by the ROM image header supplied by the System Builder.

Systems that boot from disk or tape devices require no image header.
Instead, the system must be copied contiguously to the [SYS0.SYSEXE]
directory on the boot device, an operation performed by the COPYSYS
command procedure in the ELN$ directory of the host system. As

the system image is copied to the boot device, its name is changed to
SYSBOOT.EXE, the name of the VAX secondary bootstrap program.

2.3 Kernel Image: Vectors, Data, Parameters, and Code

As shown in Figure 2-1, each kernel image consists of four elements:
vectors, data, parameters, and code. Early in its operation, the System
Builder copies the appropriate kernel image from the ELN$ directory
to the system image file. As the kernel image is copied, the System
Builder strips off the original image header created by the VMS Linker.

The selection a user makes on the Select Target Processor Menu de-
termines which version of the VAXELN Kernel will be written to the
system image by the System Builder. Table 2-2 shows the versions of
the kernel and the processors supported by each one.

Table 2-2: VAXELN Kernel Images

Image Processors Supported

4ANNKER MicroVAX 2000, VAXstation 2000, VAXstation 3100

QBUSKER MicroVAX I, MicroVAX II, MicroVAX 3000 Series,
VAXstation I/GPX, VAXstation 8200, VAXstation 3500,
KA620

UBUSKER VAX-11/725, VAX~11/730, VAX-11/750

The VAXELN System Image 2-8

Table 2-2 (Cont.): VAXELN Kernel Images

Image Processors Supported

6CCKER VAX 6000 Series

8SSKER VAX 8200 Series

SNNKER VAX 8500 Series, VAX 8700, VAX 8810
800KER KAB800 Single-board computer (VAX/RTA)

MPS8800KER VAX 8800, VAX 8820-N

In general, each kernel supports a class of target processors. The
criterion that differentiates a class may be bus architecture, as in
the case of the QBUS and UBUS kernels, or it may be processor-
specific differences within a bus architecture, as in the case of several
of the VAXBI-based versions of the kernel, such as SNNKER.EXE and
MP8800KER.EXE, which differ in their support of multiprocessing.

The different kernels are created when the kernel is assembled, by the
selective inclusion of processor- and/or bus-specific initialization, error-
logging, and machine-check modules. At run time, hardware-dependent
routines are executed through branches to generic subroutine entry
points; the code that appears in those subroutines depends on which
processor-specific module was included at kernel creation. Processor
dependence is largely avoided in the kernel’s common code to minimize
the kernel’s need to determine the processor type at run time.

Each kernel image file is accompanied in the ELN$ area by a linker
map file produced when the kernel image was linked. The linker map
file describes the sizes, locations, and attributes of the kernel’s program
sections — one section each for vectors, data, parameters, and code.
Also listed in the map file are the definitions of the symbols and labels
that appear throughout the source code for the kernel.

2.3.1 Kernel Vectors

The kernel vectors represent the first stage in dispatching calls to
kernel procedures. The vector block occupies the first two pages of
the kernel image; when a VAXELN system begins execution and the
kernel is mapped to SO space, the vector block begins at system virtual
address 80000000,¢. The code for the kernel vectors spans three source
modules, SYSVECTOR, VECTORTAB, and VECTOREND. (You can

2-10 The VAXELN System Image

determine the exact starting addresses of the various sections of the
kernel by examining the appropriate kernel linker map file.)

The vector block contains a series of quadword-aligned entry points to
the kernel procedures. Each vector consists of the register entry mask
for the procedure, an instruction to transfer control to the procedure,
and a variable number of instructions to effect the return of values and
control to the caller. The following code fragment shows the vector for
the KER$RECEIVE procedure, a typical instance:

KERSRECEIVE: :
.WORD “XFFC entry mask for registers R2 to Rl1l
CHMK #29 entry 29 in the CHMK dispatch table

MOVL R1l, @8 (AP) ; return message object identifier
MOVL R2, @12 (AP) ; return address of message buffer
MOVL R3, @16 (AP) ; return size of message in bytes
BRW KER$RETU'RN_STATUS

; check status and return to caller

The vector is entered by means of a CALL instruction, and the pro-
cedure entry mask causes registers R2 through R11 to be saved for
the caller. Control is then transferred to the code for KERSRECEIVE
through the CHMK instruction. After KERSRECEIVE has executed,
control is returned to the instruction following the dispatch instruction,
and the values returned by the procedures in registers R1, R2, and R3
are returned to the caller by means of pointers to writeable variables
in the argument list. Finally, control branches to the local subroutine
KER$RETURN_STATUS, which checks the status value returned by
KER$RECEIVE, and returns control to the caller via a Return (RET)
instruction. The dispatching of kernel procedure calls is described in
detail in Chapter 8.

The vector block is identical for all versions of the kernel as well as
all releases of the VAXELN software. This way, user programs need
not be relinked to use different versions of the kernel or the VAXELN
software; only rebuilding the system image is required. If new kernel
procedures are added, their vectors are inserted at the end of the vector
block, leaving the locations of previously existing vectors unaltered.

The VAXELN System Image 2-11

2.3.2 Kernel Data

The pages in the kernel image devoted to writeable data are a repos-
itory for any values that must be globally available to programs and
routines executing throughout the system. This global data block,
defined in module SYSTEMDAT, is mapped to a base system virtual
address of 80000400,¢ and occupies the four pages of the kernel follow-
ing the vector block. When the system image resides in a MicroVAX I
PROM module, the kernel’s initialization routine copies the data block
in PROM to the first available pages in the physical memory of the
target computer.

The values stored in the data block can be used as constants or as
storage for values that are updated during execution. For example, the
maximum virtual memory functions as a constant, whereas the system
time is updated constantly during execution.

Table A-2 shows the names and uses of the cells within the data block.
Kernel data is directly accessible from kernel routines. Individual
elements in the data block can also be accessed from a user program
if the items to be referenced are declared to be external at module
level and the program is linked against RTL.OLB (the locations of the
KER$ data items are defined in the KER$DATA object module within
RTL.OLB).

2.3.3 Kernel Parameters

When the System Builder parses the input from a data file and an
interactive menu session, it writes the resulting values and charac-
teristics to an internal buffer. As the kernel image is being copied to
the system image, the System Builder transfers the contents of the
internal buffer to the kernel parameter block. During later processing,
other values, such as the size of the system image, are written to the
parameter block.

The kernel parameters, defined in module PARAMETER (and described
in Table A-1), allow the System Builder to transmit information about
the system image to the kernel. During execution, the kernel can
consult values in the parameter block to determine, for example, the
size of the system image and whether the console terminal is present
in the system. Some parameters, namely those with the word “initial”
in their names, are copied during system initialization from the read-
only parameter block to the writeable data block. For example, the

2-12 The VAXELN System image

parameter KER$GW_PO_INITIAL_SLOT_SIZE is copied to the data
cell KER$GW_PO_SLOT _SIZE.

The parameter block, occupying approximately one-quarter of a page,
is mapped to system virtual address 80000C001¢. It is followed imme-
diately by a read-only image section containing the executable code for
the kernel.

2.3.4 Kernel Code

The actual code for the VAXELN Kernel follows the kernel parameter
block in the system image. The kernel code starts at a system virtual
address midway through the sixth page of the kernel image, approxi-
mately 80000C98;¢. At run time, the kernel code executes in the VAX
kernel access mode.

The first code to appear is the system initialization sequence, in module
INITIAL. The first part of the module contains a table that acts as a
prototype for the system control block (SCB) that is built at a later
stage of initialization. Following this table, the executable code for the
kernel begins at the global label KER$START. When the primary boot-
strap program transfers control to the start of the kernel image — the
first page of kernel vectors — it encounters the following instruction:

BRW KER$START

This instruction transfers control to the start of the initialization code,
whence execution continues.

The remainder of the kernel code occupies approximately sixty pages
— the exact size depends on the version of the kernel — and is di-
vided into two image sections. The first of these sections contains
nonprocessor-specific kernel procedures and routines that must fall
within the range of the signed-word displacement (32K bytes forward
or backward) used by the kernel procedure dispatcher (see Chapter 8,
Kernel Procedures and Procedure Dispatching). The second image sec-
tion contains internal processor-specific code that is entered directly
through Jump (JMP) instructions and may therefore reside at ad-
dresses beyond the range of the word displacement required by the first
image section.

Appearing throughout the first code section are the internal entry
points and instructions for the kernel procedures whose public entry
points appear in the vector block. The remainder of the code in the
kernel contains the entry points and instructions for procedures and

The VAXELN System Image 2-13

subroutines used by the kernel for such operations as scheduling,
resource management, device control, and condition handling.

2.4 Program Images

One of the chief roles of the System Builder is to incorporate the
programs that the user specifies on the Program Description Menu into
the system image. Other programs required for the system’s operation
but not explicitly specified by the user, such as debugger, error-logging,
and device driver programs, must also be identified and included in the
system image.

Processing user and system program images involves more than simply
copying the images to the system image file. To include a program

in the system image, the System Builder must perform the following
tasks:

Create a descriptor for each program to record information about
the program such as its name, its execution mode, the size of ifs
stack, its transfer address, its default job and process priorities,
the message limit for its job port, and the location in memory

of its program arguments. Some of this information comes from
the Program Description Menu, some from the program image.
Descriptors for system programs such as device drivers are created
from information internal to the System Builder. The program
descriptor is then inserted into a global list of descriptors for the
entire system.

Parse the arguments for each program as specified on the menu,
place the text of the argument in a program parameter block, and
insert the block into a list of parameter blocks for the program. The
parameter blocks for a program are considered part of the program
descriptor.

Open the program image file, read each image section descriptor
(ISD), translate each ISD into a kernel section descriptor (KSD),
link the KSD to the program descriptor, and copy each image
section to the system image file. As they are created, the KSDs are
built into a block, and the address of the first KSD is stored in the
program descriptor. If the program refers to any shareable images,
steps are taken to load these images into the system image as well.

2-14 The VAXELN System Image

While the System Builder processes an image, it keeps a running
account of the current virtual address within the system image at
which each element being processed will appear. Thus, the run-time
virtual address of any system structure is known to the System Builder
and can be used to establish pointers within its own and the kernel’s
data structures.

The following sections describe the data structures and operations the
System Builder uses in processing an image.

2.4.1 Data Structures for Image Processing

The System Builder analyzes and creates a number of data structures
in the course of incorporating an executable image (program) into a
VAXELN system image. Those structures fall into the following classes:

* The program descriptors and program list. Program descriptors
are kernel data structures that record information about a program
image included in the VAXELN system. All program descriptors
are linked into a list called the program list, which the kernel uses
to look up information about the images in the system.

® Structures within the VMS program image. To incorporate an ex-
ecutable image into the system image, the System Builder must
analyze data structures written to the program image by the
VMS Linker. The most significant of these structures is the image
header, which contains information describing the image. Part of
the header consists of image section descriptors (ISDs) that describe
the makeup and virtual memory requirements of the program sec-
tions within the image. Using the ISDs, the System Builder creates
a set of kernel section descriptors (KSDs) to describe the image to
the kernel at run time.

* Kernel section descriptors (KSDs). Created from the ISDs within
the program image header and associated with a program descrip-
tor, KSDs describe the makeup and virtual memory requirements of
a program’s image sections as they exist within the system image.
The kernel uses KSDs at run time to map a program image into a
VAXELN job’s virtual address space, where it can be executed.

The following sections describe these structures in more detail.

The VAXELN System Image 2-15

24.1.1 Program Descriptors and the Program List

Each program image in the system image — whether a user program
or a system program — is represented by a program descriptor. The
information stored in the descriptor during the system build is used
at run time by the KER§CREATE_JOB kernel procedure to map the
program into the job’s virtual address space and to make the program
arguments available to the job. The system start-up job also uses the
descriptors to determine which programs must be created and run
during system initialization.

The System Builder inserts the program descriptors into a list and
copies the list to a location in the system image following the actual
code and data for the programs. The system virtual address of the
first program descriptor in the list is stored at the location KER$GA_
PROGRAM in the kernel’s parameter block; this value is copied to the
location KER$GA_PROGRAM_LIST in the kernel data block during
gystem initialization.

A program descripfor contains the fields shown in Table 2-3. A good
portion of this information is derived from the descriptions entered on
the Program Description Menu. Other items, such as the address of

the first KSD and program parameters, are determined and recorded
during the system build.

Table 2-3: Program Descriptor Fields

Field Meaning

PRG$L_NEXT The Address of the next program descriptor

PRG$W_CPU_MASK The processor ineligibility mask (used to prohibit the pro-
gram from running on certain processors in a multiprocess-
ing system)

PRG$W_KERNEL_STACK The size in words of the kernel stack

PRG$L_TRANSFER The transfer address of the program in user address space

PRG$L_MESSAGE_LIMIT The job port message limit

PRG$W_USER_STACK The starting size of the user stack

PRG$W_JOB_PARAMETER The offset to the first job parameter block

PRG$L_KSD The address of the first kernel section descriptor in the list

of KSDs

2-16 The VAXELN System Image

Table 2-3 (Cont.): Program Descriptor Fields

Field

Meaning

PRG$B_JOB_PARAMETER_
COUNT

PRG$B_MODE
PRG$B_JOB_PRIORITY
PRG$B_PROCESS_PRIORITY

PRG$B_OPTION_FLAGS

PRG$W_REF_COUNT

PRG$T_NAME

The count of job parameters

The program mode (kernel or user)

The job priority

The default process priority for the master process and
subprocesses

A bit field specifying other characteristics of the program, as
follows:

Bit Meaning When Set

PRG$V_AUTO_START Start program at system start-
up (that is, “run”)

PRG$V_SEQ_INITIAL Program must be initialized
(sequential start-up, that is,
“init required”)

PRG$V_START DEBUG Start debugger when job is

created
PRG$V_POWER_ Raise an exception during
RECOVERY power-failure recovery
PRG$V_DELETED Dynamically loaded program

should be deleted from system
when reference count reaches 0

PRG$V_DYNAMIC_ Program was dynamically loaded
PROGRAM

PRG$V_DEBUG_WARM Debugger is present but do not
pass it control on job creation

The number of jobs executing this program’s code if the
program was dynamically loaded

The string descriptor containing the size of the program’s
name and the text of the name

As each program descriptor is created by the System Builder, the
program arguments entered on the menu are separated and entered
into separate parameter blocks. The fields in the parameter block are
shown in Table 2—4. All the parameter blocks for the program are
linked through the JPB$A_NEXT field. The byte offset from the base of

The VAXELN System Image 2-17

the program descriptor to the first parameter block is inserted into the
PRG$W_JOB_PARAMETER field of the program descriptor, and the
number of parameters is recorded in the descriptor as PRG$B_JOB_
PARAMETER_COUNT.

Table 2-4: Job Parameter Block Fields

Field Meaning

JPB$A_NEXT The address of next job parameter block

JPB$L_SIZE The byte count for the parameter string
stored in this JPB

JPB$L_TOTAL_SIZE The total byte count for all the parameter
strings in all the JPBs for this program

JPB$B_TOTAL_COUNT The number of program arguments, stored
in the first JPB only

JPB$T_PARAMETER The parameter string text, up to 100

characters in length

When a program is created as a job, the kernel copies the program’s
parameters into the job’s virtual address space. The number of pa-
rameters and their text can be returned to the program through
the run-time library routines ELN$PROGRAM_ARGUMENT and
ELN$PROGRAM_ARGUMENT_COUNT.

Figure 2-2 illustrates the relationships among the elements in the pro-
gram list and its related structures — program descriptors, parameter
blocks, and KSDs (described in Section 2.4.1.3).

Although system programs usually do not appear explicitly on the
Program Description Menu, they too require and receive program

descriptors. The following system programs or classes of programs
require these internally created program descriptors:

¢ Local and remote debuggers

¢ Network device drivers, such as XQDRIVER.EXE

* File access listener (FAL)

¢ Authorization Service

¢ Terminal drivers (such as DMBDRIVER.EXE)

2-18 The VAXELN System Image

Figure 2-2: Program List and Program Descriptors

Program List KER$GA_PROGRAM_LIST

PRGS$L_NEXT e Descriptor for 1st Program
Y

PRGSL_NEXT e Descriptor for Next Program
Y

Descriptor for Last Program
PRGSL_NEXT = 0 = End of List P 9

PRG$W_JOB_PARAMETER o——[

PRG$L_KSD e

PRG$B_JOB_PARAMETER_COUNT = 1

Job Parameter Block for This Program

A

Image Body for
First KSD for This Program Last Program

.
N

Last KSD for This Program

WMLO-003204

* Console driver

¢ LAT driver

e DECwindows Server

¢ DECwindows terminal and console emulators

As it does with user programs, the System Builder creates parame-
ter blocks for system programs. For example, system device drivers
are passed appropriate device names as their program arguments.
During its initialization, the driver program retrieves the program
argument and uses that text — the device name — in a call to the
KER$CREATE_DEVICE kernel procedure. Thus, the use of program

The VAXELN System Image 2-19

arguments allows the driver to access the device description for the
device it supports.

Once the System Builder has assembled a complete program list, in
which all specified user programs and required system programs have
been included, the System Builder sorts the list into job priority order
based on job start-up characteristics. In other words, the program
descriptors are sorted into three classes within the program list:

1. Programs that require initialization at system start-up. These
are the programs for which the Init Required characteristic has
been selected in their program descriptions (that is, the PRG$V_
SEQ_INITIAL bit is set in the PRG$B_OPTION_FLAGS field).
The System Builder places all such programs at the head of the
program list in priority order — the highest priority job (with 0
as the highest priority) comes first. Initialization jobs with equal
priorities retain their positions relative to one another in the list.
No subsequent initialization program will be created until the
previous program exits or calls the KER$INITIALIZATION_DONE
kernel procedure.

2. Programs that must be created at system start-up. These are the
programs for which the Run characteristic has been selected in
their program descriptions (that is, the PRG$V_AUTO_START bit
is set in the PRG$B_OPTION_FLAGS field). The System Builder
places all such programs immediately after the initialization jobs
in the program list in priority order. Auto-start jobs with equal
priorities retain their positions relative to one another in the list.

3. All other programs. Programs that require neither initialization
nor automatic start-up appear at the end of the program list in the
order in which they were processed.

As a special case, the System Builder checks to make sure that the
program descriptor for the debugger component on the target computer
appears before the descriptors of any programs that require debugging
(PRG$V_START_DEBUG bit set), regardless of job priority.

This highly structured program list simplifies the task of the start-up
job that runs during system initialization. The start-up job (described
more fully in Chapter 3) is the first job created by the kernel as a
VAXELN system boots. Its mission is to walk the program descriptors
in the program list and create a job for each program it encounters
for which the initialization or auto-start bit is set. Thus, the highest-
priority initialization program will be the first job created by the start-
up job. For example, in networked applications, this first job is usually
the network device driver, which runs at a job priority of 1.

2-20 The VAXELN System Image

The complete and ordered program list is used throughout the System
Builder’s subsequent operations. At run time, the program list is used
in a number of kernel operations and by several VAXELN utilities.

2.4.1.2 VMS Image Structures Used in Image Processing

The program images processed by the System Builder are standard
VMS images, that is, images generated by the VMS Linker. An image
includes the following components, illustrated in Figure 2-3:

¢ The image header identifies the image, describes its characteristics,
and specifies the locations within the image file of other image
elements, such as the fixup data for address relocation. Appended
to a fixed portion of the header are the variable-length ISDs that
describe the characteristics of the image sections in the image body.

¢ The image body contains the actual code and data for the program
in the form of distinct page-aligned image sections. An image
section is an assemblage of program sections with like attributes.
Each image section in the image file is described by an ISD in the
image header.

* The fixup vector is a block containing data required to perform
address relocation. Fixup data is stored in an image section and is
described by an ISD.

The image header contains the bulk of the information the System
Builder needs to process images. For example, the header provides
information that allows the image to be copied from the image file into
the VAXELN system image file.

Of particular importance within the image header are the ISDs, which
appear at the end of the header. Figure 2—4 shows the general layout
of an ISD. As shown in the figure, the length of an ISD depends on the
type of image section it describes.

The VAXELN System Image 2-21

Figure 2-3: Structure of a VMS Image

Image Flle

Fixed Portlon of Image Header

Image Header

Image Body

Fixup Information

Debug and Other
Symbol Tables

r
/ Offset to B Size of Header
/
! Offset to D Offset to C
i
/ Offset to E
!
! Minor ID Major ID
1
Image Header / Image | Header
r= Type Blocks
/A Fixed Portion of
/ Image Header
/
/
p B Transfer Address !
/ Array !
\
4 \
/ c Debug and Giobal \
Symbol Table Offsets 1 - —
\ Image Fiags
D Image Name and \
IDENT Strings \
\ \
\\ E Patch Information (Only \,l
\ Found in Patched Images) \
A F] ! Virtual Addresses of
AN 4 Image Section / \ Fixup Information
\ ‘[Descriptors \
L.

1

MLO-003206

Each ISD describes a portion of the image’s virtual address space,
including its size and base address, as determined by the VMS Linker.
The contents of an ISD’s fields vary to reflect the characteristics of the

image section it describes. There are three types of ISDs relevant to
processing program images:

A private section ISD describes code and data that is present in
the body of the image file. A private image section can be either
read-only or read/write depending on the attributes of the program

sections that make up the image section. Image sections containing
fixup information are classed as private image sections.

2-22 The VAXELN System Image

Figure 2-4: General Structure of a VMS ISD

Image Sectlon Descriptor (ISD)

s Number of Pages Size of ISD
in This Section (in Bytes)

Starting Virtual Page
umber for This Section

Section Flags
End of Demand

Zero Section
Descriptor

A

Base Virtual Block Number

in Image File for This Section B End of Private

Section Descriptor

Identifier for Global Section

Count

Global Section Name
(up to 44 Bytes)

= End of Global
Section Descriptor
MLO-003208

* A demand-zero ISD describes a contiguous range of virtual address
space that will be initialized with zeros when the image is mapped
to virtual memory. This demand-zero compression saves disk space
for the image file, since no actual zero-filled image section appears
in the file; only the descriptor for the demand zero section appears.

¢ A global ISD describes a range of virtual address space to which
a shareable image will be mapped into a referencing program’s
address space. It also identifies the name of the shareable image
referenced by the program. More specific information about refer-
ences to the shareable image appears in the program’s fixup vector
image section.

The VAXELN System Image 2-23

Two fields within an ISD identify the nature of the image section. One
is the type field. For program images, the System Builder looks for
only three of the possible values in the type field:

e ISD$K_NORMAL, which indicates that the image section contains
normal data and code

e ISD$K_SHRPIC, which indicates that the ISD describes a share-
able image referenced by the program

e ISD$K_USRSTACK, which indicates that the ISD specifies the
size and P1 address of the program’s VMS-based user stack as
generated by the VMS Linker

Another field in the ISD, the flags field, contains bits that, when set,
indicate the characteristics of the image section being described; mul-
tiple bits can be set. The following flags are relevant to processing
executable images:

e ISD$V_GBL, which indicates that the ISD describes a shareable
image to be mapped to the program’s address space

e ISD$V_CRF, which indicates that the image section must be copied
into the program’s address space

e ISD$V_DZRO, which indicates that the ISD describes a demand
zero image section

e ISD$V_FIXUPVEC, which indicates that the ISD describes a fixup
vector image section

¢ ISD$V_WRT, which indicates that the image section is writeable

Using the information in the ISDs, the System Builder generates kernel
section descriptors (KSDs) to describe each image section to the kernel.
At run time, the information in the KSDs allows the kernel to map
the image into a job’s virtual address space. The creation of KSDs for
executable images is described in Section 2.4.2.

The image header itself is not copied to the system image file. Once
the necessary information has been extracted from the header, it is
no longer of any use to System Builder — the extracted information
now appears in the program descriptor for the image and in the KSDs
associated with that descriptor.

2-24 The VAXELN System Image

2.4.1.3 Kernel Section Descriptors for Program Images

Kernel section descriptors — KSDs — contain information, extracted
from an image’s ISDs, that describes the characteristics and virtual
memory requirements of a VAXELN image section. A program’s KSDs
are created and linked to the program’s descriptor (PRG) by the System
Builder. The creation of KSDs for an executable image is described in
Section 2.4.2.

At job creation, the kernel scans the program’s KSDs and uses their
contents to map the program sections into the job’s virtual address
space. KSDs that describe image sections containing nonshare-
able read/write or read-only data and code are called private KSDs.
Figure 2-5 shows the structure of a private KSD.

Figure 2-5: Structure of a Private KSD

KSD$B_FLAGS KSD$B_TYPE KSD$W_SIZE

KSD$L_PAGCNT

KSD$L_USER_VA

KSD$L_SYSTEM_VA

MLO-003207

(Two other types of KSDs exist: global and shareable. A global KSD de-
scribes a range of virtual addresses within a program’s address space to
which a shareable image with writeable image sections will be mapped.
A shareable KSD describes an image section in a shareable image.
Global and shareable KSDs are discussed further in Section 2.6.1.2,
Kernel Section Descriptors for Shareable Images.)

Table 2-5 describes the fields in a private KSD.

The VAXELN System Image 2-25

Table 2-5: Private KSD Fields

Field Meaning
KSD$W_SIZE The size of this kernel section descriptor, used to walk list of KSDs
KSD$B_TYPE A value indicating image section type, as follows:
Value Meaning
KSD$K_CODE The associated image section contains
read-only data/instructions.
KSD$K_FIXUP The associated image section contains
address relocation fixup data.
KSD$K_DATA The associated image section contains
read/write data.
KSD$K_DZRO The associated image section should be
created as a demand-zero section.
KSD$K_GBL This KSD represents a shareable image

KSD$K_SHARE_DATA

that contains writeable data that must
be mapped into the program’s address
space.

This KSD represents a shareable

read/write image section; that is, a
global common.

KSD$B_FLAGS A bit field indicating the characteristics of the image section, as
follows:
Bit Meaning
KSD$V_CRF The associated image section should be

KSD$V_RWADDRDATA

copied into the referencing program’s
address space.
The associated shareable image sec-

tion contains read/write address data
(.ADDRESS references).

2-26 The VAXELN System Image

Table 2-5 (Cont.): Private KSD Fields

Field Meaning
KSD$L_PAGCNT The number of pages in the image section
KSD$L_USER_VA The starting virtual address for the image section in the program’s

address space

KSD$L_SYSTEM_VA The starting system virtual address of the image section; that is, its
location within the mapped system image

2.4.2 Processing Program Images

Once the program list is assembled, the System Builder processes

the programs in the list and copies their data and code to the system
image file. In this stage of its operation, the System Builder analyzes a
program image in a manner similar to that of the VMS image activator.
However, the goal of the VMS image activator is to create virtual
memory for a program, map its image sections into that address space,
and transfer control to the program, all at run time. The System
Builder, by contrast, is responsible only for creating the mapping
information at build time; this information is then used by the kernel
at run time to activate the program as a job.

Both the VMS image activator and the System Builder perform their
work on images created by the VMS Linker. See Section 2.4.1.2 for
information on the structure of a VMS image.

In processing an executable image, the System Builder’s function is
fourfold:

* Copy the program’s transfer address from the image header to the
PRG$L_TRANSFER field in the program descriptor.

® Analyze each ISD in the image header, translate it to an appropri-
ate KSD, and include that KSD as part of the program descriptor.

® Process the shareable images referenced by the program. The
System Builder must see to it that every shareable image refer-
enced by the program is included in the system image.

¢ Copy the program’s image sections (including the fixup image
section) to the VAXELN system image. Only image sections are
copied; that is, the image header is discarded.

The VAXELN System Image 2-27

The ISDs in a program’s image header form the basis for the System
Builder’s image processing. To translate ISDs into KSDs, the System
Builder opens the image file and scans each ISD to determine its type
and characteristics. For executable images, an ISD is translated into a
private KSD, which describes an image section containing code or data.
KSDs for program images are described in Section 2.4.1.3.

The ISDs being processed must be of type ISD$K_USRSTACK, ISD$K_
SHRPIC, or ISD$K_NORMAL. If not, processing of the image stops.
When an ISD has been processed, the image section it describes is
copied from the program image file to the VAXELN system image file.

This same process is applied to every ISD in every program in the
program list. When the program list has been exhausted, all system
and user programs will be in the system image. Following this block of
image sections in the system image is the block of program descriptors
and KSDs. In the course of processing the program images, the System
Builder will also have processed all the shareable images referenced by
the programs in the program list.

The following sections describe how each type of ISD is processed by
the System Builder.

2.4.2.1 Processing ISDs of Type ISD$K_USRSTACK

ISDs of type ISD$K_USRSTACK are discarded; they describe the user
stack for an image running under VMS. Instead of using this VMS
stack, the VAXELN Kernel creates a user-mode stack in P1 space when
a process is created. No KSD is created, and no image section is copied
to the system image.

24.2.2 Processing ISDs of Type ISD$K_SHRPIC

ISDs of type ISD$K_SHRPIC represent a shareable image referenced
by the program. The shareable image’s identification code is copied
from the ISD to the identification field for the referenced shareable
image in the program’s shareable image list. No KSD is created, and
no image section is copied to the system image.

2-28 The VAXELN System Image

2.4.2.3 Processing ISDs of Type ISD$K_NORMAL

ISDs of type ISD$SK_NORMAL require the creation of a private KSD
for the described image section. The System Builder allocates a KSD
structure and initializes it with zeros. The system virtual address

of the program’s first KSD is written to the PRG$L_KSD field in the
program descriptor. At run time, the KER§CREATE_JOB procedure
uses this address to access the KSDs for the program. As each private
KSD is created, it is added to the list of the program’s KSDs. This block
of KSDs is contiguous to the program descriptor and is later copied to
the system image file as part of the program list.

The values for the KSD’s KSD$L_PAGCNT and KSD$L_USER_VA
fields are copied from parallel fields in the ISD. The number of pages
specified by KSD$L_PAGCNT will be mapped from the image section
described by the KSD to the program’s virtual address space beginning
at the PO address found in KSD$L_USER_VA.

The values of the KSDB_TYPE, KSDB_FLAGS, KSD$L_SYSTEM_
VA fields depend on the bit settings in the ISD’s flags field. The follow-
ing sections describe how the remaining fields of a KSD are completed,
depending on the flag settings in the ISD.

2.4.2.3.1 ISDs with No Applicable Flags Set — Code Sections

If none of the applicable ISD flag bits is set, then a read-only image sec-
tion has been encountered. Therefore, the KSD type is set to KSD$K_
CODE, and KSD$L_SYSTEM_VA is set to the system virtual address
at which the image section will appear in the system image. If this im-
age section is adjacent to another private read-only image section, the
System Builder combines them and adds the value of KSD$L_PAGCNT
in the merged KSD to the same field in the previous KSD.

When the KER$CREATE_JOB procedure encounters a code KSD,

it simply maps the image section into the program’s address space,
starting at KSD$L_USER_VA, by copying the system page table entries
for the image section into the job’s PO page table (a process called
double mapping). No new physical memory is allocated, and multiple
jobs can execute a single copy of the program code.

The VAXELN System Image 2-29

2.4.2.3.2 ISDs with the ISD$V_DZRO Flag Set — Demand-Zero Sections

If bit ISD$V_DZRO in the ISD flags field is set, then a demand-

zero image section has been encountered. Therefore, the KSD flag
KSD$V_CREF is set, the KSD type is set to KSD$K_DZRO, and KSD$L_
SYSTEM_VA is set to 0. When the KERSCREATE_JOB procedure
encounters a demand-zero KSD, it allocates the required KSD$L_
PAGCNT number of pages from physical memory, maps them into the
program’s address space starting at KSD$L_USER_VA, and zeros the

pages.

2.4.2,3.3 ISDs with the ISD$V_WRT and ISD$V_CRF Flags Set — Data Sections

If bits ISD$V_WRT and ISD$V_CRF in the ISD flags field are set,
then a read/write image section (that is, data) has been encountered.
Therefore, the KSD flag KSD$V_CRF is set, the KSD type is set to
KSD$K_DATA, and KSD$L_SYSTEM_VA is set to the system virtual
address at which the image section will appear in the system image. If
this image section is adjacent to another private data image section, the
System Builder combines them and adds the value of KSD$L_PAGCNT
in the merged KSD to the same field in the previous KSD.

When the KER$CREATE_JOB procedure encounters a data KSD, it
allocates the required number of pages from physical memory, maps
them in the program’s address space starting at KSD$L_USER_VA,
and copies the data pages from system virtual address space into
the program’s address space. This way, multiple jobs executing the
same program image will each have a private copy of the program’s
read/write data.

2.4.2.3.4 ISDs with the ISD$V_FIXUPVEC Flag Set — Fixup Vector Sections

If bit ISD$V_FIXUPVEC in the flags field is set, then an image sec-
tion containing fixup data has been encountered. Therefore, the KSD
type is set to KSD$K_FIXUP, and KSD$L_SYSTEM_VA is set to the
system virtual address at which the fixup data will appear in the
system image. This address will be used during later processing to
resolve the program’s references to shareable images, as described in
Section 2.6.2.2.

When a fixup vector ISD is encountered, the System Builder interrupts
processing of the program image and processes the shareable images
referenced by the program, as described in Section 2.6.2.1. If the
program references a shareable image that contains a writeable image

2-30 The VAXELN System Image

section, then a global KSD describing the required address range of the
shareable image is created and inserted into the referencing program’s
list of KSDs. When the KER$CREATE_JOB procedure encounters a
global KSD, it locates the shareable image’s KSDs and uses them to
map the shareable image’s sections into the program’s address space.

2.5 Device List

A VAXELN system can support a variety of devices, from the console
terminal connected to the host processor to, for example, a customized
real-time device connected to an IEEE instrument bus controller. Each
device or device controller to be used by a VAXELN system must

be represented to the kernel by a device descriptor called a system
configuration record (SCR). The System Builder creates SCRs from
information entered on the Device Description Menu, inserts them
into a list, and writes the list to the system image file. At run time —
in response to a call to the KERSCREATE_DEVICE procedure — the
kernel uses the SCRs to create device objects and associate them with
interrupt service routines in device driver jobs.

The System Builder creates SCRs for user-supplied device descrip-
tions by allocating a block of memory and transposing the fields on
a System Builder device description into the fields of an SCR, shown
in Table 2-6. SCRs for the network controller and console device are
added implicitly by the System Builder if required.

Table 2-6: System Configuration Record Fields

Field Meaning

SCR$L_NEXT The offset to the next SCR

SCR$W_SIZE The size in bytes of the device name

SCR$T_NAME The device name text string

SCR$L_DEVICE The device register address

SCR$W_VECTOR The interrupt vector address

SCR$B_IPL The device hardware interrupt priority
level

SCR$B_BI_NUMBER The BI bus number

SCR$B_ADAPTER_NUMBER The adapter/BI node number

The VAXELN System Image 2-31

The System Builder places the length of the device name entered on a
device description into the SCR$W_SIZE field and the text of the name
in SCR$T_NAME. The hardware interrupt priority level (IPL) of the
device is calculated by adding 16 to the bus priority value entered in
the interrupt priority field of the Device Description Menu; the result
is written to the SCR$B_IPL field. For example, the System Builder
default interrupt priority value is 5, which yields a VAX hardware IPL
of 21 (5 + 16).

As each SCR is created, it is inserted into the device list. At run time,
the kernel locates the completed device list by using the value of the
parameter KER$GA_DEVICE_LIST. This value, calculated by the
System Builder, is the byte offset from KER$GA_DEVICE_LIST itself
to the first SCR in the list. As SCRs are created, the SCR$L_NEXT
field is filled with the size of an SCR structure (defined by the global
constant SCR$K_LENGTH), rather than with the absolute address of
the next SCR in the device list. The value of SCR$L_NEXT, then, is
the byte offset to the next SCR in the list.

These offsets, rather than absolute virtual addresses, are used for

the values of KER$GA_DEVICE_LIST and SCR$L_NEXT, because

the kernel must traverse the list both with memory management
disabled (using physical addresses) and subsequently with memory
management enabled (using virtual addresses). Since the SCRs in the
list are contiguous in the system image, the physical or virtual address
of the next SCR in the list is calculated by adding SCR$L_NEXT to the
base address of the current SCR.

Once the list of SCRs has been created, the System Builder scans
the list and attempts to associate a device driver program with each
device, a process called autoloading. (Autoloading can be disabled on
the Device Description Menu, in which case the user must associate
the driver program and device description manually.) To autoload the
device, the System Builder takes the first two characters of the device
name (for example, “MU”), appends the string “DRIVER” to them

(in this case, creating the name “MUDRIVER”), and adds a program
descriptor for the driver program to the program list.

Before adding the driver’s program descriptor to the program list, the
System Builder writes the device name into a job parameter block
(JPB) and inserts the block into the driver program’s list of parameter
blocks. For example, the MUDRIVER program is passed the device
name MUA as its program argument. Often, when the driver initializes
at system start-up, it obtains this argument and uses it in a call to the
CREATE_DEVICE kernel procedure to establish a device object for the
device.

2-32 The VAXELN System Image

Autoloading for terminal controllers works differently because, tradi-
tionally, the name of a terminal does not match the name of the driver
— a TTA device is not usually controlled by TTDRIVER.EXE. In the
case of terminals, the System Builder attempts to associate a device
descriptor for a terminal controller (for example, TTA), a collection

of terminal descriptions (from the Terminal Description Menu — for
example, TTAO, TTA1l), and a terminal driver program (for example,
DMBDRIVER.EXE).

Specifically, the System Builder takes the first three characters of the
name of a terminal line (for example, TTA1) and searches the device
list for a match with a device name (for example, TTA). If a match is
found, the name of the driver for the terminal controller is derived from
the terminal type field in the terminal description (for example, DMB,
yielding a driver name of DMBDRIVER.EXE). If a program by that
name is not already in the program list, a program descriptor is added,
and the terminal controller name is passed to the program in a JPB.

Once all terminal controller device descriptions have been associated
with appropriate driver programs, the System Builder scans both

the program list and the terminal descriptions searching for matches
between a terminal driver’s job parameter (for example, TTA) and

the first three characters of a terminal’s name. If a match is found,
then the terminal characteristics, in the form of binary packets, are
added as JPBs for the terminal driver program. For example, if
DMBDRIVER.EXE has a program argument of TTA, its subsequent
program arguments will contain the binary characteristics data for ter-
minal lines TTAQ, TTA1, and so on. During its run-time initialization,
the driver job will obtain these arguments to establish the line char-
acteristics for each line associated with its controller. In this way, the
terminal characteristics entered on the Terminal Characteristics Menu
find their way to the device driver for the associated controller.

2.6 Shareable Images

Under the VMS operating system, a program’s references to share-
able images are resolved at image activation time, specifically, at the
point when the image activator installs the program image into pro-
cess address space. If the shareable image is installed as shareable
(/SHARED) on the system, the program executes the shared copy of
the image in system virtual address space. If the shareable image is
not installed as shareable, then the image must be mapped into the
user’s address space. In either case, the image activator must perform
address relocation on the shareable images.

The VAXELN System Image 2-33

Address relocation must wait until activation time, because the VMS
Linker does not know where in virtual memory a shareable image
will be installed. This feature allows a shareable image to be modified
without requiring programs that reference it to relink against the new
version. Still, deferring this process beyond link time adds to the time
required to activate an image.

Under VAXELN, all shareable images are, in effect, installed in system
address space by the System Builder. When the kernel creates a job,
no extra steps are required to activate the shareable images that the
program references. All virtual address mapping information for the
program has been distilled into its KSDs, and address relocation for the
shareable images it references has taken place at system build time.

Address relocation can occur at build time instead of at run time,
because the System Builder knows where the shareable image will be
based in virtual memory. Therefore, at run time, the kernel simply
reads the job’s KSDs and maps the corresponding image sections to
the job’s virtual address space. Thus the use of shareable images has
virtually no impact on the time required to create a job (activate a
program image) under VAXELN.

The System Builder incorporates shareable images into the system
image under these circumstances:

* A program image refers to a shareable image. When such a ref-
erence occurs, the shareable image will be identified in the fixup
vector section of the referencing image. When fixup vectors ap-
pear in an image, the System Builder scans the data in the fixup
vector and includes each shareable image cited. If the referenced
shareable image in turn references a shareable image, the second
shareable image is included as well. For example, the VAXELN
shareable image run-time libraries, such as PASCALMSC.EXE and
CMSC.EXE, are included in the system when they are referenced
by programs in the program list.

* The name of a shareable image appears in the Guaranteed image
list entry on the System Characteristics Menu. The names of
shareable images that may be referenced by dynamically loaded
programs must appear on this list if these shareable images may
not be included by appearing in an executable image’s fixup vector.

¢ VAXinstruction emulation is requested on the System Characteristics
Menu. Instruction emulation is provided through shareable images,
which the System Builder incorporates into the system image.

2-34 The VAXELN System Image

The System Builder also includes a shareable image containing basic
console I/O routines that the kernel uses to log messages, such as

the system initialization message, to the system console. The use of the
console I/O shareable image enables the kernel to write messages to the
console without the console driver being present. The console shareable
image is processor- and display-hardware specific; the System Builder
includes the appropriate version based on the processor and display
type selected by the user.

The following sections describe the data structures and operations the
System Builder uses in processing shareable images.

2.6.1 Data Structures for Shareable Image Processing

The System Builder analyzes and creates a number of data structures
in the course of incorporating a shareable image into a VAXELN system
image. Those structures fall into the following classes:

* The shareable image descriptors and the shareable image table.
Analogous to program descriptors for executable images, shareable
image descriptors are kernel data structures that record informa-
tion about shareable images included in the VAXELN system. All
image descriptors are linked into a list called the shareable image
table. The System Builder uses this table to copy the shareable
images to the system image file. At run time, the table is used only
during dynamic program loading.

* Structures within the VMS shareable image and the image that
references it. As with an executable image, the shareable image’s
header and ISDs must be processed and appropriate KSDs must be
created for the shareable image. In addition, the System Builder
must access and possibly modify the fixup vector section within the
image that references a shareable image.

e Shareable and global KSDs. Analogous to the private KSDs as-
sociated with a program descriptor, shareable KSDs describe the
makeup and virtual memory requirements of a shareable image’s
image sections. The kernel may use these KSDs at run time to map
a shareable image into a referencing job’s address space.

Global KSDs describe the virtual address requirements of a share-
able image that must be mapped into a referencing job’s virtual
address space. Although a global KSD is created during shareable
image processing, it takes its place in the referencing program’s list
of KSDs. At job creation, the kernel uses the global KSD to locate

The VAXELN System Image 2-35

the shareable image’s shareable KSDs and map them into the ref-
erencing job’s address space. Global KSDs are required only when
the referenced shareable image contains writeable image sections.

The following sections describe these structures in more detail.

2.6.1.1 Shareable Image Descriptors and the Shareable Image Table

The information stored in a shareable image descriptor is used at run
time by the ELNSLOAD_PROGRAM utility to resolve a dynamically
loaded program’s references to shareable images. When the System
Builder inserts the shareable image descriptors into the shareable im-
age table, it copies the list to the location in the system image following
the device list. The system virtual address of the first descriptor in the
table is stored at the global location KER$GA_SHAREABLE_IMAGE_
LIST in the kernel data block.

A shareable image descriptor contains the fields shown in Table 2-7.

Table 2-7: Shareable Image Descriptor Flelds

Field Meaning

SHT$L_NEXT The address of next table entry

SHT$L_IDENT Shareable image identification data

SHT$L_KSD The address of the first KSD in the list of KSDs for this
image

SHT$L_FIXUP The address of the fixup vector section for this image

SHT$B_MATCHCTL The image identification matching information

2-36 The VAXELN System Image

Table 2-7 (Cont.):

Shareable Image Descriptor Fields

Field

Meaning

SHT$B_FLAGS

SHT$T_NAME

A bit field indicating characteristics of this image, as follows:

Bit

Meaning

SHT$V_LOCAL_COPY

SHT$V_RWADDRDATA

The image contains a write-
able image section and must
be mapped to a referencing
program’s address space.

The image contains read/write
address data (ADDRESS refer-
ences to itself or other shareable
images); its KSDs must be
copied to the referencing pro-
gram’s KSD list, and extra
copies must be made of its image
sections that contain . ADDRESS
references.

The string descriptor containing the size of the image name

and the text of the name

The System Builder uses the shareable image table to locate and ma-
nipulate the shareable images it has read into internal memory. By the
time the table is written to the system image, it includes descriptors
for all the shareable images referenced by programs, those specified

on the guaranteed image list, those requested by the selection of VAX
instruction emulation, and the console I/O image.

At run time, however, the kernel has no need to use the shareable
image table, because the execution of shareable images is completely
transparent under normal circumstances. The shareable image table
is used only for dynamically loaded programs. In these cases, the
ELN$LOAD_PROGRAM utility needs the table to perform address
relocation for the loaded program’s references to shareable images.
Since the dynamically loaded program is not known to the System
Builder, build time address relocation cannot resolve the program’s
references to shareable images; instead, the relocation must occur at
run time, before KER§CREATE_JOB activates the program.

The VAXELN System Image 2-37

2.6.1.2 Kernel Section Descriptors for Shareable Images

As described in Section 2.4.1.3, KSDs describe the characteristics and
virtual memory requirements of a VAXELN image section. When pro-
cessing a shareable image, the System Builder translates the image’s
ISDs into shareable KSDs. These KSDs are then linked to the share-
able image’s descriptor, becoming part of the shareable image table
entry for that shareable image.

Two types of KSDs are associated with shareable images: shareable
and global. A shareable KSD is the shareable-image equivalent of

a private KSD for executable images; that is, the System Builder
translates the ISDs in the shareable image to KSDs as it does for the
ISDs of an executable image, except that the resulting structure is
known as a shareable KSD, shown in Figure 2-6.

Figure 2-6: Structure of a Shareable KSD

KSD$B_FLAGS KSD$B_TYPE KSD$W_SIZE

KSD$L_PAGCNT

KSD$L_SHT

KSD$L_SYSTEM_VA

MLO-003208

The shareable KSD records the address of the shareable image descrip-
tor to which it belongs in the KSD$L_SHT field. Table 2-8 describes
the fields that appear in both shareable and global KSDs. See the
KSD$B_TPYE and KSD$B_FLAGS entries in Table 25 for the bits
and constant values, respectively, that can be recorded in the KSD$B_
TYPE and KSD$B_FLAGS fields of both shareable and global KSDs.

2-38 The VAXELN System Image

Table 2-8: Shareable and Global KSD Fields

Field KSD Type Meaning

KSD$W_SIZE Both The size of this kernel section
descriptor, used to walk list of
KSDs

KSD$B_TYPE Both The storage for a constant value
indicating the image section type

KSD$B_FLAGS Both A bit field indicating the character-
istics of the image section

KSD$L_PAGCNT Both The number of pages in the image
section

KSD$L_USER_VA Global The starting virtual address for

the image section in the program’s
address space

KSD$L_SYSTEM_VA Shareable The starting system virtual address
of the image section; that is, its
location within the mapped system
image

KSD$L_SHT Shareable The address of the shareable image

table entry describing the shareable
image to which this KSD belongs

KSD$L_GBL_KSD Global The system virtual address of the
first KSD in the list of KSDs for
the shareable image the global
KSD represents

When a shareable image contains a writeable image section, its share-
able KSDs must be mapped into the address space of the referencing
job. The System Builder creates a global KSD describing the location
of the shareable KSDs and the number of virtual pages they require;
this global KSD is then inserted into the referencing job’s list of KSDs.
Figure 2-7 shows the structure of a global KSD.

When the KER§CREATE_JOB procedure encounters the global KSD
while mapping the referencing program into virtual memory, it uses the
data in the global KSD to locate and map the shareable image’s KSDs
into the program’s address space. In particular, the kernel uses the
address in KSD$L_GBL_KSD to locate the first KSD in the shareable

The VAXELN System Image 2-39

Figure 2-7: Structure of a Global KSD

KSD$B_FLAGS

KSD$B_TYPE

KSD$W_SIZE

KSD$L_PAGCNT

KSD$L_USER_VA

KSD$L_GBL_KSD

MLO-003200

Figure 2-8: A Global KSD Refers to Shareable KSDs

Program 1's List of KSDs

Private KSDs

Global KSD for
Shareable Image

Program 2's List of KSDs

Private KSDs

Global KSD for
Shareable Image

List of KSDs for Shareable Image

i3

Shareable Image
Sections Mapped
from Shareable
KSDs

Shareable Image
Sections

MLO-003210

image’s list of KSDs and then maps them into the referencing program’s
address space starting at the address in KSD$L_USER_VA. Figure 2-8
shows how the global KSD refers to the KSDs in the shareable image

table.

2-40 The VAXELN System image

2.6.1.3 VMS Image Structures Used in Shareable Image Processing

A shareable image has the same general structure and components
that an executable image has: a header, a body, and, possibly, a fixup
vector section.

While processing a shareable image, the System Builder scans the ISDs
in the image header. For shareable images, the System Builder looks
for only three of the possible values in the ISD type field:

e ISD$K_SHRPIC, which indicates that the image section is share-
able and position-independent

e ISD$K_PRVPIC, which indicates that the image section is non-
shareable and position-independent

e ISD$K_PRVFXD, which indicates that the image section is non-
shareable and position-dependent (usually a fixup vector image
section)

The flags field in the ISD is also examined to determine whether an
image section is global, copy-on-reference, fixup, or writeable. The
setting of the bits in the flags field determines whether a shareable
image is purely shareable or whether it must be mapped into the
address space of the image that references it.

Of central importance to the processing of shareable images is the
fixup vector image section supplied by the image that references the
shareable image. The System Builder finds which shareable images a
program image references by analyzing the program’s fixup section. A
fixup vector image section is indicated by the ISD$V_FIXUPVEC bit set
in an ISD’s flags field. When the System Builder encounters such an
ISD during image processing, it begins to process the shareable images
cited in the fixup section.

The fixup vector image section, shown in Figure 2-9, contains three
blocks of information that the System Builder uses to incorporate
shareable images into the system image:

* A shareable image list (SHL). This list contains an entry describing
each shareable image referenced. An SHL entry contains a num-
ber of fields that are read and updated during processing of the
shareable image. After image processing, these fields contain the
following information about a shareable image:

— The SHL$L_BASEVA field specifies the base virtual address
at which the shareable image is mapped into the referencing

The VAXELN System Image 2-41

program’s address space. This address is used for address
relocation.

— The SHL$L_SHLPTR field points to the shareable image de-
scriptor for the shareable image that the SHL entry describes.
Shareable image descriptors are discussed in Section 2.6.1.1.

— The SHL$L_IDENT field contains data used to detect any
mismatch between the shareable image the program linked
against and the actual shareable image appearing in the system
image.

— The SHL$T_IMGNAM field contains a string descriptor specify-
ing the name of the shareable image.

This list should not be confused with the shareable image table
created by the System Builder.

* A table of address relocation information for general-mode (G*)
references to shareable images. This information is used by the
System Builder to perform address relocation for the program’s
references to global locations within the shareable images in its
SHL.

* A table of address relocation information for .ADDRESS refer-
ences to shareable images. This information is used by the System
Builder to perform address relocation for the program’s use of

addresses of global locations within the shareable images in its
SHL.

Given the information in a program’s fixup section, the System Builder
can completely integrate the VAXELN or user-written shareable images
that a program references.

2.6.2 Processing Shareable Images

The processing of shareable images occurs in two distinct phases. The
first phase involves creating shareable image descriptors and KSDs,
and copying the image sections to the system image file. The second
phase involves performing address relocation to resolve references
within the system’s program images to locations within the system’s
shareable images. The following sections describe these two phases of
shareable image processing.

2-42 The VAXELN System Image

Figure 2-9:

Structure of an Image Fixup Vector
GA Fixup Data
~
/] Reterence Count
/
/ Index to SHL
/ G* Fixup Data
/ Oftset > tor 1st Shareabie
’ Image
/ Offset
/
/
/ <
! Reference Count
/
/! Index to SHL
Fixup Vector / GA Fixup Data
P Oftfset > for Nth Shareable
/ [image
/ Fixup Offset
MAIN.EXE / Data
[! = : [
mage ~<
Page ~ 1—4 ~
Header // Protection
Data -
'2:69‘ / - Shareable Image _ ” |Base Virtual Address
y / List Entry for s
Shareable Main (Index 0) 7
Fixup image 4
Vector List
R (SHL) {Index 1)
. < | N Shareable L_
N _ADDRESS AN 1 ~ image
N Fixup NN So| Name
AN Data NS (Index N)
\
\ \ .ADDRESS Fixup Data
\ ~N
\ Number of Offsets
\‘ Index to SHL
\ .ADDRESS Fixup
Oftset > Data for
\ MAIN EXE
\ Offset
\
Vg
\ <
\ Number of Offsets
\
\ Index to SHL
\ .ADDRESS Fixup
\ Oftset Data for Nth
\ Shareable image
\ Oftfset
\
t[I
7 MLO-003211

The VAXELN System Image

2-43

2.6.2.1 Creating Shareable Image Descriptors and KSDs

As it does for executable images, the System Builder processes share-
able images by creating a descriptor for each image, opening the image
file, analyzing its image header and ISDs, and creating KSDs to de-
scribe its image sections. The descriptors and KSDs (the shareable
image table) and image sections for the shareable image are then writ-
ten to the system image file. The address of the first shareable image
descriptor is recorded in the location KER$GA_SHARE_LIST in the
kernel’s parameter block; this value is copied to the location KER$GA_
SHAREABLE_IMAGE_LIST in the kernel data block during system
initialization. The shareable images themselves follow the table and
comprise the last element in the system image.

The inclusion of implicitly requested shareable images — that is, those
shareable images to which another image refers — begins when the
System Builder encounters a fixup vector ISD during its translation of
an image’s ISDs to KSDs (the fixup vector image section may reside in
either an executable image or a shareable image). The System Builder
then scans the fixup section and includes the shareable images that are
listed in the fixup vector’s SHL, described in Section 2.6.1.3. (Explicitly
requested shareable images — those on the guaranteed image list —
are included during a separate phase of processing, but their treatment
is otherwise identical. Only those images on the list that are not
already in the shareable image table are included.)

The System Builder takes the following steps to process a shareable
image:

1. Records the address of the current fixup section in an internal list.
This list will be used later to perform address relocation.

2. Extracts the name of the shareable image from the SHL$T_
IMGNAM field and determines whether this shareable image has
already been processed. If so, processing of the shareable image
ceases.

3. If the shareable image has not already been processed, creates
a shareable image descriptor for it and adds it to the share-
able image table. The contents of the descriptor are described
in Section 2.6.1.1.

4. Opens the shareable image file, scans the ISDs in the image header,
translates them to KSDs, adds the KSDs to the image descriptor,
and copies the shareable image into memory. If the shareable
image references any other shareable images, the System Builder

2-44 The VAXELN System image

repeats this process for those images, using the current image’s
SHL to locate the additional shareable images.

5. Repeats the entire process for each shareable image in the image’s
shareable image list.

6. Copies the completed shareable image table, including all share-
able KSDs, and the shareable image sections themselves from the
System Builder’s dynamic memory to the system image file.

If all shareable images contained only read-only code and data, their
processing would be as straightforward as it is for executable images.
In that simplest of cases, all programs referencing a given shareable
image use the single copy of the image that the System Builder loads
into the system image file. At run time, a reference to a location within
a “pure” shareable image will point to a system virtual address, a loca-
tion common to all jobs in the system. That location can be referenced
by multiple readers since none will be modifying the shareable image.

The processing of shareable images, however, is potentially quite com-
plex. Complications arise when a shareable image contains a writeable
image section. Since any program referencing the writeable image
section in the shareable image can alter its contents, data integrity
must be assured by providing that each referencing program owns a
private copy of the writeable image section. To accomplish this, the
System Builder creates a global KSD describing the image sections in
the writeable shareable image and inserts the KSD into the referencing
program’s own list of KSDs.

The ISDs being processed must be of type ISDK_SHRPIC, ISDK_
PRVPIC, or ISD$K_PRVFXD. If not, processing stops for the shareable
image. An ISD of type ISDSK_SHRFXD generates a warning message,
since it cannot be used for address relocation.

For ISDs of the correct type, the System Builder allocates a KSD
structure and initializes it with zeros. The value for the KSD’s KSD$L_
PAGCNT is copied from a comparable field in the ISD. The KSD$L_
SHT field is set to the address of the KSD’s associated descriptor,

and the system virtual address of the image section is written to the
KSD$L_SYSTEM_VA field.

The values of the KSD$B_TYPE and KSD$B_FLAGS fields depend

on the bit settings in the ISD’s flags field. Moreover, much additional
processing is required when an ISD has certain flag settings. The
following sections describe how the flag settings in a shareable image’s
ISD influence the creation of KSDs for the shareable image. Table 2-9

The VAXELN System Image 2-45

summarizes the characteristics of the KSDs that can be created for
shareable images.

Table 2-9: Characteristics of Shareable KSDs

Run-Time
ISD Flag Section KSD Flag KSD Type Characteristics
None Read-only None KSD$K _ Shareable in system
CODE space; referenced
through SO page table
ISD$V_WRT Nonshareable KSD$V_CRF KSD$K_DATA Physical memory al-
ISD$V_CRF read/write data located; image section

copied and mapped;
referenced through PO

page table
ISD$V_WRT Shareable None KSD$K_ Mapped into program
read/write data SHARE_DATA space; referenced
through PO page table
ISD$V_ Fixup vector None KSD$K_ Pure shareable image:
FIXUPVEC FIXUP shareable and refer-

enced through SO page
table; otherwise, pri-
vate copy of the fixup
section is mapped into
program space to vector
G/ references to share-
able image mapped into
program space

2.6.2.1.1 No Applicable Flags Set — Shareable Code Sections

If none of the applicable ISD flags is set, then a read-only shareable
image section has been encountered. Therefore, the KSD type is set to
KSD$K_CODE, and KSD$L_SYSTEM_VA is set to the system virtual
address at which the image section will appear in the system image.
If this image section follows another private read-only section, the
System Builder combines the two sections by adding the current KSD’s
KSD$L_PAGCNT value to that in the previous KSD. The two image
sections are now effectively merged.

2-46 The VAXELN System Image

A read-only shareable image section is potentially shareable by all pro-
grams in a VAXELN system. If the section resides in a pure shareable
image (SHT$V_LOCAL_COPY is clear), then no double mapping of the
section into the program’s address space is necessary, and all programs
will reference a single copy of the image section. The process of address
relocation ensures that a program’s reference to the shareable image is
vectored to the correct location in system space through the system (S0)
page table.

If the shareable image contains any writeable image sections (excluding
fixup sections), then the image’s read-only shareable sections must be
double mapped into the referencing program’s address space, where
they will be referenced through the program’s PO page table. However,
no physical memory is allocated for the shareable section. Because the
shareable image contains a writeable section, its shareable sections are
referenced through the job’s PO page table instead of through the S0
page table.

2.6.2.1.2 [ISD$V_WRT and ISD$V_CRF Flags Set — Data Sections

If bits ISD$V_WRT and ISD$V_CRF are set, then a nonshare-

able read/write image section (that is, data) has been encountered.
Therefore, the KSD flag KSD$V_CRF is set, the KSD type is set to
KSD$K_DATA, and KSD$L_SYSTEM_VA is set to the system vir-
tual address at which the image section will appear in the system
image. If this image section follows another data image section, the
System Builder combines the two sections by adding the current KSD’s
KSD$L_PAGCNT value to that in the previous KSD. The two image
sections are now effectively merged.

When a nonshareable, writeable image section is encountered, the
SHT$V_LOCAL_COPY bit is set in the shareable image descriptor. At
run time, physical memory is allocated for the writeable image section,
the content of the section is copied to the allocated memory, and the
memory is mapped into the referencing program’s address space.

2.6.2.1.3 ISD$V_WRT Flag Set and ISD$V_CRF Clear — Shareable Data Sections

If the ISD$V_WRT bit is set without the ISD$V_CRF being set, then
a shareable read/write image section has been encountered. Therefore,
the type is set to KSD$K_SHARE_DATA, and KSD$L_SYSTEM_VA
is set to the system virtual address at which the image section will
appear in the system image. If this image section follows another
shareable, read/write section, the System Builder combines the two

The VAXELN System Image 2-47

sections by adding the current KSD’s KSD$L_PAGCNT value to that in
the previous KSD. The two image sections are now effectively merged.

An image section with the KSD$K_SHARE_DATA attribute represents
a global common section that can be read and updated by multiple jobs.
At run time, the section is simply mapped from its system address
into the referencing program’s address space. (However, if the pages
containing the shareable section are located in ROM on a MicroVAX I,
the kernel allocates physical memory and copies the section there at
run time; the physical memory is still shared by all referencers.)

Because the section is writeable, the shareable image that contains it
is marked with the SHT$V_LOCAL_COPY flag and is represented in
the referencing program’s list of KSDs by a global KSD. At run time,
KER$CREATE_JOB will begin double mapping the shareable image’s
KSDs into the program’s address space. Because the KSD$V_CRF bit
is not set in the shareable read/write section’s KSD, the kernel will
not create a private copy of the section; only the system page table
entries that map the section will be copied into the job’s PO page table.
Therefore, each program that references that section will reference
and modify the single copy of the section in physical memory. (Even
though the writeable section is shareable, it must be mapped into the
program’s address space, because user-mode programs are unable to
write to memory mapped in the system page table.)

2.6.2.1.4 ISD$V_FIXUPVEC Flag Set — Fixup Vector Sections

If bit ISD$V_FIXUPVEC is set, then an image section containing fixup
data has been encountered. Therefore, the type is set to KSD$K_
FIXUP.

The presence of a fixup vector ISD means that the current shareable
image references yet another shareable image; as a result, the System
Builder processes the shareable images in this fixup vector’s SHL. If
any of the shareable images referenced by this shareable image contain
a writeable image section, then the current shareable image’s SHT$V_
LOCAL_COPY bit is set, even if it does not itself contain writeable
sections.

The processing required by the presence of a fixup vector in a shareable
image depends on whether the image contains writeable sections.

2-48 The VAXELN System Image

2.6.2.1.4.1 Shareable Images Without Writeable Sections

For shareable images that contain no writeable sections or reference
no other writeable shareable images, no further processing of the fixup
vector — beyond address relocation — is required. Through address
relocation, all references to the shareable image point to the single copy
of the image in system address space. Address relocation is discussed
in more detail in Section 2.6.2.2.

2.6.2.1.4.2 Shareable images with Writeable Sections

The processing that results from the presence of a fixup section in

a writeable shareable image (SHT$V_LOCAL_COPY is set) is more
involved than it is for pure shareable images. The following steps are
taken:

1. The KSD that describes the shareable image’s fixup vector section
is copied and inserted into the referencing program’s list of KSDs
as a private KSD.

2. The KSD$L_SYSTEM_VA field in the fixup KSD is set to the
system address at which a private copy of the fixup section will
appear in the shareable image in the system image file.

3. The base address of the fixup section within the program’s address
space is recorded in the KSD$L_USER_VA field.

A private copy of the fixup section for each referencing program is
required for correct address relocation. Address relocation for the ref-
erencing program must be calculated using the base virtual address at
which the shareable image will be mapped in the referencing program’s
address space. This base address can be different for every program
that references the writeable shareable image. As it processes share-
able images, the System Builder calculates how many programs in the
program list reference a given shareable image. That number of copies
of the shareable image’s fixup section is appended to the body of the
shareable image when it is copied to the system image file.

When KER$CREATE_JOB encounters a program’s shareable image
fixup KSD, it maps the fixup image section into the program’s address
space from the system virtual address of the program’s unique copy of
the fixup appended to the shareable image. Address relocation, too, is
performed on this private copy of the shareable image’s fixup vector.
Figure 2-10 shows how programs are associated with their private
copies of a writeable shareable image’s fixup vector.

The VAXELN System Image 2-49

Figure 2-10: Multiple Fixup Vectors in Writeable Shareable Images

Program 1's List of KSDs List of KSDs for Shareable Image

Private KSDs

Global KSD for
Shareable Image

KSD$L_GBL_KSD,

Private KSD for
Shareable Image'’s
Fixup Vector

| KSD$L SYSTEM VA

Program 2's List of KSDs

Private KSDs

Global KSD for
Shareable Image

{KSD$L GBL KSO
Private KSD for
Shareable Image’'s
Fixup Vector
| KSD$L SYSTE!

Shareable Image
Sections

Copies of Fixup
Sections Mapped from
System Addresses of
Appended Sections

MLO-003212

If the writeable shareable image contains no read/write address data
(.ADDRESS references), then only two additional KSDs are inserted
into the referencing program’s list of KSDs: the global KSD repre-
senting the shareable image and the private KSD describing the fixup
vector section.

If the SHL entry in the fixup vector indicates that the writeable share-
able image contains .ADDRESS references, including such references to
itself, then all the shareable image’s KSDs are copied into the referenc-
ing program’s KSD list as private KSDs; no global KSD is used. The
System Builder also sets the SHT$V_RWADDRDATA bit in the share-
able image descriptor and sets the KSD$V_RWADDRDATA bit in each
duplicate KSD that actually contains a . ADDRESS reference. (Sections
that contain .ADDRESS references are writeable since they must be
updated during address relocation; therefore, a shareable image that

2-50 The VAXELN System Image

contains read/write address data always has SHT$V_LOCAL_COPY set
as well.)

This duplication of shareable KSDs as private KSDs is really an ex-
tension of the System Builder’s method for handling fixup sections

in writeable shareable images. To fix up the .ADDRESS references,
the offset stored in the . ADDRESS cell by the VMS Linker must

be replaced by the sum of the offset and the base address at which
the shareable image will appear in the referencing program’s address
space. Since that base address can differ for every referencing program,
a private copy of the image sections containing .ADDRESS references
must be made for every program that references those sections.

Like fixup vectors, the private copies of the ADDRESS sections are
appended to the end of the shareable image as it is copied to the
system image file. The unique system virtual address for each copy is
recorded in the KSD$L_SYSTEM_VA field of its associated duplicate
KSD. When the System Builder performs address relocation for a
referencing program, the .ADDRESS fixups are made to the program’s
private copies of the sections in the shareable image that contain the
actual ADDRESS cells, using the base virtual address of the shareable
image within the program’s address space.

Figure 2-11 shows how programs are associated with their private
copies of a writeable shareable image’s ADDRESS sections.

At run time, KER$CREATE_JOB treats these duplicate KSDs as it
does other private KSDs — they are mapped into the program’s address
space from the system address in the KSD$L_SYSTEM_VA field to
the address in the KSD$L_USER_VA field. Processing a KSD whose
KSD$V_RWADDRDATA bit is set differs only in that it is mapped from
the system address at which the referencing program’s private copy

of the .ADDRESS section is appended to the shareable image. Other
programs mapping the same shareable image from their own duplicate
KSDs will reference unique copies of the sections containing ADDRESS
references.

For dynamically loaded programs, these private copies of fixup and
ADDRESS sections are created in the job’s dynamic memory, since
they cannot be appended to the body of the shareable image at run
time.

The VAXELN System Image 2-51

Figure 2-11: Multiple .ADDRESS Sections in Writeable Shareable
Images

Program 1's List of KSDs

Private KSDs

List of KSDs for Shareable image

Shareable Image's
.ADDRESS Section

Private KSD for

Shareable
| Image
Shareable Image's P Sections

Fixup Vector

Program 2’s List of KSDs

Private KSDs = Mapped from
O 2 System Addresses of

Appended Sections

% folroe
Flal ol el g s

L}

i

Private KSD for t

Shareable Image’s i

Private KSD for /
Shareable Image’s

Fixup Vector

MLO-0D3213

2.6.2.2 Address Relocation Fixup

When the shareable image table is complete and the shareable KSDs
and images have been copied to the system image file, the System
Builder performs address relocation. Under VMS, the image activator
performs this task at image-activation time; similarly, under VAXELN,
the program loader utility performs address relocation when a pro-
gram is loaded from local or remote disk. Address relocation can be
performed at system-build time under VAXELN because the System
Builder has determined the user and system base virtual addresses of

2-52 The VAXELN System Image

every shareable image in the system. Once these base virtual addresses
are known, address relocation can proceed.

Address relocation, or fixup, is required for images (executable and
shareable) that make general-mode (G*) and .ADDRESS references to
locations — data or routine entry points — within shareable images.
The information the System Builder requires to perform address reloca-
tion is stored in an image’s fixup vector section — the SHL and the GA
and .ADDRESS vector tables — and in a series of internal structures
built during the creation of an image’s KSDs. An image’s SHL contains
a list entry and fixup tables for each shareable image referenced.

The G* and .ADDRESS vector tables record a series of offsets. For G*
references, the table records the offset from the base of the referenced
shareable image to the actual location referenced. The G location
itself contains the address of the associated GM vector within the GA
vector table. When processed by the VMS Linker, G* references are
translated to @L~ references (longword relative deferred). When the G~
operand is fetched during program execution, the deferred address of
the referenced location in the shareable image is obtained by vectoring
the reference through the GA vector in the vector table.

For .ADDRESS references, the vector table records the offset from the
base of the referencing image to the location of the .ADDRESS directive
within the referencing image. The .ADDRESS cell itself contains the
offset from the base of the referenced shareable image to the actual
location referenced.

In general, address relocation fixup involves adding the base address of
the referenced shareable image to the G* or .ADDRESS cell offset. The
base address of the referenced shareable image used for the fixup is
determined by whether the shareable image contains writeable image
sections. If it does — that is, the SHT$V_LOCAL_COPY bit is set in
the shareable image descriptor — then the image is mapped into the
referencing program’s virtual address space. If the shareable image

is pure, then its base address is the system virtual address at which
the image appears in the system image. (Since shareable images that
contain .ADDRESS references are always writeable, they are fixed up
using base addresses within the referencing program’s address space.)

To perform address relocation, the System Builder scans an internal
list of fixup control blocks and processes each entry in the list. Each
control block describes the location of a fixup section within the system
image file. Other internal information allows the System Builder to
locate the image sections that contain .ADDRESS references as well.
The process of address relocation proceeds as follows:

The VAXELN System Image 2-53

1. The System Builder reads a fixup section into an internal buffer
and locates the SHL entry for the first shared image referenced.
The fixup section can be native to the referencing program (that
is, one generated by the VMS Linker), or it can be one of the local
copies of a writeable shareable image’s fixup section appended to
the end of a shareable image in the system image file.

2. The image identification stored in the fixup control block is com-
pared to the identification in the SHT$L_IDENT field in the de-
scriptor for the referenced shareable image (the address of the
descriptor is stored in the SHL$L_SHLPTR field in the SHL entry
for the image). If the two identifications do not match according
to the match control specified for the shareable image (match-all,
match-if-equal, or match-if-less-than-or-equal), then a warning
message citing the shareable image and the referencing program
is generated, and processing stops for this fixup vector. The iden-
tification information is checked for each shareable image in the
SHL.

3. If the fixup vector contains G~ references, the base address of the
referenced shareable image is added to each offset in the G* fixup
table entry, yielding the actual address of the referenced locations
within the shareable image.

If the shareable image is pure, then the system base address for the
image, stored in the System Builder’s internal copy of the shareable
image descriptor, is used for the fixup calculation. If the referenced
shareable image is writeable (SHT$V_LOCAL_COPY is set), the
value stored in SHL$L_BASEVA is used in the fixup calculation;
this address represents the base address of the shareable image
within the referencing program’s address space.

4. If the fixup section contains .ADDRESS fixups, the System Builder
reads into memory the image section or sections in the referencing
program containing the .ADDRESS directives. The fixup will be
made on the duplicate (private) copy of the .ADDRESS section
appended to the end of the shareable image in the system image
file. (These sections are described by private KSDs — with the
KSD$V_RWADDRDATA bit set — in the referencing program’s list
of KSDs.)

A .ADDRESS cell within a section is located by adding the base
address of the image containing the .ADDRESS directive to the
offset in the .ADDRESS fixup table entry. Finally, the fixup is made
by adding the base address of the shareable image to the offset
stored in the .ADDRESS cell, yielding the address of the referenced
location within the referenced shareable image.

2-54 The VAXELN System Image

Because shareable images with . ADDRESS references are write-
able, the system base address for the image, the value stored in
SHL$L_BASEVA, is used in the fixup calculation. This address
represents the base address of the shareable image within the
referencing program’s address space.

The entire process is repeated for every .ADDRESS reference
within the referencing program.

5. The process is repeated for the next fixup control block. When
the System Builder has exhausted the list of fixup control blocks,
address relocation is complete.

2.6.3 A Shareable Image Example

Even a simple program linked against a shareable image library can
require elaborate shareable image support from the System Builder.
This section presents just such a simple program, written in C, and

uses an excerpt from a full System Builder map to examine how the
System Builder supports the program’s use of shareable images.

Consider the following C program, which writes a single line to the
standard output device:

#include $vaxelnc

test ()

{
printf ("Hello, world!\n");
}

Compiling the program, linking it against the CRTLSHARE shareable
library, and building it into a VAXELN system image produces the
following program entry in a full System Builder map:

TEST DISK: [USER]TEST.EXE;1

No debug, Run, No initialize, Mode = User
User stack = 1, Kernel stack = 1

Job priority = 16, Process priority = 8
Job message limit = 16384

Power recovery exception = Disabled
Argument (8) :

The VAXELN System Image 2-55

Image section(s):

Type Base VA Page (8) Image
Noshr Write 00000200 1

Read-only 00000400 1

Fixup vector 00000600 1

Read-only 00000800 38 DCIO (1)
Noshr Write 00005400 1 DCIO (2)
Fixup vector 00005600 2

Shareable 00005200 20 CMsC
Fixup vector 00007E00 1

Transfer address: 00000400

Notice in particular the composition of the image sections. Compare
them with the map’s ISDs for the shareable images DCIO.EXE (C I/O
routines) and CMSC.EXE (general-purpose C routines) referenced by
TEST.EXE:

DCIO SYS$SYSDEVICE: [ELN]DCIO.EXE; 2

Major Id: 2, Minor Id: 0

Map into program region = Yes

Image section(s):
Type Base VA Page (s)
Read-only 80008A00 38
Noshr Write 8000D600 1
Fixup vector 8000D800 2

CMSC SYS$SYSDEVICE: [ELN]CMSC.EXE; 2
Major Id: 2, Minor Id: 0
Map into program region = Yes
Image section(s):

Type Base VA Page (8)
Read-only 8000E200 20
Noshr Write 80010800 1
Fixup vector 80010A00 1

As both entries show, each shareable image will be mapped into the
referencing program’s address space at run time — 41 pages from
DCIO and 22 pages from CMSC (including their fixup vector pages).

Both images appear in the entry for TEST.EXE because the System
Builder has inserted a KSD or KSDs describing the shareable images
into the list of KSDs for TEST.EXE. Table 2-10 explains the source of
each image section created for TEST.EXE.

2-56 The VAXELN System Image

Table 2-10:

KSDs and Image Sections for TEST.EXE

Section

Pages Source

Explanation

Noshr Write

Read-only
Fixup vector

Read-only

Noshr Write

Fixup vector

1

38

2

TEST.EXE

TEST.EXE
TEST.EXE

DCIO.EXE

DCIO.EXE

DCIO.EXE

A writeable, private section generated by the VAX C
compiler to hold the string constant “Hello, world!\ n”.

The read-only code for the program.

The fixup section generated to record the program’s
shareable-image references and a G* fixup vector table
entry for its single reference to the printf function in the
shareable image DCIO.EXE.

The read-only code in the DCIO shareable image. Because
DCIO.EXE contains .ADDRESS references (demonstrable

by running ANALYZE/IMAGE on DCIO.EXE), the System
Builder copies all its KSDs into TEST.EXE’s KSD list.

The page in DCIO.EXE that contains its six . ADDRESS
references. The KSD for this section was copied from
DCIO.EXE’s KSD list into TEST.EXE’s KSD list.
TEST.EXE’s copy of the KSD actually maps a private
copy of the page in DCIO.EXE that the System Builder
appended to the end of the shareable image. The System
Builder performed .ADDRESS fixups on this duplicate
fixup section to resolve DCIO.EXE’s .ADDRESS refer-
ences to itself within TEST.EXE’s address space. See
Section 2.6.2.1.4.2 for a description of how private copies
of ADDRESS sections are made.

A private copy of DCIO.EXE’s two-page fixup section,
which contains the fixup information for the shareable
image’s G and .ADDRESS references to other shareable
images. Because DCIO.EXE is writeable, the System
Builder inserts a KSD describing the fixup section into
TEST.EXE’s KSD list. TEST.EXE’s copy of the KSD actu-
ally maps a private copy of fixup pages in DCIO.EXE that
the System Builder appended to the end of the shareable
image. The System Builder performed G* fixups on this
duplicate fixup section to resolve DCIO.EXE’s general-
mode references within TEST.EXE’s address space. See
Section 2.6.2.1.4.2 for a description of how private copies
of fixup sections are made.

The VAXELN System Image 2-57

Table 2-10 (Cont.): KSDs and Image Sections for TEST.EXE

Section

Pages Source Explanation

Shareable

Fixup vector

20 CMSC.EXE A global KSD inserted in TEST.EXE’s KSD list to map

CMSC.EXE’s image sections. Although 20 of CMSC.EXE'’s
21 pages are read-only code, its one writeable page
means that the shareable image must be mapped into
TEST.EXE’s address space. Although CMSC.EXE is not
referenced directly by TEXT.EXE, it is referenced by
DCIO.EXE and is therefore included in the system image.

1 CMSC.EXE A private copy of CMSC.EXE’s fixup section, which
contains the fixup information for the shareable im-
age’s G~ references to other shareable images. Because
CMSC.EXE is writeable, the System Builder inserts a
KSD describing the fixup section into TEST.EXE’s KSD
list. TEST.EXE’s copy of the KSD actually maps a private
copy of fixup pages in CMSC.EXE that the System Builder
appends to the end of the shareable image. The System
Builder performed G* fixups on this duplicate fixup sec-
tion to resolve CMSC.EXE’s general-mode references
within TEST.EXE’s address space.

The growth in the size of DCIO.EXE in response to the addition of
the duplicate ADDRESS and fixup sections can be demonstrated by
building successive versions of the C program into the system image
under different names — call them TEST1.EXE and TEST2.EXE. The
number of pages DCIO.EXE occupies in the system image can then be
determined by subtracting the base system address of DCIO.EXE from
the base system address of the shareable image that follows it in the
system image; in this case, CMSC.EXE.

With only TEST.EXE built into the system, the base address of
the DCIO.EXE is 80008A4001¢. The base address of CMSC.EXE is
8000E200;¢, yielding a difference of 580016 or 44 pages. This figure
reflects DCIO.EXE’s native size of 41 pages plus the three pages
added for TEST.EXE’s private copies of the one page containing the
.ADDRESS cells and the two pages containing the fixup section.

With both TEST.EXE and TEST1.EXE built into the image, the
base address of DCIO.EXE is 80009000;¢ and that of CMSC.EXE is
now 8000E E00;¢, yielding a size of 47 pages for DCIO.EXE. Adding
TEST2.EXE to the system image gives DCIO.EXE a base address
of 80009800,¢ and CMSC.EXE a base address of 8000F C00,g, giving

2-58 The VAXELN System Image

DCIO.EXE a size of 50 pages. (The base address of DCIO.EXE in-
creases because the addition of programs forces it to a higher address
in the system image.)

As becomes evident from the pattern established here, each time an-
other program references DCIO.EXE, the size of the shareable image
grows by three pages as it accommodates the referencing program’s
private copies of the image’s single ADDRESS page and two fixup
pages. The System Builder’s address relocation procedure ensures that
each program’s references are resolved through its private copies of the
ADDRESS and fixup sections.

The VAXELN System Image 2-~59

Chapter 3

System Bootstrap, Kernel
Initialization, and Application
Start-Up

The goal of the VAXELN Kernel’s initialization sequence is to prepare
the system for the execution of VAXELN jobs and processes on the
target processor. Before the kernel can initialize itself, it must be
loaded into processor memory by the VAX primary bootstrap program,
VMB.

This chapter first describes, in Section 3.1, the role of VMB in loading
the VAXELN system image into memory and transferring control to
the code for the kernel’s initialization. Section 3.2 then focuses on the
initialization process itself, which proceeds through the three distinct
phases of the secondary bootstrap:

1. Unmapped initialization. Memory management is disabled while
the kernel creates essential system data structures and maps them
into system address space.

2. Enabling memory management. This allows the kernel to execute
using system virtual addresses.

3. Mapped initialization. The kernel creates and initializes the re-
mainder of its data structures, creates the start-up job, and com-
pletes its initialization by invoking the scheduler to begin job
execution.

Section 3.3 then describes how the VAXELN start-up job creates system
and user application jobs.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-1

3.1 Primary Bootstrap: VMB

The VAX primary bootstrap program, called VMB, provides a general-
purpose method for bootstrapping VAX processors. VMB’s primary
functions are the following:

¢ To locate and determine the size of physical memory on the system

* To locate the secondary bootstrap program, load it into memory
from the boot device, and transfer control to it

For VAXELN systems, the secondary bootstrap program loaded
into memory is the VAXELN system image created by the System
Builder and described in Chapter 2, The VAXELN System Image.

The operation of VMB is described in some detail in the text VAX/VMS
Internals and Data Structures. This discussion will focus on the layout
of main memory that VMB establishes before it transfers control to the
secondary bootstrap program. This memory state is the starting point
for the kernel’s initialization.

Figure 3—-1 shows the layout of memory as VMB transfers control to
the VAXELN Kernel and shows how the locations of those memory

structures are transmitted to the kernel. Table 3—1 describes these

structures.

3-2 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3-1:

State of Physical Memory After VMB Executes

Restart Parameter Block (RPB)

Primary Bootstrap Program (VMB)
(Bootstrap Driver and $QIO Routine)

A

System Control Block (SCB) for VMB
(1 page)

Page Frame Number (PFN) Bitmap
(4 Pages)

Bootstrap Interrupt Stack
(3 Pages)

A

VAXELN Kernel
and the Remainder
of the System Image

A

R11

SCBB (SCB Base)

RPB$Q_PFNMAP + 4

SP, R10

RO through R5 contain initial bootstrap
parameters, which are copied into the
RPB by VMB.

AP in down-line loaded systems
points to the VMB parameter block.
MLO-003214

System Bootstrap, Kernel Initialization, and Application Start-Up 3-3

Table 3—1: Bootstrap Elements in Memory After VMB Executes
Element Description

Restart parameter block A 512-byte structure that stores bootstrap param-

(RPB) eters (loaded by VMB), system values (loaded by
the kernel), and volatile machine state informa-
tion (loaded by KER$POWER_FAIL in module
POWERFAIL) to enable system restart after a
power failure (although restarts are not supported).

For example, VMB stores the size and address

of the page frame number (PFN) bitmap in the
quadword RPB$Q_PFNMAP; the kernel then uses
and updates this field when it initializes its own

PFN bitmap.
Primary bootstrap pro- The VMB image. VMB occupies fewer than 64K
gram bytes of memory. Most of the VMB image is over-

written as the secondary bootstrap program is read
into memory. All that remains of VMB at this point
is the appropriate bootstrap driver and a skeletal
$QIO routine. These remainders of the VMB image
are eventually overwritten as the kernel begins to
allocate the page frames they occupy.

System control block A one-page structure that contains vectors for

(SCB) interrupt, exception, and machine-check handlers
for VMB’s execution. The kernel creates its own
boot-time SCB at a different location; therefore,
VMB’s SCB is eventually overwritten.

3-4 System Bootstrap, Kernel Initialization, and Application Start-Up

Table 3-1 (Cont.):

Bootstrap Elements in Memory After VMB
Executes

Element

Description

Page fram number
(PFN) bitmap

Bootstrap interrupt
stack

VAXELN Kernel

A bitmap that contains one set bit for each good
page of memory located by the bootstrap’s memory-
testing sequence.

The first longword in the quadword RPB$Q _
PFNMAP contains the size in bytes of the bitmap;
the second longword contains the physical address
of the bitmap. On systems with 8 megabytes or
fewer of memory, the PFN bitmap is held in these
original four pages; otherwise, the bitmap is located
in contiguous page frames at the high end of main
memory.

When the kernel initializes, it copies and maps
the bitmap, and the pages occupied by the original
bitmap are eventually overwritten.

Initially, the bitmap shows all good page frames

as available, including those occupied by the VMB
structures. Any frames not marked in the bitmap
are eventually overwritten by subsequent alloca-
tions of physical memory. Therefore, the kernel
marks the page frames occupied by those structures
that it will keep — the RPB and the system image
— as used.

The stack used by VMB during its execution. When
control is transferred to the kernel, the stack
pointer (SP) points to the base of this stack. The
kernel uses this stack, which grows toward lower
addresses, until memory management is enabled,
at which time the kernel’s interrupt stack is used.
Afver this, the pages occupied by the original stack
are eventually overwritten.

The secondary bootstrap program. VMB transfers
control to the first byte in the VAXELN system
image that it has loaded into memory.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-5

3.2 Secondary Bootstrap: Initializing the Kernel

Once the system image has been loaded into physical memory on the
target processor, control is transferred to the first byte in the image.
That byte is a Branch with Word Displacement (BRW) instruction to
transfer control to the start of the kernel initialization code, at label
KER$START in module INITIAL. The kernel’s execution begins in the
following environment:

¢ Memory management is disabled.

* IPL is set to 31, disabling all interrupts.

¢ Execution is on the boot interrupt stack.

¢ Memory is organized as shown in Figure 3-1.

The following sections describe the kernel’s initialization, which occurs
in three stages:

1. Unmapped initialization (Section 3.2.2)

2. Enabling memory management (Section 3.2.3)
3. Mapped initialization (Section 3.2.4)

Most of the initialization sequence does not depend on the type of pro-
cessor executing the code. However, certain portions of the sequence,
such as the initialization of I/O adapters and the SCB, do require
processor- or bus-specific code. The mechanism the kernel uses to
support processor-dependent initialization is described in Section 3.2.1.

After initialization completes, system virtual memory is structured as
shown in Figure 3-2. Table 3—2 describes the structures mapped into
S0 memory during initialization.

3-6 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3-2: Mapping of the SO Region by the Kernel

180000000
VAXELN System image

Restart Parameter Block

Console I/O Context Block

System Control Block
and Unexpected-Event Biock

Page Frame Number Bitmap

Interrupt Stack
(one per processor)

Processor-Specific Registers

Machine-Check Handler Data

System Page Table

Console Registers and Data

Crash-Restart Log

Error-Log Message Butfer Pool

System Dynamic Pool

PO Page Table Siots

P1 Page Table Slots

Port Address Table

Local Name Table

Local Debugger Data

Communication Region Bitmap

Adapter 1/0 Space

Communication Region

Maximum S0 Size
Unmapped Portion
of SO Space
e e oo - --------+ BFFFFFFC
MLO-003216

pm——-—

System Bootstrap, Kernel Initialization, and Application Start-Up 3-7

Table 3-2: System Components Mapped into SO Address Space

Component

Description

System image

Restart parameter block
Console I/O context block

System control block (SCB) and
unexpected-event dispatch block

Page frame number (PFN)
bitmap

Interrupt stack

Processor-specific registers

Machine-check handler data

System page table

Console registers and data

The memory-resident image of the system image file pro-
duced by the System Builder. The system image is mapped
from the base of SO space — 80000000;6 — for the number of
page frames equal to KER$GW_SYSTEM_SIZE. Chapter 2
describes the components of a system image.

The structure created by VMB. See Table 3—1.

A block containing pointers to data and flags required by the
console I/O subsystem.

A multipage structure containing the addresses (vectors) of
routines to handle exceptions and interrupts. The size of the
SCB varies from processor to processor.

Identical in size to the SCB, the unexpected-event dispatch
block contains instructions that transfer control to a handler
routine when unexpected interrupts or exceptions occur.

The structure representing available pages of physical
memory. See Table 3—1.

The stack used when the system is running in system
context; for instance, during system initialization and the
execution of device interrupt service routines. Code that
runs on the interrupt stack can reference only system
addresses.

The system virtual address region to which the processor-
specific registers (such as the MicroVAX system-extension
identification register) are mapped. These registers are
accessed with MOV instructions and should not be confused
with the architecturally defined internal processor registers
accessed with MTPR and MFPR instructions.

The system virtual address region that maps processor-
specific data used during machine-check handling.

The VAX page table that maps the entire system region.
This table supports the translation of system virtual ad-
dresses to physical addresses.

The system virtual address region that maps the console /O
registers and data that enable the kernel to write messages
directly to the system console.

3-8 System Bootstrap, Kernel Initialization, and Application Start-Up

Table 3-2 (Cont.): System Components Mapped into SO Address Space

Component

Description

Crash-restart log

Error-log message buffer pool

System dynamic pool

PO page table slots

P1 page table slots

Port address table

Local name table

Local debugger data

Communication region bitmap

The system virtual address region that maps buffers used
during the orderly shutdown of the system after a fatal
system bugcheck.

The system virtual address region that maps a number of
buffers — set by the Number of buffers value on the Error
Log Characteristics Menu — available for storing posted
error log entries before they are written to the error log file.
The size of each buffer is determined by the global value
KER$GW_EMB_SIZE (1 page).

The address range that maps a number of 128-byte
blocks — set by the Dynamic pool value on the System
Characteristics Menu — available for the creation of kernel
objects and related system components.

A block of system virtual addresses reserved for PO page
tables, their allocation bitmaps, and the PO page table slot
bitmap.

A block of system virtual addresses reserved for P1 page
tables, their allocation bitmaps, and the P1 page table slot
bitmap.

A block of system virtual addresses reserved for the ad-
dresses of the port objects created by the jobs in the system.
The table contains the number of longwords specified as the
global parameter value KER$GW_PORT _SIZE.

A block of system virtual addresses reserved for the list-
heads for the local name table, in which the kernel records
names associated with local port objects. The table con-
tains the number of table listheads specified by the global
parameter value KER§GW_NAME_SIZE (128).

The system virtual address region that maps a buffer used
by the local debugger. This buffer exists only on systems
that include local debugging support.

The bitmap used to control the allocation of virtual pages in
the communication region.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-9

Table 3-2 (Cont.): System Components Mapped into SO Address Space

Component Description

Adapter I/O space The system virtual address region that maps the VAX
physical addresses reserved for I/O adapters, such as VAXBI
nodes and UNIBUS adapters, and control/status registers.

Communication region A block of system virtual addresses reserved for the alloca-

tion of device communication regions and dynamic program
space, and for job allocation of SO memory.

Accompanying the region is an allocation bitmap. The size
of the region (and its bitmap) is determined by the global
parameter value KER$GW_IO_SIZE, which combines the
values of the System region size and Dynamic program
space entries on the System Characteristics Menu. The
word size of the value limits the size of the communication
region to 65,535 pages (32 megabytes).

3.2.1 Processor-Specific Factors

When initialization requires a processor-specific operation, the kernel
calls generic internal subroutines to perform the operation appropriate
for the target processor. The processor-specific initialization operations
include:

¢ Configuring I/O address space

¢ Mapping I/O address space

¢ Creating the system control block

¢ Initializing machine-check data blocks

* Mapping and initializing processor-specific registers

For example, to determine the size of the SCB required by the target
processor, the kernel calls the generic subroutine KER$SCB_PAGCNT,
which returns the number of SCB pages required for the processor
type. The code executed in the subroutine depends on the type of
kernel executing; that is, KER$SCB_PAGCNT returns a different value
when called in the kernel for Q22-bus-based processors than it does in
the kernel for VAXBI-based processors.

3-10 System Bootstrap, Kernel Initialization, and Application Start-Up

The processor-specific version of these subroutines is included when
the kernel image for the processors is linked. For example, when the
8NNKER kernel is linked, it includes the processor-specific initializa-
tion module INITSNN. One INITrnnn module exists for each processor
supported by the kernel. When the kernel calls one of the generic
subroutines, such as KER$SCB_PAGCNT, control is transferred to
the subroutine in module INIT8NN, which returns the number of
SCB pages required by the VAXBI-based processors supported by that
module.

In the QBUSKER and UBUSKER versions of the kernel, processor-
specific subroutine calls are vectored through an intermediate, bus-
specific module, either COMBQ22BUS or COMBUNIBUS, which is
also included at link time for QBUSKER and UBUSKER. These mod-
ules contain the generic subroutine entry points, such as KER$SCB_
PAGCNT, which in turn dispatch the call at run time (through a CASE
instruction) to a processor-specific routine based on the exact processor
type.

For example, when the kernel calls KER$SCB_PAGCNT while execut-
ing on a MicroVAX II-based processor (KA620 or KA630), control is first
transferred to the generic subroutine entry point in the COMBQ22BUS
module. That routine then determines the processor type and trans-
fers control to the processor-specific subroutine UV2$SCB_PAGCNT in
module INITUV2.

The kernel does on occasion determine the processor type in line, when
only a few instructions are involved. Usually, the type of processor can
be determined from the contents of the global value KER$GB_CPU_
TYPE, which is set early in the initialization sequence. Processor type
can also be determined from global Boolean values such as KER$GB_
RTVAX, which indicates that processor is a KA620.

3.2.2 Unmapped Initialization

When VMB transfers control to the kernel, VAX memory management
— mapping — is disabled, and the processor uses the physical ad-
dresses of code and data. The major goal of this first, unmapped phase
of initialization is to create and initialize the system page table so that
memory management can be enabled.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-11

During unmapped initialization, the kernel keeps track of both the
current physical and system virtual addresses of the data structures it
creates. Once a structure is created, consuming physical and virtual
address space, these addresses are updated to reflect the next available
page of physical and virtual memory.

Unmapped initialization follows these basic steps:

1. The address of the first available page of physical memory is deter-
mined. If the system image resides in ROM, the system data block
is copied to writeable memory. See Section 3.2.2.1.

2. The console is initialized for I/0 from the kernel, and the console
I/0 context block is allocated and initialized. See Section 3.2.2.2.

3. The SCB is initialized with the address of kernel boot-time inter-
rupt, exception, and machine-check handlers. See Section 3.2.2.3.

4. The processor type is determined. In tightly coupled symmetric
multiprocessing systems, the number of available processors is also
determined. See Section 3.2.24.

5. Certain values are copied from the system parameter block to
the system data block. On down-line loaded systems, the system
node name and address are saved in the data block as well. See
Section 3.2.2.5.

6. The PFN bitmap is copied to its final location, and its bitmap
descriptor is initialized. See Section 3.2.2.6.

7. The physical and virtual memory sizes of the system data struc-
tures are computed. See Section 3.2.2.7.

8. The system page table is created, and the system structures are
mapped into it. See Section 3.2.2.8.

3.2.2.1

Step 1 — Find the First Writeable Page and Copy ROM Data

The kernel determines the address of the first writeable page of mem-
ory by adding the number of pages in the system image (KER$GW_
SYSTEM_SIZE) to the number of pages by which the beginning of the
system image is offset from the base of memory. This offset is repre-
sented by the physical address of the global location KER$VECTOR_
START.

If the system is not executing from ROM, this first writeable page is
the first page in memory following the system image, and the kernel
sets the value of KER$GL_FIRST_WRT_PAGE to 0. Otherwise, the
first writeable page is the first page in memory, pointed to by R10
and SP. (The value of KER$GL_FIRST_WRT_PAGE is used during

3-12 System Bootstrap, Kernel Initialization, and Application Start-Up

job creation to determine whether the memory of a shareable, write-
able image section must be copied from ROM. A nonzero value for
KER$GL_FIRST WRT_PAGE means that the copy must be made.
See Section 2.6.2.1.3, ISD$V_WRT Flag Set and ISD$V_CRF Clear —
Shareable Data Sections.)

When a VAXELN system is booted from ROM on a MicroVAX I target,
the kernel copies the system data block from its location in read-only
memory to the first writeable pages of memory. The base address

of the data block, once represented by the value of the global label
KER$GR_KERNEL_DATA, is now the physical address of the copied
data, and the first writeable page is now the physical address of the
page following the new data block. Subsequent allocations of physical
memory begin with that page.

Even though the data block is actually copied only on ROM-based
MicroVAX I systems, in all cases the kernel subsequently writes to
data cells using each cell’s relative displacement from the physical
base of the data block. This form of reference is required when the
data has been copied because the original addresses of the data cells,
represented by their symbolic names, have been rendered invalid by
the displacement of the data block. Therefore, to write to a data cell,
the kernel determines the location of the cell by subtracting the virtual
address of the base of the data block (KER$GR_KERNEL_DATA) from
the virtual address of the data cell, represented by its KER$ symbolic
name, for example, KER$GA_SPT_PHYSICAL.

Throughout the unmapped phase of initialization, the kernel stores the
physical address of the data block in a general register (R8). Therefore,
the kernel would write the value of KER$GA_SPT_PHYSICAL in the
following manner:

MOVL R1l,WAKER$GA_SPT_PHYSICAL-KER$GR_KERNEL DATA (R8)

The virtual address of the original location of the data block is sub-
tracted from the virtual address of data cell KER$GA_SPT_PHYSICAL.
The result represents the byte offset of the data cell within the block.
This value is then used as a byte displacement from the physical base
of the block, stored in RS, to yield the physical address of the cell. The
data is then written to that location. Subsequent reads of KER$GA_
SPT_PHYSICAL must also use this technique, because the updated
value must be read from the potentially relocated data block.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-13

Later in unmapped initialization, the kernel determines whether it
has copied the data block by comparing the current base address of
the block to the value of KER$GR_KERNEL_DATA. If the values are
different, the kernel then maps the relocated data block into the S0
page table entries that had mapped the original data block in ROM.
When memory management is enabled, the relocated data cells can
then be referenced by their symbolic names, because their virtual
addresses have been remapped to their new physical locations in the
data block.

3.2.2.2 Step 2 — Initialize the Console

The kernel initializes the system console for I/O by calling the internal
subroutine KER$CONIO_INITIAL (in module CONSOLIO). This func-

tion obtains the byte offset of the console I/O shareable image from the
parameter KER$GL_BIOS_OFFSET and adds it to the physical base of
the system image, yielding the physical address of the console I/0O code.
This address is then stored in KER$GA_CONIO_CODE.

The subroutine then calls the console I/O routine to initialize the
console registers by vectoring a procedure call through the address

in KER$GA_CONIO_CODE. Because this is a physical address, the
console will have to be reinitialized during mapped initialization so that
the virtual address of the console I/O code can be written to KER$GA_
CONIO_CODE. On certain processors, console initialization includes
the creation and initialization of a console I/O context block to record
the addresses of components such as fonts and graphics controller
control/status registers.

The kernel does not normally write to the console during unmapped
initialization, but, because the console might receive boot-time error
and machine-check messages, it must be initialized during this phase
of execution.

3.2.2.3 Step 3 — Initialize the Boot-Time SCB

For the unmapped phase of initialization, the kernel establishes a
special SCB to handle unexpected interrupts, exceptions, and machine
checks.

To create the SCB, the kernel obtains the size in pages of the SCB

for the target processor (by calling the subroutine KER$SCB_PAGCNT)
and fills each longword vector in those pages with the address of a boot-
time interrupt/exception handler. The second longword in the SCB —

3-14 System Bootstrap, Kernel Initialization, and Application Start-Up

the machine-check vector — is filled with the address of the boot-time
machine-check handler.

The first page of the SCB occupies the first page in memory beyond the
system image or beyond the console 1/0 context block (if one is present),
and the physical address of that page becomes the value of the SCBB
(SCB base) privileged register. (When the system image is in ROM, the
SCB begins on the first page after the relocated kernel data block or
after the console I/O context block.)

The unexpected interrupt/exception handler and the machine-check
handler are the local subroutines BOOT_INTEXC and BOOT_
MACHINECHK, respectively. Both routines display an error mes-
sage on the console and place the processor in an infinite loop to await
the manual halt and reboot of the processor.

3.2.2.4 Step 4 — Determine the Processor Type

The kernel must determine early in initialization whether it is compat-
ible with the target processor. This determination is made by calling
the processor-specific subroutine KER$CHECK_CPUID (in module
INITrnn). This routine reads the contents of the system identification
register (SID) and compares the processor identification there with the
identifications of the processors supported by the version of the execut-
ing kernel. If a mismatch occurs, the routine returns a failure value,
causing the kernel to display an error message on the console and enter
an infinite loop.

If the general processor type is supported — for example, a Q22-bus-
based processor — processor type is narrowed further — for example, a
MicroVAX II versus a MicroVAX 3600. Based on the value of the SID
register, the kernel sets or clears processor-type flags in the data block.
For example, on Q22-bus-based processors, the low bit in KER$B_
QBUS is set; on VAXBI-based processors, the KER$B_VAXBI flag is
set.

These processor flags are checked by some kernel routines to determine
whether certain processor-specific actions should be taken. For exam-
ple, when creating process page tables, the kernel checks the KER$GB_
RTVAX (KA620) flag. If it is set, physical addresses, instead of the
usual system virtual base addresses, are used as the values of POBR
and P1BR.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-15

3.2.2.5 Step 5 — Copy Parameters to the Data Block

Values in the kernel parameter block (in module PARAMETER) that
are designated “initial” are copied to their respective cells in the kernel
data block (see Tables A—2 and A-1). For example, the read-only value
KER$GQ_INITIAL_CONNECT_TIMEOUT set by the System Builder
is copied to the read/write cell KER$GQ_CONNECT _TIMEOUT in the
data block. The transfer of these data items allows their values to be
dynamically updated in future versions of the kernel.

If the system image was down-line loaded, the kernel copies the target’s
and host’s node names and addresses from the VMB parameter block
to KER$GQ_NODE_ADDRESS and KER$GT _NODE_NAME, and

KER$GQ_HOST_ADDRESS and KER$GT_HOST_NAME, respectively.

3.2.2.6 Step 6 — Initialize the PFN Bitmap

The kernel copies the PFN bitmap created during processor bootstrap
to the next free pages in memory. The bitmap descriptor located at
RPB$Q_PFNMAP in the RPB specifies the size and address of the
bitmap. If the Memory limit entry on the System Characteristics
Menu has been set to a nonzero value (in the system parameter
KER$GL_MEMORY_LIMIT), the kernel truncates the bitmap to the
specified length, effectively limiting the amount of physical memory
that the kernel recognizes.

A zeroed longword is appended to the end of the bitmap as a termina-
tor, and the quadword descriptor in the RPB is updated with the new
size and address of the PFN bitmap. The descriptor is used later to
map the bitmap and create the kernel’s own bitmap descriptor in the
data block.

3.2.2.7 Step 7 — Compute the Sizes of System Data Structures

Before the kernel can create the system page table, it must determine
the number of pages the system will occupy. Each page will be rep-
resented by one longword page table entry (PTE) in the system page
table (SPT). The kernel keeps two tallies: the number of physical pages
and the number of virtual pages.

The count of physical pages is used to determine the physical address
of the base of the SPT and whether the target contains enough physical
memory to contain those system structures that are mapped in the
system page table before the system page table itself is mapped; the
count of virtual pages is used to determine the size of the page table.

3-16 System Bootstrap, Kernel Initialization, and Application Start-Up

Therefore, the kernel counts only the physical sizes of structures that
are mapped into system address space before the system page table.

For example, the machine-check handler data block is mapped into sys-
tem address space before the system page table; therefore, its required
number of pages is added to both the counts of physical and virtual
pages. By contrast, the error-logging message buffer is mapped after
the system page table; therefore, its required number of pages is added
only to the count of virtual pages.

The global value KER$GW_SYSTEM_SIZE specifies the number of
pages occupied by the system image itself. The total system size is
calculated by adding the size of the system image to the size of the
following system data structures:

e The restart parameter block. This block occupies a single page.

* The console I/O context block. This block occupies the number of
pages required for data to support the console /O subsystem. The
block exists only on systems that support workstation graphics
displays.

¢ The system control block and unexpected-event dispatch block. The
size of the SCB is processor-specific. The kernel calls KER$SCB_
PAGCNT to return the SCB size for the target processor. The
returned value is doubled to accommodate the unexpected-event
dispatch block. See Section 3.2.4.3.

¢ The PFN bitmap. The number of bytes in the PFN bitmap specified
in the RPB$Q_PFNMAP descriptor is used to calculate the number
of bitmap pages, rounded to the next page.

¢ The interrupt stack. The size of the interrupt stack is specified by
the value of the system parameter KER$GW_ISTACK_SIZE, set on
the System Characteristics Menu.

Since each processor in the system has its own interrupt stack, the
number of pages specified (plus one as an invalid-stack page), is
multiplied by the number of processors.

® Processor-specific registers. The number of pages required to map
process-specific registers, such as the system identification register
extension on MicroVAX processors, is determined by calling the
process-specific subroutine KER$REGSP_PAGCNT.

¢ Console registers and data. The number of pages required to map
the console’s registers and data block is determined by calling
console-specific I/O procedures.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-17

¢ The machine-check handler data block, the crash-restart logs,
error-log message buffers, and dump control block and I/O buffer.
The size of the machine-check handler data block is determined
by calling the processor-specific subroutine KER$MCHK_PAGCNT.
Since each processor in the system requires its own machine-check
data block, the number of pages is multiplied by the number of
processors.

If error logging is enabled for the system, the value of KER$GW_
EMB_COUNT (set on the Error Log Characteristics Menu) is added
only to the total of virtual pages. The number of pages required for
the dump control block and the dump I/O buffer are read from the
code block for the system dump facility.

¢ The system dynamic pool. The number of pages in the system pool
is determined by the value of KER$GW_POOL_SIZE, set on the
System Characteristics Menu.

¢ The PO and P1 page table slots and associated bitmaps. The size
of a process page table slot includes the size of the page table itself
plus the size of its page table entry bitmap. The total number of
pages required to hold all the PO and P1 page table slots includes
the sizes of the two bitmaps that control the allocation of the page
table slots themselves. One bitmap page — the minimum allocation
for a bitmap — can represent 4096 (8 = 512) page table slots.
Figure 9-3 shows the layout of system memory reserved for the P0
and P1 page table slots.

Size requirements are determined as follows:

— The number of bits in the page table slot bitmap is determined
by the values of KER$GW_P0_SLOT_COUNT and KER$GW_
P1_SLOT_COUNT (set on the System Characteristics Menu),
rounded up to the next page.

— The number of pages required by the table slots is determined
by multiplying KER$GW_P0_SLOT_COUNT or KER$GW_P1_
SLOT_COUNT by the size in pages of a single PO or P1 page
table and its bitmap descriptor.

— The size of a page table, in pages, is determined by the value of
KER$GW_PO_SLOT_SIZE or KER$GW_P1_SLOT_SIZE (also
set on the System Characteristics Menu).

Since each page table page will map 128 pages of virtual mem-
ory, 128 bitmap bits — 16 bytes — is required for each page
table page.

3-18 System Bootstrap, Kernel Initialization, and Application Start-Up

Once the size in pages of a bitmap is determined, that value is
added to KER$GW_PO_SLOT_SIZE or KER$GW_P1_SLOT _SIZE
to yield the value of KER$GW_P0_SLOT_LENGTH and KER$GW_
P1_SLOT_LENGTH, respectively.

Since the page table slots are mapped after the system page table,
their sizes are added only to the count of virtual pages.

* The port address table. The value KER$GW_PORT_SIZE (set on
the System Characteristics Menu) specifies the number of ports the
system can support at one time. One page of the port address table
is required for each 128 ports requested.

* The local name table. The local name table requires eight bytes
for each name listhead. The number of listheads is determined by
the value of KER$GW_NAME_SIZE (128). One page is required for
every 64 listheads.

* 1/O space and the communication region. The total number of
pages required to map these regions depends on the number of
pages required to map the system’s I/O space, the dynamic program
region, and the system region. This number of pages is determined
by the local subroutine COMPUTE_IO_SIZE.

COMPUTE_IO_SIZE uses the processor-specific subroutine
KER$COMPUTE_IOPAGCNT to obtain the number of pages re-
quired for I/O space; this value is added to KER$GW_IO_SIZE
(which combines the System Builder values System region size
and Dynamic program space) to yield the number of pages in the
commanication region. This total is added only to the virtual page
count.

* The system page table itself. Each page in the system page table
can map 128 pages of system virtual memory. Therefore, the size of
the page table is determined by the total number of virtual pages
in the system plus the number of page table pages required to map
those system virtual pages.

3.2.2.8 Step 8 — Initialize the System Page Table and Map Existing Components

Once the kernel has determined the maximum virtual size of the
system, the system page table can be created. The physical page count
becomes the page frame number (PFN) of the base address of the
system page table, and the virtual page total becomes the length of the
table.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-19

The kernel compares the length of the page table with the length of
the PFN bitmap. If the bitmap contains fewer bits than the number
of virtual pages the page table can map, the system has insufficient
physical memory. Therefore, the kernel displays an error message on
the console and enters an infinite loop. If sufficient physical memory
exists, the physical address of the page table is written to the system
base register (SBR) and KER$GA_SPT_PHYSICAL, and the virtual
page total is written to the system length register (SLR) and KER$GL_
SPT_LENGTH.

With the system page table initialized, the kernel then begins mapping
selected system components in the page table. At this point, only
structures that already reside in physical memory are mapped. Once
they are mapped, memory management can be enabled. The top half of
Figure 3-2, down to the system page table, shows the elements mapped
at this stage of initialization.

The mapping is performed by calling the local subroutine KER$FILL_
SPTE. This routine creates a system page table entry for each page by
inserting the current physical page frame number into the SPTE speci-
fied by the kernel’s system page table entry pointer. After each SPTE is
created, the subroutine advances the values of the current page frame
number, the current system virtual address, and the address of the
next SPTE to be filled.

The routine also marks the page frame in use by setting its correspond-
ing bit in the PFN bitmap (only if the PFN is within the bitmap; for
example, physical addresses used to map I/O space are not represented
by bits in the PFN bitmap). KER$FILL_SPTE is called once for each
page frame mapped in the system page table.

The following system components, which precede the system page table
in virtual memory, are mapped in the system page table at this time:

* The system image. The kernel sets the current page frame counter
to indicate the start of the system image (KER$VECTOR_START),
calls KER$FILL_SPTE for each page specified by KER$GW_
SYSTEM_SIZE, and restores the page frame counter. Since the
first page of the system image is mapped in the first SPTE, the SO
addresses assigned to components in the system image — based at
80000000; — will be valid when memory management is enabled.

¢ The kernel data block. If the kernel’s data has been relocated from
its original location in MicroVAX I ROM, the kernel maps the data
into the SPTEs that mapped the original data block.

3-20 System Bootstrap, Kernel Initialization, and Application Start-Up

* The RPB. The current virtual address is written to KER$GA_RPB
to set the base of the RPB, and the block is mapped. The kernel
also completes the initialization of the RPB at this point.

® The console I/O context block. The current virtual address is writ-
ten to KER$AA_CONIO_CONTEXT + 4 to set the virtual base of
the context block. Each page in the block is mapped.

e The SCB. The current virtual address is written to KERSGA_SCB_
BASE. The number of pages in the SCB is returned by calling
KER$SCB_PAGCNT and is doubled to account for the size of the
unexpected-event dispatch block that follows the SCB. Each page of
both blocks is mapped.

® The PFN bitmap. The PFN bitmap descriptor located at KER$GR_
PAGE_BITMAP is initialized with the length and virtual address of
the bitmap. Each page is mapped.

¢ The interrupt stack. The interrupt stack for each processor is
mapped, and the SPTE representing the end page in each stack is
cleared.

* Processor-specific registers. These registers are mapped by calling
the processor-specific subroutine KER$SREGSP_MAP, which returns
the address of a table that describes the registers specific to that
processor. This address is then passed to the local subroutine
MAP_REGSPACE to perform the actual mapping. The current
virtual address becomes the value of KER$GA_CPUREGSP.

® The machine-check handler data block. The number of pages for
the machine-check handler data block is determined by calling the
processor-specific subroutine KER$MCHK_PAGCNT. That number
of pages is mapped for each processor in the system, and the virtual
address of each block is written to the array located at KER$GA_
MACHINECHK_DATA, indexed by processor number.

¢ The system page table itself. The SPT is the last component to
be mapped before memory management is enabled. The current
virtual address becomes the value of KER$GA_SPT_BASE, and the
value of KER$GA_SPT PHYSICAL is used to determine the first
page frame to be mapped.

Once these items have been mapped, the kernel begins the process of
enabling memory management, as described in Section 3.2.3.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-21

3.2.3 Enabling Memory Management

The kernel prepares to enable memory management by superimposing
a temporary P0 page table over the portion of the SO page table that
maps the kernel’s initialization code. When memory management

is enabled, a single instruction is executed in PO space to load the
program counter (PC) with the SO address of the next initialization
instruction.

The instruction that transfers execution to SO space is executed in
PO space because its physical address can be mapped to an identical
PO address. The range of PO space addresses 0 to 3FFFFFF Fyg also
describes the maximum range of physical addresses supported by the
VAX architecture. This guarantees that a PO address will match the
physical address of the instruction that initiates execution in system
space.

Figure 3-3 shows how the kernel overlays the SO page table with the
temporary PO page table, enables memory management, and transfers
control to a system virtual address. The technique depends on displac-
ing the base of the PO page table from the start of the SO page table
to account for the page offset of the kernel from the start of physical
memory. Because the system image is the first element mapped in
the SO page table, the first page of the kernel is mapped by the first
SPTE. This displacement means that when the physical address of
the first mapped instruction is interpreted as a PO virtual address, its
translation will again yield the physical address of that instruction.

The kernel sets up the temporary PO page table with the following
steps. The sample values presented in the discussion refer to those
shown in Figures 3—4 and 3-5, which illustrate the relationship of

the SO and PO page tables to the physical memory they map. These
instructions execute with memory management disabled, so all memory
references are to physical addresses.

3-22 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3-3: Kernel Code That Enables Memory Management

MAPEN ENABLE:

MOVAB WAKERSVECTOR_START, RO ; get physical address of kernel

ASHL #-VA$V_VPN,RO,RO ; compute its base PFN

MNEGL RO,R1 ; negate the PFN

BLBS WAKER$GB_RTVAX-- ; branch if Ka620
KER$GR_ICERNEL_DATA (R8) ,108

MOVL WAKER$GA_SPT_ BASE-- ; get virtual address of SPT

KER$GR_KERNEL_DATA (R8) ,R2

BRB 20% ; rejoin common code
10$: MOVL W“KERSGA_SPT_PHYSICAL-- ; get physical address of SPT
KERSGR_KERNEL_DATA(R8),R2
208%: MOVAL (R2) [R1],R1 ; compute equivalent POPT base address
MTPR R1, #PR$_POBR ; set base address of PO page table

ADDL3 AP,RO,R1

; compute length of PO page table

MTPR R1, #PR$_POLR ; set length of PO page table

INVALID ALL

; invalidate entire translation buffer

mtpr #0,#PR$_TBIA
MTPR #1, #PR$_MAPEN ; enable memory management
JMP @#MAPPED EXECUTION ; set PC to a system virtual address
MAPPED EXECUTION: ; begin mapped execution...
GETCPU RO ; get current processor number
clrl RO

System Bootstrap, Kernel Initialization, and Application Start-Up 3-23

Figure 3-4: Enabling Memory Management Through the Temporary
PO Page Table, Part 1

Temporary PO Page Table

A, —— - ——— POBR (80035B4C,,)
| 1
| I
! | Offset from base of
y 45 Dummy A SPT to align POPTE and
'l POPTEs 1 SPTE for page frame 54
: : (80035C00,,-45 longwords)
@ i 2 Puae Tame
r-- T <«— KER$GA_SPT_BASE
Y | PFN = 45 43 | (80035C00,,)
Indexing into T~ ~ . :
POPT with | 46 4% !
VPN 54 yields I =~ ., !
the POPTE for | 47 & !
page frame 54.F = = . ! Double-mapped
:_ __ 48 ! S0 and PO PTEs
¥
| 49 43 0
P=-- T
i 50 A !
F=- T
1 51 b |
| aatiand T
| 52 % [
| hadind T
| 53 53 [
e o Hmdind y
i 54 54 e
54
[i t +
: : 258 byte offset
| ! -

MLO-003216

3-24 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3-5: Enabling Memory Management Through the Temporary
PO Page Table, Part 2

®

The JMP puts the
S0 address of
MAPPED_EXECUTION
into the PC.

Physical Memory

Page Frame 0

AN

3

Page Frame 45

::KER$VECTOR_START

46

Kernel Vectors

47

48

Kernel Data

49

50

51

52

Start of INITIAL

53

54

MTPR #1, PR$_MAPEN
JMP @#MAPPED EXECUTION

MAPPED EXECUTION:
GETCPU RO

O

l«— After this instruction
PC=6D02 (PFN 54, Byte 258).
PFN 54 becomes the PO VPN
index into the POPT when
6D02 is transiated as a

PO address in(®.

MLO-003217

System Bootstrap, Kernel Initialization, and Application Start-Up 3-25

1. The physical address of the kernel’s base — represented by the
global label KER§VECTOR_START — is obtained. In Figure 3-5,
that physical address is 5400;¢.

2. The PFN field of the physical address is extracted. This value
represents the page offset of the base of the kernel image from the
start of memory. In Figure 3-5, this means that the kernel starts
on the 45th page frame.

3. The page frame offset determined in the previous step is negated.

4. For all processors but the KA620, the virtual address of the base
of the SO page table is obtained from the KER$GA_SPT_BASE
field in the kernel data block. This value was calculated during
the mapping of the SO page table. In Figure 3—4, the SPT base is
800035C00;6. On the KA620 processor, the physical address of the
S0 page table is obtained instead from KER$GA_SPT_PHYSICAL.

5. The negated page frame offset of the kernel is subtracted from
the base address of the SPT to yield the required base virtual
address of the temporary P0 page table. In Figure 3-5, this value
is 80035B4Cg, 45 longwords — POPTEs — before the base of the
SPT. On the KA620 processor, the offset is subtracted from the
physical base of the SPT to yield the physical address of the PO
page table.

This is the critical step: when the VPN derived from the address
of the JMP instruction is added to the base address of the PO page
table during address translation, the resulting POPTE is also the
SPTE holding the PFN of the page frame that contains the JMP
instruction.

6. The virtual address of the base of the temporary POPT is written
to the POBR for use during address translation. On the KA620
processor, the physical address of the POPT is written to POBR.

7. The kernel’s page offset is added to the present physical size of the
system to become the value of the POLR.

8. The address translation buffer is invalidated.

The next three instructions in the sequence merit closer attention.
Each instruction executes in a different address space — physical, PO,
and SO (the list numbers correspond to the numbers shown in Figures
3—4 and 3-5):

© The first of the three instructions is accessed by its physical address
and enables mapping by writing a 1 to the Map Enable privileged
register:

3-26 System Bootstrap, Kernel Initialization, and Application Start-Up

MIPR #1,#PR$_MAPEN

After the execution of this instruction, all address references are
translated. The program counter now contains the physical address
of the next instruction (JMP) — in Figure 3-5, 60021, namely, byte
258 on page frame 54. That physical address is now interpreted as
a PO address when the processor fetches that instruction.

® The next instruction —
IMP @#MAPPED_EXECUTION

— is accessed through the PO virtual address in the program
counter. The address is translated by extracting the VPN — in the
figure, 54 — from the PO address and using it as a longword index
from the POBR. This offset yields the system virtual address of the
POPTE that maps the page frame containing the JMP instruction.
The temporary PO page table has been superimposed on the SO
page table so that this POPTE corresponds to the SPTE that maps
page frame 54. When the byte offset is added back in, the physical
address of the JMP instruction — 6002y — results.

The effect of the JMP instruction is to set the program counter
with the virtual address of the next instruction, at the MAPPED_
EXECUTION label. That address will be the S0 virtual address for
that label, which was calculated when the kernel image was linked.

© The instruction at the MAPPED_EXECUTION label —
GETCPU RO

— is executed in system address space (and has no connection with
enabling memory management). From this point on, system initial-
ization continues with memory management enabled, executing in
system address space.

3.2.4 Mapped Initialization

With mapping enabled, the kernel can reference system data struc-
tures, such as the RPB, through their virtual addresses. For example,
cells in the data block can now be referenced directly instead of through
a displacement from the physical base of the data block.

The kernel takes the following steps to complete initialization:
1. Execution is swiiched to the interrupt stack. See Section 3.2.4.1.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-27

The machine-check handler data block or blocks are initialized. See
Section 3.2.4.2.

The SCB is initialized. See Section 3.2.4.3.
I/0 address space is configured. See Section 3.2.4.4.

The processor-specific registers and console registers are initial-
ized, and data used by the console subsystem is mapped. See
Section 3.2.4.5.

The remaining system data structures are created, initialized, and
mapped. See Section 3.2.4.6.

Scheduler and job queues are initialized. See Section 3.2.4.7.
The start-up job is created. See Section 3.2.4.8.
The system announcement string is displayed. See Section 3.2.4.9.

. The system interval time is started. See Section 3.2.4.10.
. The system start-up is logged in the system error log file. See

Section 3.2.4.11.

. Job scheduling begins, and initialization is complete. See

Section 3.2.4.12.

Step 1 — Switch Execution to the Interrupt Stack

The stack pointer (SP) is loaded with the base address of the interrupt
stack for the primary processor. Execution continues on the inter-
rupt stack until the start-up job is created, when execution switches
temporarily to the kernel stack.

3.2.4.2 Step 2 — Initialize the Machine-Check Data Block

For each processor in the system, the kernel calls the processor-specific
subroutine KER$INIT_MACHINECHK to initialize the processor’s
machine-check handler data block.

3.2.4.3 Step 3 — Initialize the SCB

Until this point, the SCB has contained physical-address-based vectors
to the boot-time exception and interrupt handlers. The SCB is now
initialized with its run-time vectors. The VAXELN SCB structure is
actually two components: the SCB itself and the unexpected-event
dispatch block, which supports the handling of unexpected interrupts
and exceptions.

3-28 System Bootstrap, Kernel Initialization, and Application Start-Up

The SCB and unexpected-event dispatch block are initialized in four
passes:

1. Each vector in the SCB is filled with the address of its correspond-
ing entry in the unexpected-event block.

2. The architecturally defined and processor-specific portions of the
SCB are filled in with the addresses of the appropriate interrupt
and exception handlers. (The general layout of the SCB is described
in Chapter 6, Condition Handling.) The architecturally defined
vectors are copied from a table at the start of module INITIAL.

Figure 3—-6 shows the relationship between the SCB and the
unexpected-event dispatch block. Any SCB vectors not touched

on this second pass continue to point indirectly to the unexpected-
event handler, KER$UNXINTEXC, in module EXCEPTION.

Each of these unused vectors in fact contains the address of the
corresponding entry in the unexpected-event dispatch block (that
is, the nth vector points to the nth longword in the unexpected-
event block). That unexpected-event entry contains a Branch to
Subroutine with Word Displacement (BSBW) instruction and the
displacement to the six-byte unexpected-interrupt dispatcher, which
starts at the third byte of the block.

When an unexpected interrupt or exception occurs, the SCB vector
it uses tranfers control to the BSBW instruction in its correspond-
ing entry in the unexpected-event dispatch block. The BSBW
pushes the PC (the address of the byte following the displacement
byte) onto the stack and transfers control to the unexpected-event
dispatcher at the top of the block. The dispatcher then executes

a JMP to the unexpected-event handler in module EXCEPTION,
which uses the PC on the stack to determine which dispatch entry
executed the BSBW. The offset of this entry in the block corre-
sponds to the SCB vector that received the unexpected interrupt or
exception. This result is printed at the top of the stack dump when
the handler declares a system fatal bugcheck to halt the system.

8. Processor-specific SCB vectors are initialized. The address of a ta-
ble containing processor-specific vectors is returned by the internal
subroutine KER$SCB_FIXUPS.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-29

Figure 3-6:

Relationship Between the SCB and the Unexpected-Event Dispatch
Block

~
— Address of 1st Entry in Dispatch Block
Machine-Check Vector (always used)
Address of 3rd Entry in Dispatch Block
System
Address of Interrupt or Exception Handler [<€— This - Control
vector Block
Unexpected Address of 5th Entry in Dispatch Block is in (n pages)
interrupts or use.
exceptions ! A
transfer Vi v
control
::::::::t;?’ Address of nth Entry in Dispatch Block)
block.)
. > BSBB 10$—>110$: JMP @ Module EXCEPTION
KERSUNXINTEXC::
KER$UNXINTEXC —»| Find Vector
Bugcheck
—>» BSBW 108~ 1<— PC of this
byte is
Unexpected-Event
BSBW 108 gﬁts:f:e > Dispatch Block
stack by (n pages)
BSBW 10$ BSBW
7 2
BSBW 108
/ MLO-003218

4. The addresses of the string and floating-point instruction emulator
routines are loaded into the appropriate SCB vectors if emulation
was requested.

3.2.4.4 Step 4 — Configure I/O Address Space

The kernel configures I/O address space by calling the processor-specific
subroutine KER$CONFIGURE_IOSPACE, which resides in the ap-
propriate INITnnn module for the target processor. For busless and
Q-bus-based processors, the subroutine simply returns. On the VAX
62nn and VAXBI-based processors, the subroutine probes the I/O bus
for I/0O adapters, initializes them, and saves information about their
configuration to be used during later operations.

3-30 System Bootstrap, Kernel Initialization, and Application Start-Up

3.24.5 Step 5 — Initialize Processor-Specific and Console Registers

The kernel initializes the processor-specific registers that were
mapped earlier by calling the processor-specific subroutine KER$INIT
PROCREG. The kernel then calls KER$CONIO_INITIAL again to up-
date the value of KER$GA_CONIO_CODE with the virtual address

of the console I/0 image, replacing the physical address used to call
console I/0 procedures during unmapped initialization. This call to
KER$CONIO_INITIAL also results in the mapping of the console
registers and data.

3.2.4.6 Step 6 — Create and Map Remaining System Structures

At this point, the kernel creates and maps the remaining system
data structures whose sizes were calculated before the creation of the
system page table. To allocate memory and map the structures, the
kernel calls the local subroutine GET_FRAME for each page required.
GET_FRAME in turn calls the internal subroutine KER$ALLOCATE_
FRAME and then maps the returned page frame number into the
system page table, advancing the current system virtual and SPTE
addresses as each page is mapped.

When I/O address space is mapped, however, no page frames are
allocated; rather, the address space is mapped to the appropriate
processor-specific physical addresses. In these instances, the local
subroutine KER$FILL_SPTE is called.

The lower half of Figure 3—2, below the system page table, shows the
elements mapped at this stage of initialization. The kernel creates and
maps the following system data structures:

¢ The crash-restart log. One log area is created and mapped for each
processor in the system, and the base address of each log is written
to the array located at KER$GA_CRASHLOG (indexed by processor
number).

¢ The pool of error-log buffers. If error logging has been enabled
(KER$GB_ERRLOG_ENABLE is 1), the kernel creates and maps
the number of error message buffers specified as KER$GW_EMB_
COUNT. This process is described in Section 7.1.2.1.1, Error
Message Buffers.

¢ The system dynamic pool. The system pool is allocated and mapped
as described in Section 9.4.1, Initializing System Pool.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-31

¢ The PO and P1 page table slots. Physical memory is allocated to
hold the PO and P1 page table slot bitmaps, but no page frames
are allocated for the page tables themselves. Instead, physical
memory is allocated for page tables at the time of job and process
creation, as described in Section 9.1.2.1.2, PO Page Tables, and
Section 9.1.2.1.3, P1 Page Tables. The slot bitmap descriptors
located at KER$GR_PO_SLOT_BITMAP and KER$GR_P1_SLOT_
BITMAP are also initialized, and the SPTEs that map the area
reserved for the page table slots are cleared. The virtual addresses
of the PO and P1 slot areas become the values of KER$GA_PO_
SLOT_BASE and KER$GA_P1_SLOT_BASE, respectively.

¢ The port address table. The port address table, whose size in
longword table entries is indicated by KER$GW_PORT_SIZE, is
initialized as described in Section 10.2.1.2, Port Address Table.
The current virtual address becomes the value of KER$GA_PORT_
BASE.

® The local name table. The local name table, whose size in quadword
entries is indicated by the global parameter KER§GW_NAME_
SIZE, is initialized as described in Section B.12. The current
virtual address is used to initialize the table descriptor located
at KER$GR_LOCAL_TABLE. The NTB$A_ADDRESSLI field in the
descriptor contains the address of the first listhead, and NTB$L_
LENGTHI1 contains the number of listheads in the table (128).

* The local debugger data area. If the local debugger component is
present, the kernel maps and zeros the number of page frames
specified by KER$GA_KERNEL_DEBUG_DATA to support the de-
bugger’s read/write data. The current virtual address then becomes
the new value for KER$GA_KERNEL_DEBUG_DATA.

The kernel next calls the local debugger’s initialization code as

a subroutine at the address specified by KER$GA_KERNEL _
DEBUG_CODE. If the user has requested the initial kernel break-
point (RPB$V_INIBPT is set), then the subroutine KERSKERNEL _
BREAK is called to give the local debugger control in a kernel
debugging session.

® I/O space. At this point, the kernel displays the system startup
message: “%VAXELN system initializing.”

Next, the kernel calls the processor-specific subroutine KER$MAP_
IOSPACE to map the I/O address space. If the target processor has
one or more hardware adapters, the subroutine walks the list of
system configuration records (SCRs), whose address is calculated
using the offset value in KER$GA_DEVICE_LIST, and analyzes
them to determine what I/O adapters have been configured for the

3-32 System Bootstrap, Kemel Initialization, and Application Start-Up

system. For each adapter the subroutine encounters, an adapter
control block (ADP) is created, initialized, and inserted into the
adapter list located at KER$GA_ADAPTER_LIST. The structure of
the ADP is described in Table B-2.

The number of virtual pages that are mapped in the system page
table depends on the processor and its adapter configuration. For
example, on the Q22-bus-based MicroVAX II, the following elements
are mapped:

* Q22-bus I/0 space
* Q22-bus map registers
¢ The allocation bitmap for map registers

On a VAXBI-based processor, by contrast, VAXBI nodespace is
mapped, and, if a UNIBUS adapter resides on the VAXBI bus, the
following UNIBUS elements are mapped as well:

e TUNIBUS I/O space
e TUNIBUS adapter space
® The allocation bitmap for UNIBUS map registers

No physical memory is allocated during this mapping, and no
bits are cleared in the PFN bitmap (physical memory is allocated
for any bitmaps that are created). These I/O pages are simply
mapped into virtual address space using their bus-specific physical
addresses. For example, on many VAX processors, I/O space is
mapped into system space at physical address 20000000, ¢ or above.

* The communication region. Based on the value of KER$GW_I0_
SIZE, the kernel computes the number of pages required to hold
the communication region bitmap. It then allocates and maps
those page frames and initializes the bitmap, located at KER$GR_
REGION_BITMAP (see Section 9.3.1, Allocating System Virtual
Memory). The current virtual address then becomes the value
KER$GA_REGION_BASE. Finally, the SPTEs that will map the
communication region are cleared to show that no pages are yet
allocated there. These are the last entries in the system page table
to be initialized.

At this point, system virtual memory has been completely mapped.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-33

3.2.4.7 Step 7 — Initialize Scheduler and Job Queues

The queue of ready jobs, located at KER$AQ READY_HEAD, contains
a job listhead for each possible job priority. The kernel initializes the

queue listheads by writing the address of each quadword listhead to its
forward and backward link fields.

The kernel also initializes the scheduler’s mask of idle processors,
located at KER$GW_CPU_IDLE, by setting the bit that indicates that
the primary processor is idle. This means that the start-up job will be
scheduled to run on the primary processor in the system.

Finally, the kernel initializes the listheads for the queue of jobs in the
system and the list of area control blocks.

3.2.4.8 Step 8 — Create the Start-Up Job

The start-up job is the first job to run in any VAXELN system. It
scans the program list created by the System Builder and creates the
jobs in the list that have the Init required and Run attributes. The
execution of the start-up job is described in Section 3.3.

To create the start-up job, the kernel calls the KER$CREATE_JOB
procedure. The call is vectored through the change-mode dispatcher
(described in Chapter 8), which executes the CHMK instruction to
transfer control to the procedure code. Since executing CHMK on the
interrupt stack is illegal, the kernel must first switch execution to
the kernel stack. Because the kernel executes a Save Process Context
(SVPCTX) instruction to return to the interrupt stack, it must create
a temporary hardware process context block. The kernel also takes
steps to prevent the start-up job from executing immediately after its
creation.

The start-up job is created as follows:

1. A temporary process hardware context block (PTX) is allocated
on the stack. The minimum number of fields is initialized in the
PTX. The address of this PTX is written to the PCBB (hardware
context base) internal register. The PTX block is required so that
the kernel can later execute the SVPCTX instruction to return
execution to the interrupt stack.

2. IPL is lowered from 31 to 3 (IPL$K_DISABLE_SWITCH).

3-34 System Bootstrap, Kernel Initialization, and Application Start-Up

A pool block is allocated to act as a dummy, and the minimum num-
ber of fields is initialized in the JCB. The JCB address is written
to the KER$AA_CURRENT_JCB array entry for the current pro-
cessor. This prevents the scheduler from allowing the start-up job
to run until the kernel removes the dummy JCB from KER$AA_
CURRENT_JCB and invokes the scheduler.

The current PSL is pushed onto the stack, and the high byte is
zeroed, clearing the interrupt stack bit (IS) and setting the current
mode field to kernel. The kernel then pushes the PC of the next
instruction onto the stack by calling a subroutine that executes
only an Return from Exception or Interrupt (REI) instruction. The
execution of the REI then causes the PC and PSL on the stack to
become current, effectively switching execution to the kernel stack
at IPL 3, beginning at the instruction following the subroutine call.
The kernel stack pointer is then initialized with the address of the
interrupt stack, so that same stack as before is used. The kernel is
now executing in kernel mode to create the start-up job.

The address of a prepared program descriptor, located at KER$GR_
STARTUP (in module STARTUP), is written to the data cell
KER$GA_PROGRAM_LIST. This makes the start-up job’s descrip-
tor the only one in the program list, where KER$CREATE_JOB
will find it. The program descriptor specifies that the start-up job
will run in kernel mode with job and master process priorities of 0.

The arguments to KER$CREATE_JOB are pushed onto the stack.
Arguments for the exit port, a null program name, the job port,
and the return status are specified. The null program name in the

argument list will match the name in the program descriptor when
KER$CREATE_JOB searches the list for the specified program.

The KER$CREATE_JOB procedure is called with the CALLS
instruction and the procedure entry point KER$STARTUP. The
procedure will attempt to create the start-up job and return a
completion status. KERSCREATE_JOB is described in Chapter 4.

The status returned from KER$CREATE_JOB is examined. If it
indicates failure, a fatal bugcheck is raised to halt the system.
Otherwise, the start-up job has been created and awaits execution
in the ready job queue.

The original values for KER$GA_PROGRAM_LIST and KER$AA_
CURRENT_JCB are restored, and the dummy JCB pool block is
returned to the pool. Removing the JCB address from KER$AA_
CURRENT_JCB allows the start-up job to run once the scheduler
is called.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-35

10. The SVPCTX instruction is executed to return execution to the
interrupt stack for the completion of initialization. The temporary
PTX, which contains the unneeded process context information, is
cleared from the stack.

3.24.9 Step 9 — Announce the System

The kernel calls the generic interface to the console I/O subsystem to
display the VAXELN announcement string — for example, “VAXELN
V4.0 QBUS” — on the console terminal.

3.24.10 Step 10 — Start the Interval Clock

The kernel initializes the timer queue listhead located at KER$GQ_
TIME_QUEUE. It then sets the processor’s interval clock to interrupt
at the interval specified by KER$GL_TIME_INTERVAL and starts the
clock by writing to the PR$_ICCS register. Section 5.3.1 describes the
function of the interval clock in VAXELN timekeeping.

3.2.4.11 Step 11 — Log the System Start-Up

The kernel calls the internal subroutine KER$COLDSTART. If error
logging is enabled for the system, a system start-up entry is posted to
the system’s error log file. At this time, the processor’s cold and warm
start flags are also cleared.

3.24.12 Step 12 — Begin Job Scheduling

The kernel completes its initialization by setting IPL to 8 (IPL$K_
SYNCHRONIZE) and invoking the scheduler by transferring control
to internal subroutine KER$SCHEDULE_JOB. The scheduling pass
this precipitates allows the start-up job to run. Control will not return
to module INITIAL. The execution of the start-up job is described in
Section 3.3.

3-36 System Bootstrap, Kernel Initialization, and Application Start-Up

3.3 Application Start-Up: The Start-Up Job

The VAXELN initialization sequence ends by invoking the kernel’s
scheduler. The scheduler finds only one job to be scheduled: the start-
up job. The start-up job (in module STARTUP) performs the following
tasks:

Begins the execution of applications by creating jobs with the Init
required and Run characteristics

Configures and boots auxiliary processors in a tightly coupled
symmetric multiprocessing system

Initializes the bus-based message port in a closely coupled symmet-
ric multiprocessing system

The first item, since it concerns the start-up of applications on every
VAXELN system, is the focus of Section 3.3.1. Section 3.3.2 describes a
related kernel procedure, KER$INITIALIZATION_DONE, which allows
initialization jobs to inform the start-up job that their initialization is
complete.

3.3.1 Creating Jobs Sequentially

When the System Builder created the program list, it arranged the
system’s program descriptors in the following order:

1.

3.

Programs that require initialization at system start-up. These
are the programs for which the Init required characteristic has
been selected in their program descriptions (that is, the PRG$V_
SEQ_INITIAL bit is set in the PRG$B_OPTION_FLAGS field).
These initialization jobs are sorted by job priority, with the highest
priority job first in the list.

Programs that must be created at system start-up. These are the
programs for which the Run characteristic has been selected in
their program descriptions (that is, the PRG$V_AUTO_START bit
is set in the PRG$B_OPTION_FLAGS field). These jobs are also
placed in priority order.

All other programs. Programs that require neither initialization
nor automatic start-up appear at the end of the program list in the
order they were processed by the System Builder.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-37

The start-up job runs in kernel mode at IPL 0, with job and master
process priorities of 0. It allows lower priority initialization jobs to run
by blocking its own execution. The start-up job’s task is to walk the
program list and perform the following operations:

1. Create all jobs that require initialization. After each job is created,
the start-up job waits until the job calls KERSINITIALIZATION_
DONE or exits.

2. Create all jobs that require automatic start-up. These jobs cannot
run until the start-up job exits.

3. Exit to allow normal job scheduling to occur.

To pass the necessary arguments to KERSCREATE_JOB, the start-up
job reserves the required space on the stack, pushes its arguments
there, and calls KER$CREATE_JOB, specifying the address of the

top of the stack region as the argument table operand for the CALLG
instruction. If a failure status is returned by any procedure call within
the start-up job, IPL is raised to 2 IPL$K_AST_LEVEL), and a system
fatal bugcheck is declared to cause the orderly shutdown of the system.

Communication between the start-up job and initialization jobs is
through the start-up job’s job port. The start-up job first obtains the
identifier of this port by calling KER$JOB_PORT, obtains the address
of that port by calling the KER$TRANSLATE_OBJECT subroutine,
and stores that address in the global cell KER$GA_STARTUP_PORT.
The start-up job blocks its execution — allowing an initialization job
to run — by waiting on this port for a message. The message signifies
that one of two possible events has occurred:

® The job has completed its initialization and called
KERS$INITIALIZATION_DONE. This message comes directly from
KERS$INITIALIZATION_DONE, which has obtained the identifier
for the start-up job’s port from KER$GA_STARTUP_PORT.

¢ The job has exited. This message comes from KER§CREATE_JOB
(through a call to KER$DELETE), which obtains the port identifier
as the exit port argument passed to it by the start-up job.

Before the start-up job exits, it removes the address of its job port from

KER$GA_STARTUP_PORT. This will signify, to subsequent calls to
KERS$INITIALIZATION_DONE, that the start-up job no longer exists.

3-38 System Bootstrap, Kernel Initialization, and Application Start-Up

After obtaining the value of its job port, the start-up job next walks the
program list from beginning to end looking for program descriptors that
have both the PRG$V_SEQ_INITIAL and PRG$V_AUTO_START bits
set in the PRG$B_OPTION_FLAGS field. Notice that a program must
have both the Run and Init required characteristics before it can ac-
tually run. If such a job is found, control branches to a local subroutine
to create the job and allow it to run. The search for initialization jobs
completes at the end of the program list.

Next comes a second pass through the program list. This time, the
start-up job is looking for descriptors with the PRG$V_AUTO_START
bit set and the PRG$V_SEQ_INITIAL bit clear. If it finds such a job,
control again transfers to the local subroutine to create the job. This
time, however, the newly created job is not allowed to run. The search
for auto-start jobs completes at the end of the program list.

The local subroutine creates initialization jobs and auto-start jobs as
follows:

1. The CALLG argument table for KERSCREATE_JOB is built on the
stack as follows:

a. The job parameters in the program descriptor are extracted
from their parameter blocks and pushed onto the stack as
string descriptors, as KER$CREATE_JOB expects them.

b. If this is an initialization job, the address of the start-up
job’s port is pushed onto the stack as the exit port argument.
Otherwise, 0 is pushed as a null argument for auto-start jobs,
since these jobs do not communicate with the start-up job.

c. The program name and size are extracted from the program de-
scriptor. They are then fashioned into a string descriptor, whose
address is pushed onto the stack as expected by KER$CREATE_
JOB.

d. The address for the status value is pushed onto the stack.

e. The final argument count is pushed onto the stack.

2. The KER$CREATE_JOB procedure is called. If a success status is
returned, execution continues. Otherwise, a system fatal bugcheck
occurs.

3. If an auto-start job was created, the subroutine returns. The auto-
start job will not be able to run until the start-up job exits.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-39

The identifier for the job port is pushed onto the stack, and
KER$WAIT_ANY is called. By explicitly blocking its own execu-
tion, the start-up job allows the initialization job to run until it
completes or until it calls KER$SINITIALIZATION_DONE and,
possibly, blocks itself. The start-up job will not run again until a
message arrives on its job port.

The KER$RECEIVE procedure is called to receive the message.
The reply port argument is included so that the message’s sender
can be identified.

If the identifier of the reply port is the same as the initialization
job just created, the job initialization is done, and the subrou-
tine exits. The message arrived because the job exited or called
KERS$INITIALIZATION_DONE.

If the port identifiers do not match, the message signifies the
termination of an earlier initialization job that did not call
KERS$INITIALIZATION_DONE. Therefore, the start-up job waits
again on its job port for a message from the job it just created. No
new jobs will be created until such a message arrives.

3.3.2 Job Initialization and KERSINITIALIZATION_DONE

When a job completes its initialization, it can call the
KERSINITIALIZATION_DONE procedure to inform the start-up job
and allow other jobs to be created. KERSINITIALIZATION_DONE
sends a message to the start-up job, which is waiting on its job port.
When the message arrives, the start-up job unblocks and continues its
search of the program list for other initialization jobs.

KERS$INITIALIZATION_DONE executes as follows:

1.
2,

3.

The address of the caller’s JCB is obtained.

The address of the caller’s program descriptor is obtained from
JCB$A_PROGRAM.

The PRG$V_SEQ_INITIAL bit in the PRG$B_OPTION_FLAGS
field is tested. If it is clear, the calling job does not have the
Init required attribute, and the failure status KER$_NO_
INITIALIZATION is returned to the caller.

The value of KER$GA_STARTUP_PORT is obtained. If that value
is not an SO virtual address — the address of the start-up job’s
job port — KER$_SUCCESS is returned to the caller. This means
that KER$INITIALIZATION_DONE was called after application
start-up was completed and therefore has no function.

3-40 System Bootstrap, Kernel Initialization, and Application Start-Up

The KER$CREATE_MESSAGE procedure is called to create a
zero-length message. If the procedure fails, that failure status is
returned to the caller.

The KER$SEND procedure is called to send the null message to the
start-up job’s port. The arrival of this message unblocks the start-

up job. If the send procedure fails, that failure status is returned to
the caller.

System Bootstrap, Kernel Initialization, and Application Start-Up 341

Chapter 4

Job and Process Creationand
Deletion

This chapter describes the creation of VAXELN jobs and processes, the
environment established for program execution when a job is created,
and the deletion of jobs and processes.

For each executable program image included in a VAXELN system
image at build time or loaded dynamically at run time, one or more
jobs can be created. A job represents the activation of a program in the
system. Each job is logically independent of other jobs (including other
activations of the same program image) and executes concurrently
with other jobs in the system. This is the VAXELN multiprogramming
environment.

If the program is marked with the Run characteristic on the Program
Description Menu, the kernel creates a job to run the program at
system start-up; otherwise, a job is created by an explicit run-time pro-
cedure call from a running program or interactive utility (the debugger
or the VAXELN Command Language).

Creating a VAXELN job establishes an environment for execution of a
program image by one or more processes. At job creation, the kernel
creates a master process fo execute the program’s main code, beginning
at its transfer address. Subsequently, subprocesses can be created

as needed to execute portions of the program code (process blocks or
routines, compiled as VAX procedures). The job’s master process and
subprocesses concurrently execute the same or different portions of a
program image, with each process representing a logically independent
thread of execution. This is the VAXELN multitasking environment.

Job and Process Creation and Delstion 4-1

During job creation, the kernel creates a framework of interconnected
control blocks and other data structures that represent the state of the
job and its processes at any given time. Among the significant struc-
tures that support program execution are the job control block (JCB),
representing jobwide elements of process software context, shared
among all processes in a job; the process control block (PCB), repre-
senting process-specific elements of process software context, private
to a process; the process hardware context block (PTX), representing
process hardware context; and the page tables that map job and pro-
cess components to the program (P0) and control (P1) regions of process
address space. These structures are described in Section 4.2. The ker-
nel procedure that creates a job, KERSCREATE_JOB, is described in
Section 4 .4.

Creating a process establishes an independent thread of program
execution within the system. A VAXELN process is a VAX process, as
defined by the VAX architecture, with the added characteristic that it
shares the PO region of virtual address space, where the program image
is mapped, with all other processes executing in the job.

During process creation, the kernel creates process-specific control
blocks and other data structures that are added to the job’s framework
of data structures. These structures include a PCB, a PTX, and a
page table mapping the new process’s components and resources to its
private P1 address space.

A subprocess is created with a call to the kernel procedure KER$CREATE_
PROCESS, described in Section 4.5. The master process is created
implicitly when a job is created; see Section 4.4.

Deleting a process deactivates an execution thread within the sys-
tem. If the deleted process is the master process, the entire job is
terminated, its subprocesses are deleted, and its system resources are
deallocated. If the process’s termination began with an implicit exit
(the process reached the end of its code) or with an explicit call to
KERSEXIT from program code, additional orderly cleanup is performed
before the process is deleted.

The procedure that deletes object-related kernel resources, KER$DELETE,
is described in Chapter 10. Section 4.6 describes how KER$DELETE
deletes processes; it also describes the kernel procedure that provides
orderly process and job termination, KER$EXIT.

4-2 Job and Process Creation and Deletion

4.1 Process Execution Environment

The environment in which a process executes is defined by the states
and contents of its supporting data structures, its address space, and
its registers. Figure 4—1 summarizes this context for a process’s execu-
tion.

The control structures established by the kernel at job and process
creation reside in the system (S0) region of virtual address space,
where they can be modified directly only by the kernel (which manages
them for the user) or by a process executing in kernel access mode. The
control structures occupy system pool blocks, page table slots, or pages
allocated from the system’s communication region.

Job components, including program code and global data, are mapped
into the PO region of process address space, for jobwide access. Process
components, including the process stacks, are mapped into the P1
region of process address space, for private access. Job and process re-
sources can reside in process address space — for example, dynamically
allocated PO or P1 virtual memory — or in system address space — for
example, kernel objects or dynamically allocated SO virtual memory.

When a process is selected by the kernel’s scheduler to run, a LDPCTX
(Load Process Context) instruction is executed to load the process
hardware context, as defined by the process’s PTX, into the processor
registers that support process execution. Among those registers are the
PO base register (POBR), the PO length register (POLR), the P1 base
register (P1BR), and the P1 length register (P1LR), which receive the
base addresses and effective lengths of the job’s PO page table and the
process’s P1 page table. These registers define the executing process’s
PO and P1 virtual address space, and are accessed to translate virtual
addresses referenced by the program.

4.2 Job and Process Data Structures

At job creation, the kernel creates a framework of interconnected data
structures to represent the components, resources, attributes, and
state of the job and its processes at any given time. For each process
subsequently created by the job, the kernel adds data structures specific
to that process to the framework.

Job and Process Creation and Deletion 4-3

Figure 4-1:

Execution Context of a Process

Processor Registers

Process Virtual Memory

General Registers:

- Registers 0 through 11
- Argument Pointer

- Frame Pointer

- Stack Pointer

- Program Counter

Processor Status Longword

Jobwide:

- No-Access Page

- Program Image

- Writeable Shareable images
- Job Context Page

- Job Dynamic Memory

- Heap Data

- Message Buffers

100000000

Stack Pointer Registers:
- Kernel Stack Pointer

- User Stack Pointer

- Interrupt Stack Pointer

Direction
of Growth

Page Table Registers:

- PO Base Register

- PO Length Register

- P1 Base Register

- P1 Length Register

- System Base Register

- System Length Register

- Process Control Block Base

Unmapped Portion of
PO Space

Unmapped Portion of
P1 Space

< PO Virtual Size Limit
1

1

': :40000000

1

Direction
of Growth

« P1 Virtual Size Limit

AST Leve! Register

Process-Specific:

- User Stack (user-mode)

- No-Access Page (user-mode)
- Kernel Stack

- Process Context Data

Systemwide (abbreviated):

- VAXELN System Image

- System Control Block

- Interrupt Stack (per CPU)

- System Page Table

- System Dynamic Pool

- PO and P1 Page Table Slots
- Communication Region

:80000000

Job/Process
Control Structures

Unmapped Portion of
S0 Space

| Maximum SO Size
i

- - - === -d BFFFFFFC

MLO-003218

The job data structures established at job creation include the follow-

ing:

* Job control block (JCB). This structure represents the attributes
and state of the job and contains pointers to its components and
resources. The JCB also is linked into the kernel’s queue of all
jobs in the system and, if it is in the ready state, into the ready

4-4 Job and Process Creation and Deletion

job scheduling queue for its priority. The JCB is described in
Section 4.2.1.

Job parameter blocks (JPBs). These structures store caller-specified
job arguments during the first phase of job creation; ultimately job
arguments are copied to PO virtual memory, where all the job’s pro-
cesses can access them. JPB format is described in Section 4.4.1.2.

Job object tables. These structures comprise a two-tiered arrange-
ment of address tables — an object base table and one or more
object pointer tables — used to create, locate, and delete dynami-
cally created kernel objects, representing job resources. Job object
tables are described in detail in Chapter 10.

PO page table (POPT) and related memory-management structures
such as allocation bitmaps and page table entries (PTEs). In con-
junction with the processor page table registers (when the job is
running) or the page table fields of the job’'s PTXs (when the job
is not running), the POPT defines and maps the PQ virtual mem-
ory for the job. Page tables and related structures are described
in Chapter 9; the job components and resources mapped into P0
virtual address space are described in Section 4.3.1.

Master process data structures. These process structures are pri-
vate to the master process.

The process data structures established at process creation (for master
and subprocesses alike) include the following:

Process control block (PCB). This structure represents the at-
tributes and state of the process and contains pointers to its com-
ponents and resources. The PCB is entered into the job’s object
database as the object representing the process. The PCB also is
linked into the job’s queue of all its processes and, if it is in the
ready state, into the ready process scheduling queue for its priority.
The PCB is described in Section 4.2.2.

Process hardware context block (PTX). This structure represents
the process’s hardware context, consisting in part of the saved
values of the internal registers that support process execution.

A LDPCTX instruction loads these register values from the PTX
when a process is scheduled to run, and a SVPCTX (Save Process
Context) instruction returns these values to the PTX when the
process is removed from execution. The PTX is described in
Section 4.2.3.

Wait control blocks (WCBs). These structures allow a process to
wait for kernel objects. WCBs are described in Chapter 11.

Job and Process Creation and Deletion 4-5

¢ Process argument block. This structure is a standard VAX argu-
ment list containing the arguments specified when the process was
created.

¢ P1 page table (P1PT) and related memory management structures
such as allocation bitmaps and page table entries (PTEs). In con-
junction with the processor page table registers (when the process
is running) or the page table fields of the PTX (when the process
is not running), the P1PT defines and maps a private P1 virtual
address space for the process. A unique P1PT is created for each
process in a job. Process components and resources mapped into P1
memory are described in Section 4.3.2.

4.2.1 Job Control Block

A job control block (JCB) is created by the KERSCREATE_JOB kernel
procedure for each job created in a VAXELN system. The JCB repre-
sents and associates the attributes, state, resources, and components of
a job and its family of processes. As described in Section 4.4, the JCB
is created at the beginning of two pages allocated for job and process
control blocks in the communication region of SO address space. The
following information is maintained in its fields:

e Links into the job scheduling queue for its job priority and into a
linked list of all the system’s jobs
¢ Pointers to the job’s process queues, port queue, and object tables

¢ Pointers to the program descriptor for the program the job was
created to execute, and to a list of program arguments

¢ Pointer to the job’s PO page table, and the size in pages that the
page table maps

Figure 4-2 shows the structure of the JCB, and Table 4-1 describes its
fields.

4-6 Job and Process Creation and Deletion

Figure 4-2: Structure of a Job Control Block

JCBSA_SCHEDULE_FLINK

JCBSA_SCHEDULE_BLINK

JCBSB_STATE | JCBSB_PRIORITY

JCB$B_READY_PRIORITY |

JCBSB_TYPE
JCBSA_CURRENT_PCB

JCBSA_NEXT_PCB

JCB$A_PROCESS_QUEUES

JCB$A_PROCESS_FLINK

JCBSA_PROCESS_BLINK

JCB$SA_JOB_FLINK

JCBSA_JOB_BLINK

JCBSA_PORT_FLINK

JCB$SA_PORT_BLINK
JCBSW_READY_SUMMARY

JCBSW_DISABLE
JCBSW_OBJECT_FREE

JCBSW_CPU_MASK

JCBSA_OBJECT_TABLE

JCBSA_PROGRAM

JCBSL_RW_DATA_PTE

JCBSL_MESSAGE_PTE

JCBSA_PARAMETER_LIST

JCBSA_INITIAL_STACK
JCBSW_PROCESS_GENERATION J

JCBSW_GENERATION

JCBSL_PORT_ID

JCB$SA_PO_BASE

JCBSL_PO_LIMIT

JCBSA_PO_BITMAP (12 bytes)

JCBSB_EXIT_PORT_ID (16 bytes)

JCBSW_CONTEXT_COUNT

I JCBSB_CPU_NUMBER | JCBSB_MODE

MLO-003220

Job and Process Creation and Deletion 4-7

Table 4-1: Job Control Block Fields

Field

Meaning

JCB$A_SCHEDULE_FLINK
JCB$A_SCHEDULE_BLINK

JCB$B_TYPE
JCB$B_READY_PRIORITY

JCB$B_PRIORITY
JCB$B_STATE

JCB$A_CURRENT_PCB

JCB$A_NEXT_PCB

JCB$A_PROCESS_QUEUES

JCB$A_PROCESS_FLINK
JCB$A_PROCESS_BLINK

JCB$A_JOB_FLINK
JCB$A_JOB_BLINK

JCB$A_PORT_FLINK
JCB$A_PORT_BLINK

The forward and backward links to next and previous jobs
in the ready queue for this job’s priority.

The structure type: OBJ$K_JOB.

The priority of the highest priority ready process in the
job.

The job’s priority: O (highest) to 31 (lowest).

The job’s state: JCB$K_READY (0), JCB$K_RUNNING
(1), or JCB$K_WAITING (2).

The address of the PCB of the job’s current process —
the process placed in the running state for this job. The
process is actually running only if the job is running.

The address of the PCB of a process that has been selected
to become the running process for this job, preempting the
current process; if an address is present (a nonzero value),
this field indicates that a rescheduling is pending.

The address of a set of 16 ready process queues, ordered
by process priority (0-15), containing the PCBs of all the
job’s ready processes; this address is indexed to insert or
remove a process from its priority queue.

The listhead for the job’s queue of processes. Each process
in the job is inserted at process creation and removed at
process (or job) deletion. Because the first entry is the job’s
master process, the JCB$A_PROCESS_FLINK address is
used by the kernel to locate or identify the master process
PCB. The queue is walked during PO page table expansion,
to update the PO length register value in each process’s
PTX, and when certain asynchronous exceptions are raised
against a process in the job.

The forward and backward links to next and previous
jobs in the system’s job queue; each job is inserted at job
creation and removed at job deletion.

The listhead for the job’s port queue. Ports are inserted
and removed from the queue as they are created and
deleted by the job. All ports are deleted when the job is
deleted.

4-8 Job and Process Creation and Deletion

Table 4-1 (Cont.): Job Control Block Fields

Field

Meaning

JCB$W_DISABLE

JCB$W_READY_SUMMARY

JCB$W_CPU_MASK

JCB$W_OBJECT_FREE

JCB$A_OBJECT_TABLE

JCB$A_PROGRAM

JCB$L_RW_DATA_PTE

JCB$L_MESSAGE_PTE

The process-switching disable count, which is increased
by 1 for each disable request and decreased by 1 for
each enable request; 0 indicates that process switching is
enabled.

The summary mask of the job’s ready process queues.
Each set bit in the mask indicates a nonempty ready
process queue; bit n represents the ready queue for process
priority n.

The complement mask of processors on which the job

is eligible to run; set bits indicate ineligible processors

in a tightly coupled multiprocessor configuration. Bit n
represents processor n.

The encoded value indicating the location of the next
available entry in the object pointer tables. The value is
updated during each kernel object creation and deletion.

The address of the job’s object base table, which is indexed,
when locating up a kernel object, to get an object pointer
table address.

The address of the job’s program descriptor (PRG), used to
look up program characteristics.

The prototype page table entry for the creation of PTEs for
the job’s read/write data. The valid, protection (PTE$C_
UW), owner (the program mode), and type (PTE$K_
RW_DATA) fields are present in the prototype PTE.
During PO memory allocation (global data, heap, and
KER$ALLOCATE_MEMORY) and P1 user stack alloca-
tion, the allocated page frame number is inserted into the
PFN field to create the actual PTE for the page.

The prototype page table entry for the creation of PTEs
for the job’s message and area data buffers. The valid,
protection (PTE$C_UW), owner (the program mode),

and type (PTE$K_MESSAGE) fields are present in the
prototype PTE. During the allocation of message and area
buffers, the allocated page frame number is inserted into
the PFN field to create the actual PTE for the page.

Job and Process Creation and Deletion 4-9

Table 4-1 (Cont.): Job Control Block Fields

Field

Meaning

JCB$A_PARAMETER_LIST

JCB$A_INITIAL_STACK

JCB$W_GENERATION

JCB$W_PROCESS_GENERATION

JCB$L_PORT_ID
JCB$A_PO_BASE

JCB$L_PO_LIMIT

JCB$A_PO_BITMAP

A pointer to a linked list of the job’s program arguments,
as specified in the KERSCREATE_JOB procedure call.
(If the job is created at system start-up, the supplied
arguments are from the Program Description Menu.)
Early in job creation, each program argument is entered
into a separate job parameter block (JPB) and linked
into a list; subsequently the arguments are copied to P0
memory to allow jobwide access. JPB format is described
in Section 4.4.1.2.

The address of the initial stack top — user or kernel

— matching the job’s program mode. The initial kernel
stack top is at P1 location P1$K_KERNEL_STACK_INIT
(TFFF F DFO0s6); the initial user stack top is at the P1
location —512 bytes offset from the end of the kernel stack.
This field is also used for resetting the stack pointer in
case of stack errors.

The job generation number, recorded when the job is
created; the number is generated from the kernel value
KER$GW_JOB_GENERATION. Jobs created in the system
are numbered consecutively upwards from 1 in the order
created.

The process generation number; incremented each time a
process is created and recorded in the new process’s PCB
(PCB$W_GENERATION). Processes created in the job are
numbered consecutively upwards from 1 in the order of
their creation.

The identifier for the job port.

The system (S0) virtual address of the PO page table, set
during job creation when the page table is created. This
value is used to locate the PO page table during page
table expansion. The value corresponds to the value of the
POBR.

The count of PTEs in the PO page table. This value is
updated during the expansion of the PO page table and
corresponds to the value of the POLR.

The descriptor for the PO virtual page allocation bitmap.
This descriptor is used to locate and update the PO bitmap
during the allocation of PO virtual memory. The format of
the bitmap descriptor (BMP) is described in Chapter 9.

4-10 Job and Process Creation and Deletion

Table 4-1 (Cont.): Job Control Block Fields

Field

Meaning

JCB$B_EXIT PORT _ID The identifier for the job’s exit port, if one was specified;

JCB$B_MODE

otherwise 0.

The access mode of the program, as specified in the job’s
program descriptor: O for kernel mode, 3 for user mode.
This value becomes the value of the ownership field in
PTEs allocated for the job.

JCB$B_CPU_NUMBER The number of the target processor, in a tightly coupled

multiprocessor configuration, on which the job is running
or last ran. If a job is selected to run and the processor on
which it last ran is idle, the job is selected to run on the
same processor.

JCB$W_CONTEXT_COUNT The number of times a job enters the run state.

4.2.2 Process Control Block

A process control block (PCB) is created by the KER$CREATE_
PROCESS kernel procedure for each subprocess created in a VAXELN
system. In addition, a PCB is created by the KER$CREATE_JOB
kernel procedure for a job’s master process.

The PCB represents the process-specific portion of a process’s software
context, as distinct from the jobwide portion represented in the JCB.
The PCB ties together the attributes, state, resources, and components
that are private to the process. As described in Section 4.5, the PCB
is created at offset 128 within a page allocated for the PITX and PCB
in the communication region of SO address space. The information
maintained in its fields includes the following:

* Links into the scheduling queue for its process priority and into the
job’s process queue

* Pointers to a linked list of wait control blocks (WCBs), headed by a
timer WCB, and to a block of process arguments

* Pointers to the job’s JCB and to the process’s PTX (a virtual ad-
dress)

* Pointer to the process’s P1 page table, and the number of page table
entries (at the low-address end of the page table) that correspond to
inaccessible pages

Job and Process Creation and Deletion 4-11

* Fields for accumulating process statistics

Figure 4-3 shows the structure of the PCB, and Table 42 describes its
fields.

4-12 Job and Process Creation and Deletion

Figure 4-3: Structure of a Process Control Block

PCBSA_WAIT_FLINK

PCBSA_WAIT_BLINK

PCBSB_TYPE

PCBSL_SEQUENCE
PCB$SB_REASON]

PCBSB_STATE PCB$B_PRIORITY

PCBSA_JCB

PCBSA_PROCESS_FLINK

PCBSA_PROCESS_BLINK

PCB$A_SCHEDULE_FLINK

PCBSA_SCHEDULE_BLINK
PCBSW_CONTEXT_COUNT I

PCBSW_GENERATION

PCBS$A_EXIT_ADDRESS

PCBSL_EXIT_STATUS

PCBSA_ARGUMENT

PCBSA_P1_BASE

PCBSA_P1_BITMAP (12 bytes)

PCBSL_P1_LIMIT

PCBSA_PTX

PCBSA_HWPTX

PCBSL_ID

PCBSA_FIRST_WCB

PCB$SB_WCB (32 bytes)

PCB$Q_TIME (8 bytes)

PCBSL_CPU_TIME

PCBSL_JOB_CPU_TIME

MLO-003223

Job and Process Creation and Deletion 4-13

Table 4-2: Process Control Block Fields

Field

Meaning

PCB$A_WAIT_FLINK
PCB$A_WAIT_BLINK

PCB$B_TYPE
PCB$L_SEQUENCE
PCB$B_PRIORITY

PCB$B_STATE

PCB$B_REASON

PCB$A_JCB

PCB$A_PROCESS_FLINK
PCB$A_PROCESS_BLINK

PCB$A_SCHEDULE_FLINK
PCB$A_SCHEDULE_BLINK

PCB$W_GENERATION

PCB$W_CONTEXT_COUNT

PCB$A_EXIT_ADDRESS

PCB$L_EXIT_STATUS

The listhead for the queue of WCBs representing processes
waiting for this process’s termination.

This queue is walked by the KER$DELETE procedure during
process deletion to mark each process wait as satisfied and
determine whether any waiting processes can be unblocked as a
result.

The structure type: OBJ$K_PROCESS.
The object sequence number for this PCB.

The process’s priority, 0 (highest) to 15 (lowest). Initial process
priority is specified on the Program Description Menu.

The process’s state: PCB$K_READY (0), PCB$K_RUNNING
(1), PCB$K_SUSPENDED (2), or PCB$K_WAITING (3).

A bit mask representing asynchronous exceptions pending
against the process. The fields are listed and described in
Section 6.5.1.4.

The address of the process’s associated JCB.

The forward and backward links to next and previous processes
in the job’s process queue; the JCB$A_PROCESS_FLINK and
JCB$A_PROCESS_BLINK fields in the JCB represent the
listhead for the queue.

The forward and backward links to next and previous processes
in the ready queue for this process’s priority.

The process generation number, recorded when the job is
created; the value is generated in JCB field JCB$W_PROCESS_
GENERATION.

The number of times the process switches to the running state;
cleared at process creation and subsequently incremented for
each switch to the running state.

The user-specified PO address to which exit status is to be
returned on process termination; O if no exit address was
specified by the creator.

The exit status value.

4-14 Job and Process Creation and Desletion

Table 4-2 (Cont.): Process Control Block Fields

Field

Meaning

PCB$A_ARGUMENT

PCB$A_P1_BASE

PCB$A_P1_BITMAP

PCB$L_P1_LIMIT

PCB$A_PTX

PCB$A_HWPTX

PCB$L_ID
PCB$A_FIRST_WCB

The address of the process argument block. If the creator of
the process specified arguments, the block contains a longword
argument count and a block of contiguous longwords containing
the arguments; otherwise the block contains an argument count
of 0.

The system virtual address of the P1 page table. This is the
address of the first existent PTE (PTE corresponding to an
accessible page) in the P1 page table. The page table grows
toward this address from the high end. This value is not

the same as PTX$A_P1BR, the value used in P1 address
translation, which reflects the base address of the nonexistent
portion (PTEs corresponding to inaccessible pages) of the P1
page table.

The descriptor for the P1 virtual page allocation bitmap. This
descriptor is used to locate and update the P1 bitmap during
the allocation of P1 virtual memory. The format of the bitmap
descriptor (BMP) is described in Chapter 9.

The number of nonexistent PTEs (PTEs corresponding to
inaccessible pages) in the P1 page table. This value is updated
during the expansion of the P1 page table and corresponds to
the value of the P1 length register (P1LR).

The virtual address of the process hardware context block
(PTX).

The physical address of the PTX. The physical address is placed
in the hardware process control block base register (PCBB)
when the process is scheduled to run, prior to the loading of the
process’s context with the LDPCTX instruction.

The object identifier for this PCB.

The address of the first WCB in the process’s current (active)
wait list. For a timed wait, this field will contain the address
of the timer WCB; for waits without a time value, it contains
the address of the first WCB for the first object specified in
the wait. The process wait list is initialized by the KER$WAIT
procedure and is walked by kernel subroutines that test and
satisfy wait conditions.

Job and Process Creation and Deletion 4-15

Table 4-2 (Cont.): Process Control Block Fields
Field Meaning

PCB$B_WCB The timer WCB, used to handle timeout values for waits
requested by the process; it is also the head of a singly linked
list of the process’s other allocated WCBs, representing objects
(resources or events) the process waits on. The list is walked
by the KER$DELETE procedure on process deletion to free the
pool blocks occupied by a process’s WCBs.

When a wait is initiated, a WCB is linked into other lists as
well: the timer WCB and its time value are linked into the
kernel’s timer queue, and the WCB for each object specified in
the wait is linked into a queue of processes waiting for that
object.

PCB$Q_TIME A 64-bit binary time value associated with the timer WCB
in the PCB$B_WCB field; this value represents the absolute
system time at which the wait expires.

PCB$L_CPU_TIME An accumulator for the process’s execution time.

PCB$L_JOB_CPU_TIME The total accumulated CPU time of all deleted processes in the
job (recorded in the master process PCB only).

4.2.3 Process Hardware Context Block

A process hardware context block (PTX) is created by the KER$CREATE_
PROCESS kernel procedure for each subprocess created in a VAXELN
system. In addition, a PTX is created by the KERSCREATE_JOB
kernel procedure for a job’s master process.

The PTX stores the hardware context of a process when it is not ex-
ecuting. The first 96 bytes provide the information a VAX processor
requires when it loads process context to place a process in the running
state or when it saves process context to remove a process from exe-
cution. Additional fields (specific to VAXELN and not loaded or saved)
provide the username, UIC, and name block address associated with
the process.

As described in Section 4.5, the PTX is created at the beginning of a
page allocated for both it and the PCB in the communication region of
S0 address space. The information maintained in the fields of the PTX
includes the following:

¢ Contents of the general purpose registers, stack pointer registers,
and page table registers

4-16 Job and Process Creation and Deletion

e User information for the process: username, UIC, and process
name

When a process’s context is loaded, the majority of the PTX’s fields are
moved into processor registers. When a process’s context is saved in
order for it to be removed from execution, the updated contents of these
registers is stored back into the PTX.

Figure 4—4 shows the structure of the PTX, and Table 4-3 describes its
fields.

Job and Process Creation and Deletion 4-17

Figure 4-4: Structure of a Process Hardware Context Block

PTXSA_KSP

PTXS$A_ESP

PTXS$A_SSP

PTXSA_USP

PTXSL_RO

PTXSL_R$

PTX$L_R2

PTX$L_R3

PTXSL_R4

PTX$L_RS

PTX$L_R6

PTX$L_R?

PTXSL_R8

PTXSL_RS

PTXSL_R10

PTXSL_R11

PTX$A_AP

PTXSA_FP

PTX$A_PC

PTXSL_PSL

PTXSA_POBR

PTXSL_PO_LIMIT

PTX$A_P1BR

PTXSL_P1_LIMIT

PTXST_USERNAME (22 bytes)

PTXSL_UIC

PTXSA_NAME_BLOCK PTXSL_UIC

—
—

PTX$A_NAME_BLOCK

MLO-008222

4-18 Job and Process Creation and Delstion

Table 4-3: Process Hardware Context Block Fields

Field Meaning

PTX$A_KSP The kernel stack pointer — used when the process is execut-
ing in kernel mode

PTX$A_ESP The executive stack pointer — not used

PTX$A_SSP The supervisor stack pointer — not used

PTX$A_USP The user stack pointer — used when the process is executing
in user mode

PTX$L_RO The contents of general register RO

PTX$L_R1 The contents of general register R1

PTX$L_R2 The contents of general register R2

PTX$L _R3 The contents of general register R3

PTX$L_R4 The contents of general register R4

PTX$L_R5 The contents of general register R5

PTX$L_Ré6 The contents of general register R6

PTX$L _R7 The contents of general register R7

PTX$L_RS The contents of general register R8

PTX$L_R9 The contents of general register R9

PTX$L_R10 The contents of general register R10

PTX$L _R11 The contents of general register R11

PTX$A_AP The contents of the argument pointer

PTX$A_FP The contents of the frame pointer

PTX$A_PC The contents of the program counter

PTX$L_PSL The contents of the processor status longword

PTX$A_POBR The contents of the PO base register for this process

PTX$L_PO_LIMIT A bit field containing the following relevant fields:
PTX$V_POLR Bits <21:0>: the low-order 22

bits of the POLR for this process
PTX$V_ASTLVL Bits <26:24>: the value for the
AST level register (ASTLVL);

contains the access mode num-
ber of the most privileged mode
for which an asynchronous

exception is pending

Job and Process Creation and Deletion 4-~19

Table 4-3 (Cont.): Process Hardware Context Block Fields

Field

Meaning

PTX$A_P1BR

PTX$L_P1_LIMIT (PTX$V_
PI1LR)

PTX$T_USERNAME

PTX$L_UIC

PTX$A_NAME_BLOCK

The contents of the P1BR for this process

A bit field (bits <21:0>) containing the low-order 22 bits of
the P1LR for this process

The process’s username, stored as a word-length char-
acter count followed by a username of up to 20 charac-
ters; defaults to username USER if not explicitly set by a
KERS$SET_USER procedure call

The process’s UIC; if not explicitly set by KER$SET_USER,
defaults to the UIC set at build time on the Program
Description Menu (kernel value KER$GL_DEFAULT_UIC)
or to the System Builder’s default, [1,1]

The address of the process’s name block, if a procedure call
has been issued to name a process; otherwise 0

4.3 Job and Process Virtual Memory

A job’s PO page table maps job components and resources into the
program region of process virtual address space for jobwide access.
For each process in the job, a separate P1 page table maps process
components and resources into the control region of process virtual
address space for private access by the process. Section 4.3.1 de-
scribes the job components and resources mapped into PO memory, and
Section 4.3.2 describes the process components and resources mapped

into P1 memory.

4.3.1 Job Virtual Address Space

The PO address space of a process is created during the creation of its
job, as described in Section 4.4, and is shared among all processes in
the job. The job components and resources mapped into PO memory are
shown in Figure 4-5 and described in detail in Table 4—4.

4-20 Job and Process Creation and Deletion

Figure 4-5: Structure of P0 Virtual Memory

:00000000
No-Access Page

100000200
Program image

(Global Data and
Executable Code)

Writeable Shareable images

Job Context Page

Job Dynamic Memory,
Heap Data, and
Message Buffers

Direction
of Growth

< PO Virtual Size Limit

: Unmapped Portion of :
' PO Space 1
tm e e e - -—===--=d 3FFFFFFC MLO-003221

Job and Process Creation and Deletion 4-21

Table 4-4: Job Components Mapped into PO Address Space
Component Purpose

No-access page A single page whose bit is cleared in the PO virtual memory bitmap
to ensure that it is never allocated. The page is made inaccessible
because the VMS Linker does not normally allocate virtual addresses
below 2006.

Program image The program’s global data and executable code. At job creation, the
kernel maps into virtual memory the global data and executable code
program image sections created by the VMS Linker and described by
kernel section descriptors (KSDs) in the program descriptor. KSDs
for program images are described in Section 2.4.1.3.

Writeable shareable The program’s writeable-shareable image sections, corresponding

images to the shareable images it references. At job creation, the kernel
maps into virtual memory the writeable-shareable program image
sections created by the VMS Linker and described by kernel section
descriptors (KSDs) in the program descriptor. KSDs for program
images are described in Section 2.4.1.8.

4-22 Job and Process Creation and Deletion

Table 4-4 (Cont.): Job Components Mapped into PO Address Space

Component

Purpose

Job context page

Job dynamic memory

A page used to record jobwide information for run-time library
routines and the debugger. Maintained within this page is a job
context block (JCX) containing the PO address of the job’s program
arguments and context values used by the heap management rou-
tines, the debugger, and the file system. Sample fields include the
following:

JCX$A_JOB_PARAMETERS The address of the job’s program
arguments (copied from JPBs
into job dynamic memory during
job creation), valid for the life of
the job.

JCX$A_HEAP_LISTHEAD The listhead for the heap-
storage queue, the first of three
heap storage fields.

JCX$L_DEBUG_BPT_MASK The first of several debugger
context fields.

JCX$A_FILE_LISTHEAD The first of four open-file context
fields, including a listhead for
file rundown on job exit.

A region of memory used to map heap data (allocated, for example,
by the Pascal routines NEW and DISPOSE), message buffers created
by KER$CREATE_MESSAGE, shared memory buffers created

by KER$CREATE_AREA, and memory allocated at PO virtual
addresses by KERSALLOCATE_MEMORY. This dynamic region can
expand from the base of job dynamic memory — one page beyond
the last page mapped by the program image — to the PO virtual
gize limit established by the PO virtual size value on the System
Characteristics Menu. Allocating job dynamic memory is discussed
in Section 9.3.2.2.

4.3.2 Process Virtual Address Space

The P1 address space of a process is mapped during its creation, as
described in Section 4.5, and is inaccessible to other processes in the job
and in the system. The process components mapped into P1 memory
are shown in Figure 4—6 and described in detail in Table 4-5.

Job and Process Creation and Deletion 4-23

NOTE

Figure 46 and Table 4-5 do not represent or describe dy-
namic memory allocated at P1 virtual addresses with the
KER$ALLOCATE_MEMORY procedure, because such allo-
cations are not typical and require careful attention. For
example, an allocation in kernel or user stack space would
require a guarantee that the allocated area not be used for
normal stack activity while allocated. KER$ALLOCATE_
MEMORY typically is used to allocate PO dynamic mem-
ory, as reflected in the corresponding PO figure and table in
Section 4.3.1.

Figure 4-6: Structure of P1 Virtual Memory

P - - —-——---o- a.
] Unmapped Portion of |'40000°°°
I P1 Space |
< P1 Virtual Size Limit
Direction
of Growth
User Stack

(user-mode jobs only)

No-Access Page
(user-mode jobs only)

Kernel Stack
{fixed size in user mode)

Process Context Data

7FFFFFFC MLO-003224

4-24 Job and Process Creation and Deletion

Table 4-5: Process Components Mapped into P1 Address Space

Component

Purpose

User stack

No-access page

Kernel stack

The dynamic memory region used by user-mode processes, when
executing in user mode, to store automatic (local) variables and
procedure call frames and argument lists (in stack-based languages
such as VAX C and VAXELN Pascal).

The initial size of the user stack is set by the User stack entry

on the Program Description Menu and is transmitted to the kernel
through the program descriptor value PRG$W_USER_STACK. The
same initial stack size is used for every process created in a job. As
stack requirements increase at run time, the kernel expands the
user stack. A limit for expansion is specified as the P1 virtual size
value on the System Characteristics Menu.

The user stack begins at a —512 byte offset from the end of the
kernel stack.

This stack exists only for user-mode programs.

A guard page marked inaccessible by the kernel to separate the user
and kernel stacks. Attempts to access this page inform the kernel
that the kernel stack has overrun its limit. This page exists only for
user-mode programs.

The dynamic memory region used by kernel-mode processes to store
automatic (local) variables and procedure call frames and argument
lists. This stack is also used by user-mode processes executing in
kernel mode, as they do when executing most kernel procedures (see
Chapter 8).

The size of the kernel stack is set by the Kernel stack entry on
the Program Description Menu and is transmitted to the kernel
through the program descriptor value PRG$W_KERNEL_STACK
Overrunning the stack limit causes a fatal kernel stack exception
in the process. Kernel-stack overrun can be circumvented through
the use of the ELN$SALLOCATE_STACK utility procedure, used by
kernel-mode programs to explicitly expand the stack.

The kernel stack begins at fixed location P1$K_KERNEL_STACK_
INIT — 7FFFFDF01¢ — at a —103¢ byte offset from the end of
the first page allocated for kernel stack. The offset allows for the
presence of 4 process context longwords (part of the process context
data area) at the end of the page.

Job and Process Creation and Deletion 4-25

Table 4-5 (Cont.): Process Components Mapped into P1 Address Space
Component Purpose

Process context data Process context longwords and process debugging information. The
process context longwords occupy the high-order 16 bytes of the
first page allocated for the kernel stack, immediately following the
kernel stack base (P1$K_KERNEL_STACK_INIT) in P1 memory.
If debugging was requested, the process debugging information is
maintained at the beginning of the next virtual page, which is the
last page of P1 memory.

The process context longwords provide fixed locations for storing
context addresses, as follows:

P1$GA_JCX The jobwide context address; the job
context data area is shown in Figure 4-5
and summarized in Table 4—4.

P1$GA_ADA_CTX Ada run-time context address.
P1$GA_ADA_DATA Ada data run-time context address.
P1$GA_CRTL_CTX C run-time library context address.

If debugging was requested for a program, process-specific infor-
mation for use by the debugger is maintained in a process context
block (PCX) at location PI$GR_CONTEXT — 7F FF FE00;5 — the
beginning of the last page of P1 memory. The PCX is initialized by
the debugger bootstrap at the conclusion of job or process creation.

4.4 Job Creation

The goal of job creation is to establish an environment for the execution
of a program. At system start-up, when the first jobs are created in a
system, the kernel’s initialization sequence has already prepared the
system for the creation and execution of jobs and processes. When

the KER$CREATE_JOB kernel procedure (in module CREATEJOB)

is invoked, the kernel creates a job and a master process to execute a
program’s main code thread, beginning at its linker-specified transfer
address. Jobwide and process-specific contexts and address spaces are
established and a scheduling pass is made. When the job is scheduled
to run, execution of the program’s main code by the master process will
begin.

4-26 Job and Process Creation and Deletion

This section focuses on the job creation sequence, which proceeds
through three phases:

1. The initial KER§CREATE_JOB procedure call is handled. This
phase creates the minimal job and process context that will allow
the job’s master process to continue creation of the job. Thus the
creating job can be decoupled from the created job and continue
executing its own code.

At the conclusion of this phase, a scheduling pass is made, which
can result in the job and master process being selected to run
immediately or being placed in the ready job and process queues for
their priorities. Saved in the PC field of the master process’s PTX
is the address of its continuation point within the CREATEJOB
module, the FINISH_JOB subroutine. The initial procedure call
exits by executing an REI instruction, returning status to its caller.
Section 4.4.1 describes this phase.

2. When the system state permits, the master process of the new job
is placed in the running state by the scheduler and exercises the
FINISH_JOB subroutine, which completes the creation of the job
environment.

This phase concludes when the kernel executes an REI instruction
to transfer control to another CREATEJOB module subroutine,
KER$ENTER_PROCESS, in the base program mode, user or ker-
nel, specified in the program’s descriptor. Section 4.4.2 describes
this phase.

8. Job creation is completed in the user-specified program mode.
This phase sets up entry to the program’s transfer address. (If
debugging was requested and the debugger is present, control is
first transferred to the debugger bootstrap.) Section 4.4.3 describes
this phase.

4.4.1 Phase 1: Creating Minimal Job and Master Process Context

Job creation is initiated by a call to the KER$CREATE_JOB kernel pro-
cedure. The KER§CREATE_JOB procedure can be called implicitly by

system software — such as system initialization and start-up modules,

the debugger, ECL, and LAT — or explicitly by application software.

Job and Process Creation and Deletion 4-27

The main objective of the initial phase of job creation is to construct the
minimal job and process context necessary to allow job creation to con-
tinue under the control of the job’s master process. By returning from
the initial KER$CREATE_JOB procedure call as quickly as possible,
the kernel decouples the creating job from the created job so that each
job can continue executing code in the normal scheduling environment.
When the job’s master process has been provided with enough context
to be scheduled, an REI instruction is executed to exit the system call
and return control to the caller.

The kernel creates a minimal job and master process context as follows:

ok W

KER$CREATE_JOB call arguments are verified.
The JCB is created and initialized.

Structures are created for managing the job’s objects.
JCB fields are initialized for PO memory mapping.

The master process is created and initialized: PCB and PTX struc-
tures are created for it, its PCB is entered into the job’s first object
pointer table, its PO and P1 page tables are allocated, and a page of
kernel stack is allocated for it.

The job’s message port is created.

For KA620-based systems only, the entire PO page table is allo-
cated.

A scheduling pass is made, which can result in the job and master
process being selected to run or being placed in ready job and
process queues.

4.4.1.1 Step 1 — Verify Call Arguments

The KER$CREATE_JOB procedure begins by verifying the arguments
passed to it on the stack. The checks made are as follows:

Job message port address. The location to receive the job port
identifier must be writeable; if not, the procedure exits with KER$_
NO_ACCESS status.

Program name. The program name must be readable. If it is, then
the system’s program descriptor table is scanned for a program
list entry matching the caller-specified program name. If no match
is found, the procedure exits with KER$_NO_SUCH_PROGRAM
status. If the program is found, and it’s a dynamically loaded
program, the program reference count, variable PRG$W_REF_
COUNT in the program descriptor, is incremented. The kernel

4-28 Job and Process Creation and Deletion

maintains this variable for each dynamically loaded program to
record how many currently active jobs are running the program, to
prevent premature unloading of the program.

¢ Exit port address. The port identifier argument, if specified, must
be readable; if not, the procedure exits with a KER$_NO_ACCESS
status.

¢ Job parameter strings. Each string argument specified must be
readable and of the correct size.

4.4.1.2 -Step 2 — Create the Job Control Block

After verifying the arguments passed to it, the KER§CREATE_JOB
procedure allocates the pool blocks (3, plus 1 for each job argument)
and the communication region pages (2) it will need to create job data
structures.

The KER$ALLOCATE_POOL subroutine, described in Section 9.4, is

used for the pool allocation. Each pool block allocated by KERSALLOCATE_
POOL must subsequently be removed from the pool before it can be

used. Pool blocks are allocated for the following job and master-process
control structures:

¢ Ready-process queue header block, containing listheads for the job’s
16 priority-ordered ready process queues

¢ Initial allocation of an object pointer table, to hold pointers to the
first 32 objects created dynamically within the job — beginning
with the process object for the master process

¢ Initial allocation of four WCBs to be used when the master process
issues a KER$WAIT call

¢ A pool block for each job argument; a JPB is created in each pool
block

The KERSALLOCATE_REGION subroutine, described in Section 9.3.1.1,
is used for memory allocation from the communication region. The first
page of the allocated memory holds the job’s JCB; the second page holds
the master process’s PTX and PCB.

The kernel clears 128 bytes for the JCB at the beginning of the 2 pages
from the communication region. The kernel proceeds to create other
structures to be linked into or otherwise referenced from the JCB.

Job and Process Creation and Deletion 4-29

The kernel copies any caller-specified program arguments (as verified in
step 1) into a linked list of JPBs. (If the job is created at system start-
up, the supplied arguments are from the Program Description Menu.)
For each job argument, a pool block is removed from the allocated pool
and a JPB created in the pool block. Each JPB is linked into a singly-
linked list whose head is the JCB$A_PARAMETER_LIST field in the
JCB. The fields in the parameter block are described in Table 2—4.

When the job’s PO address space has been established, later in job
creation, the program arguments are copied there in a format that
allows faster jobwide access to them. The argument strings them-
selves are preceded in PO memory by a standard VAX argument list
containing the argument count and the addresses of each parameter
string descriptor. At that point, the JPB pool blocks are returned to the
system.

The kernel proceeds to initialize other portions of the JCB as follows:

¢ The structure type field, JCB$B_TYPE, is set to value OBJ$K_JOB,
indicating a JCB structure.

® The job priority field, JCB$B_PRIORITY, is set to the value con-
tained in the associated program description (field PRG$B_JOB_
PRIORITY).

¢ The JCB field containing the priority of the highest priority ready
process in the job, JCB$B_READY_PRIORITY, is set to the ini-
tial process priority of the master process, which will be the job’s
only process when the job is first eligible for scheduling. The
value is copied from the process priority field (PRG$B_PROCESS_
PRIORITY) of the PRG.

® The job state field, JCB$B_STATE, is set to value JCB$K_READY,
indicating a ready state.

* The current process field, JCBSA_CURRENT_PCB, is set to the
address of the master process PCB. The current process is the
process placed in the running state for this job; the designated
process is actually running only if its job is running.

® The listhead for the job’s process queue, fields JCB$A_PROCESS_
FLINK and JCB$A_PROCESS_BLINK, is initialized to an empty
queue.

® The listhead for the job’s port queue, fields JCB$A_PORT_FLINK
and JCB$A_PORT_BLINK, is initialized to an empty queue.

4-30 Job and Process Creation and Deletion

The job’s process-switching disable count, JCB$§W_DISABLE, is
initialized to 0, indicating process switching is enabled for the job.
A disable request received at run time increases this count by 1,
and an enable request decreases the count by 1. A count greater
than 0 indicates process switching is disabled.

The job’s context switch count, JCB$W_CONTEXT_COUNT — the
number of times the job has entered the running state — is cleared.

The job’s process-scheduling ready summary mask, JCBS$W_
READY_SUMMARY, is cleared, indicating all ready-process queues
in the priority-ordered set (pointed to by JCB$A_PROCESS_
QUEUES) are initially empty.

The job’s ready-process queue listheads are created at the beginning
of a pool block from the earlier pool allocation. A set of 16 quad-
word listheads, one for each process priority level (0-15, in order),
is initialized. The JCB$A_PROCESS_QUEUES field is set to the
address of the pool block; this address is indexed by priority value
when the kernel needs to locate a particular priority ready-process
queue.

The job’s processor eligibility mask, JCB$W_CPU_MABSK, is initial-
ized with the eligibility mask from the PRG. In a tightly coupled
symmetric multiprocessing system, each bit set in the eligibility
mask indicates eligibility for a processor; bit n indicates eligibility
for processor n. Under the current design, the mask copied from
the program description is always 0, indicating the job initially is
eligible to run on any processor; however, a device driver on a VAX
8800-series multiprocessing system is by default made eligible only
for the processor that handles the device’s interrupts, when it is-
sues a KERSCREATE_DEVICE call. This mask can be altered with
the KER$SET_JOB_ELIGIBILITY procedure. In single processor
systems, altering this mask has no effect.

The job’s generation number, JCB§W_GENERATION, is set; the
kernel’s count of generated jobs, KER$GW_JOB_GENERATION, is
increased by one and copied into the JCB field.

The job’s seed for generating process generation numbers, JCB$W_
PROCESS_GENERATION, is initialized to 0. For each process
subsequently created in the job, the JCB count is increased by 1
and copied into the PCB field PCB$W_GENERATION.

If the job creator specified an exit port for the job — a port to
receive the master process’s completion status when the job ter-
minates — the exit port’s identifier is placed in JCB field JCB$B_
EXIT _PORT_ID.

Job and Process Creation and Deletion 4-31

® The program’s access mode, kernel or user, in which the job’s
processes are to begin their execution, is copied from the PRG into
the base access mode field of the JCB, JCB$B_MODE.

4.41.3 Step 3 — Create Object Management Structures

During job creation, the kernel creates data structures for managing
the objects created dynamically for or by the job:

* The object base table, which contains the addresses of dynamically-
created object pointer tables. This table forms the first tier in a
two-tiered arrangement of address tables and can hold the ad-
dresses of up to 128 object pointer tables. The base table occupies
one 512-byte page in the communication region.

The KER$CREATE_JOB procedure creates a single base table
(with the internal routine KERSALLOCATE_REGION in module
ALLOCATE) and stores its address in the JCB$A_OBJECT _TABLE
field of the JCB. This field is used when looking up a job object to
locate the job’s object base table. The table exists until the job is
deleted.

* The object pointer tables, which contain the addresses of dynam-
ically created kernel objects. These tables form the second tier of
address tables. A pointer table occupies one 128-byte pool block
and can contain the addresses of up to 32 kernel objects. (Since
there can be up to 128 pointer tables and each can point to up to 32
objects, a job can have up to 4096 objects.)

The KER$CREATE_JOB procedure creates the job’s initial object
pointer table (with the internal routine KER$ALLOCATE_OBJECT
in module ALLOCATE) and places its address in the job’s object
base table; subsequent tables will be allocated as each pointer table
fills up. (Once a pointer table is allocated, it exists until the job is
deleted, even though many of the objects it points to may no longer
exist.) KER$CREATE_JOB places in the JCB$W_OBJECT_FREE
field of the JCB an encoded value representing the location of the
next available entry in the object pointer tables. This field is used
and updated when creating or deleting job objects.

The first object represented in a job’s object tables is the PCB of its
master process.

Chapter 10 describes the object base table and the object pointer tables
in more detail.

4-32 Job and Process Creation and Deletion

4.4.1.4 Step 4 — Initialize JCB Fields for PO Memory Management

To prepare for the mapping of the job’s executable program code and
global data into PO address space in the second phase of job creation,
the KER$CREATE_JOB procedure initializes three fields in the JCB:

* The JCB$SA_PROGRAM field receives the address of the job’s pro-
gram descriptor, used to look up program characteristics.

¢ The JCB$L_MESSAGE_PTE field receives a prototype page table
entry (PTE) for creating and filling in PTEs for the job’s mes-
sage and area buffers. The kernel creates a PTE with the valid,
protection (PTE$C_UW), owner (program access mode), and type
(PTE$K_MESSAGE) fields present. During the allocation of mes-
sage and area buffers, the allocated page frame number is inserted
into the PFN field to create the actual PTE for the page.

e The JCB$L_RW_DATA_PTE field receives a prototype page table
entry (PTE) for creation of PTEs for the job’s read/write data. The
kernel creates a PTE with the valid, protection (PTE$C_UW),
owner (program access mode), and type (PTE$K_RW_DATA) fields
present. During PO memory allocation (global data, heap, and
KER$SALLOCATE_MEMORY) and P1 user-mode stack allocation,
the allocated page frame number is inserted into the PFN field to
create the actual PTE for the page.

4.4.1.5 Step 5 — Create the Master Process

A major part of job creation is establishing a master process to execute
the program’s main code thread. However, in the first phase of job
creation, the more immediate goal is to create a master process with
enough context to assume control of job creation in the second phase.

For the most part, the actions taken by the kernel to create a master
process in phase 1 mimic the corresponding phase of subprocess cre-
ation, as described in Section 4.5.1. The kernel proceeds as follows;
detail is provided only for steps that differ significantly from subprocess
creation:

1. The master process’s PCB is created and initialized. This step
matches step 2 of subprocess creation (Section 4.5.1.2), with one
difference: the master process state, field PCB$B_STATE, is initial-
ized to indicate a running state (PCB$K_RUNNING). This marks
the master process to run when the job is selected to run, since the
master process is initially the only ready process in the job.

Job and Process Creation and Deletion 4-33

2. The PTX for the master process, representing its hardware context,
is initialized. This step matches step 3 of subprocess creation
(Section 4.5.1.3), except as follows:

¢ The name block field, PTX$A_NAME_BLOCK, of the PTX is
cleared; a master process is given no name. Unlike a subpro-
cess, which can be named and displayed with the given name
by VAXELN utilities, a master process generally remains un-
named. For display purposes, VAXELN utilities use the job’s
program name for the master process; any name established
for a master process by a run-time call to the KER$CREATE_
NAME or KER$NAME_OBJECT procedure is disregarded.

e The PC and PSL fields of the PTX are prepared for transfer
to the next phase of process creation. The PTX$A_PC field
receives the address of the FINISH_JOB internal subroutine.
When the new process is first scheduled to run, it will reenter
the CREATEJOB module at FINISH_JOB and execute the
second phase of job creation. The PTX$L_PSL field is cleared to
initialize access mode to kernel (0) and IPL to 0 for when the
process is first scheduled to run.

¢ The POLR processor register subfield of PTX$L_P0_LIMIT
is cleared, since the master process initially executes a
CREATEJOB module routine, FINISH_JOB, out of S0 ad-
dress space. The master process’s POLR value is set up for
program code execution later, as the program’s P0 code and
global data are mapped or allocated and mapped. (The POBR
field is initialized in step 4 of master-process creation.)

The ASTLVL subfield of PTX$L_PO_LIMIT receives the value
PSL$C_USER + 1 (4), indicating no asynchronous exception is
pending for the master process.

3. The PCB for the master process, as the kernel object representing
the master process, is entered into the job’s object tables. An object
pointer table entry is allocated and receives the address of the PCB.
This step matches step 6 of subprocess creation (Section 4.5.1.6).
The master process PCB is the first object entered in the job object
tables.

4. The job’s PO page table is allocated. A PO page table slot is allo-
cated with a call to the KERSALLOCATE_PO_SLOT subroutine,
following which the page table’s base address (equal to the slot’s
base address) is placed in the PTX (PTX$A_POBR) and the JCB
(JCB$A_PO_BASE). (The POLR field of the PTX was initialized in
an earlier step of master process creation.)

4-34 Job and Process Creation and Deletion

Also, both address subfields of the PO allocation bitmap descriptor
in the JCB (JCB$A_PO_BITMAP) are initialized with the address
(within the slot) of the P0 allocation bitmap. Length fields in
the descriptor remain clear. This zero-length bitmap will cause
the allocation of a page of PTEs for the first 128 pages of virtual
memory for the job when the kernel first attempts to allocate PO
memory to map the job’s image sections.

Chapter 9 describes PO page tables and their handling in detail.

5. The master process’s P1 page table is allocated. This step matches
step 4 of subprocess creation (Section 4.5.1.4). Chapter 9 describes
P1 page tables and their handling in detail.

6. The master process’s username and UIC are written into fields
PTX$T_USERNAME and PTX$L_UIC of the PTX. The username
and UIC are inherited from the creating process, unless the job
being created is the system start-up job. In the case of the start-
up job, the master process is given the username USER and the
default UIC specified on the Program Description Menu.

7. One page of kernel stack is allocated for the master process, part
of the minimal context the master process needs to assume control
of the second phase of job creation. This step corresponds to step
5 of subprocess creation (Section 4.5.1.5). Remaining process stack
allocation is done in the second phase.

4.4.1.6 Step 6 — Create the Job’s Job Port

After creating the master process, the KER$CREATE_JOB procedure
creates the job port with a call to the KER$CREATE_PORT kernel
procedure. The message limit set for the job port is the job port mes-
sage limit specified on the Program Description Menu. Because this
phase of job creation is executed by the caller of KER§CREATE_
JOB rather than the newly created job, the port object allocated by
KER$CREATE_PORT resides in the creating job’s port queue; so the
kernel rewrites the port object’s owner field (PRT$A_OWNER) with a
pointer to the new job’s JCB, removes the object from the creating job’s
port queue, and inserts it into the created job’s port queue. The port’s
local identifier is stored in the JCBSL_PORT _ID field of the JCB.

Job and Process Creation and Deletion 4-35

4.4.1.7 Step 7 — Allocate the PO Page Table for KA620-Based Systems

If the new job is being created for a KA620-based system, such as the
rtVAX 1000, page table entries for the entire PO page table are allo-
cated. PO and P1 page tables on the KA620 processor are physically
contiguous and referenced with physical addresses, which saves virtual
address translations for process-space memory references. The process
page tables on a KA620 processor are not expanded dynamically in
one-page increments up to the specified limit for the process; rather,
they are completely allocated during job (P0) and process (P1) creation.
A mock POPTE allocation and deallocation is performed to force imme-
diate allocation of the entire PO page table, and the POBR field of the
PTX is updated accordingly.

4.4.1.8 Step 8 — Initiate a Scheduling Pass

At the conclusion of the first phase of job creation, the job’s JCB (at
field JCB$A_JOB_FLINK) is linked into the queue of all jobs within
the system (accessed through global listhead KER$GQ_SYSTEM_
JOB). Then the kernel calls the KER$READY_JOB subroutine, which
initiates a scheduling pass. The job and its master process might be
selected to run immediately — for example, if the created job has a
higher combined job and process priority than the creating job in a
single-processor system — or might be placed in the ready-job and
ready-process queues for their priorities to await a change in system
state that allows the job to run.

Finally, the KER$CREATE_JOB procedure returns to its caller with
an REI instruction. When the newly created job is selected to exe-
cute by the scheduler and begins running, it will run in kernel mode
and execute the FINISH_JOB subroutine to finish creating the job
environment.

4.4.2 Phase 2: Finishing Creation of the Job Environment

The main objective of the second phase of job creation is to complete
construction of the job environment. At the end of the second phase, a
REI instruction is executed that transfers control to the user-specified
program mode (kernel or user) and to a subroutine in the CREATEJOB
module that sets up entry to the program’s transfer address.

The kernel completes creation of the job environment as follows:

1. The process stacks are allocated.

4-36 Job and Process Creation and Deletion

2. The job’s image sections are mapped to PO memory.
Program arguments are stored in PO memory for jobwide access.

4. Transfer to program mode and to the KERSENTER_PROCESS
subroutine is set up.

i

4.4.2.1 Step 1 — Allocate the Process Stacks

To finish allocating the master process’s stacks, the kernel calls the
CREATEJOB subroutine KERSALLOCATE_PROCESS_STACK, which
is called for both master process and subprocess creation. Using the
stack sizes specified in the program description for the job’s program,
KER$ALLOCATE_PROCESS_STACK allocates the remainder of the
kernel stack (beyond the page already allocated) and, if the pro-
gram mode is user, the user stack. If the user stack is allocated, an
extra guard page is also allocated between the user stack and the
kernel stack, to mark the end of the fixed-length kernel stack. The
KER$ALLOCATE_PROCESS_STACK subroutine is described in detail
in Section 4.5.2.1, which covers the corresponding step of subprocess
creation.

4.4.2.2 Step 2 — Map the Job’s Image Sections

In the second phase of job creation, the kernel maps into job (P0)
address space the job’s image sections, as specified in lists linked to
the job’s program descriptor. The job’s image sections contain the
executable code and global data of the program and of object library
routines it references, as well as the code and data of shareable images
referenced by the program.

Each image section is described by a kernel section descriptor (KSD),
which resides in a list of KSDs pointed to by the program descriptor.
The KSD describes the image section’s characteristics and virtual
memory requirements; diagrams of KSDs are provided in Chapter 2.

The program’s KSD list includes private KSDs, which describe the
program’s executable code and global data image sections, and global
KSDs, which describe a virtual address range to which the image sec-
tions of a shareable image are to be mapped. Each global KSD points
to a sublist of shareable KSDs, describing the code and data image
sections of a writeable shareable image referenced by the program.

Job and Process Creation and Deletion 4-37

The job’s program descriptor, list of KSDs, and image sections all reside
in the system image (described in Chapter 2), which was created by
the System Builder and mapped into SO address space during system
initialization. In this step of job creation, some of the program’s image
sections, such as read/write data sections, are copied from S0 space into
newly allocated PO memory pages and mapped, while others, such as
read-only code or data sections, are mapped without creating a PO copy.

To map the program’s image sections, the kernel walks the program’s
KSD list and maps each section as it goes; when it encounters a global
KSD (a KSD with the type value KSD$K_GBL in the KSD$B_TYPE
field), it completely processes the sublist of shareable image KSDs
pointed to by the global KSD before returning to the main list. The end
of the main list or a shareable KSD sublist is marked by a KSD with a
size field of 0. Image mapping is complete when the kernel reaches the
end of the program’s KSD list.

For each KSD encountered in the KSD list or a shareable image sublist,
the kernel calls the internal subroutine MAP_SECTION (in the module
CREATEJOB) to map the section. The MAP_SECTION subroutine
checks the KSD’s fields to determine the image section type, and then
maps the image section accordingly:

1. If the KSD indicates no pages are to be mapped (KSD$L_PAGCNT
field equals 0), the MAP_SECTION routine exits with success
status.

Otherwise, PO page table entries are allocated to map a correct
number of pages (specified in the KSD’s page count field) starting
at the image section’s user virtual address (calculated during sys-
tem building and represented in the KSD). This is accomplished by
calling the internal routine KER$ALLOCATE_PO_PTE in module
ALLOCATE. When the call returns, the kernel updates the proces-
sor PO limit register, POLR, based on the JCB$L_PO_LIMIT field of
the created job’s JCB.

2. If the KSD describes a read/write data section (the KSD type
is KSD$K_DATA and the KSD flag KSD$V_CRF is set), MAP_
SECTION allocates the required number of PO page frames with
the internal routine KERSALLOCATE_FRAME and fills their PFNs
into PO page table entries; other fields are inserted into each PTE
(from the prototype data PTE in JCB field JCBSL_RW_DATA_PTE)
that set the page characteristics. Each allocated PO page receives
a copy of a page of the program’s global (static) data from where it
resides in system space.

4-38 Job and Process Creation and Deletion

3. If the KSD describes a demand-zero image section (the KSD type is
KSD$K_DZRO and the KSD flag KSD$V_CREF is set), the mapping
algorithm is the same as for read/write data sections. However,
each allocated PO page is zeroed.

4. If the KSD describes a read-only code or data section (the KSD
type is KSD$K_CODE and no KSD flags are set), MAP_SECTION
double maps the image section from SO memory to PO memory, by
copying the system page table entries for the image section into the
job’s PO page table. No new physical memory is allocated; multiple
jobs can double-map and execute the system copy of the program
code. The page characteristics are set to indicate user code.

5. If the KSD describes a global common section, such as a FORTRAN
common, MAP_SECTION double maps the image section from SO
memory to PO memory, again by copying the system page table
entries for the image section into the job’s PO page table. No new
physical memory is allocated. However, the type and access fields
of the PTEs are set to indicate user read/write data, and each
page is marked as a system page to prevent its deletion upon
master-process exit.

However, if the system copy of the global common image section is
in ROM (not writeable), it must be recreated in RAM. The kernel
therefore allocates an identical global common section in PO space,
adjusts each of the global-common section’s PTEs in the SPT to
point to the PO copy, and enters (double maps) each page also in
the POPT, marked as a system page to prevent its deletion upon
master-process exit. All data is copied from the S0 pages to the
PO pages. (The copying is done the first time a job is created
that references the global common section; subsequent jobs that
reference the global common section simply map it.)

After mapping each image section, the MAP_SECTION subroutine
returns with success status and an updated value for the next PO
virtual address to be mapped.

After all the program’s image sections have been mapped in PO address
space, the kernel clears the bitmap bit for page 0 of PO space, to ensure
it cannot be allocated by subsequent allocation requests. If page 0 was
already allocated for the program’s code or data, the bit was already
clear and remains clear.

Job and Process Creation and Deletion 4-39

4.4.2.3 Step 3 — Store the Job’s Program Arguments for Jobwide Access

In the second phase of job creation, the job program arguments, if
any, that were stored in the job parameter list in the first phase of job
creation are copied to the job’s PO address space, so that they can be
accessed quickly by all processes in the job and so that the pool blocks
occupied by the job parameter list can be freed.

The kernel calculates the number of bytes required to hold the argu-
ment count (4 bytes), the argument descriptors (12 bytes per descrip-
tor), and the job arguments (as indicated by field JPB$L_TOTAL_SIZE
in the job parameter listhead). The kernel then allocates the required
number of bytes by calling the KERSALLOCATE_MEMORY routine.
The allocated memory’s starting address is returned to location JCX$A_
JOB_PARAMETERS in the job context page; this location retains the
address of the job’s program arguments for the life of the job.

Using the returned pointer to the allocated memory, the kernel first
creates a standard VAX argument list for the job. The argument list
contains the argument count and the address of the argument descrip-
tor for each argument in the list of JPBs. Following this argument
block in memory come the actual argument descriptors, in the order
their addresses appear in the argument list. The components of the
descriptors are the argument string size and the string itself. As the
contents of each JPB are copied into PO memory, the pool block occupied
by the JPB is returned to the system pool.

4.4.2.4 Step 4 — Begin Program Execution

The final step in the second phase of job creation is to transfer control
to the user-specified program mode and to the KER$ENTER_PROCESS
subroutine, which will set up entry to the program’s main code at its
transfer address, indicated by the PRG$L_TRANSFER field in the
program descriptor.

Prior to the execution of the REI instruction that triggers the possible
change of access mode, general registers are set up with addresses of
the program’s arguments, the master process PCB, the JCB, the job
context page, the job’s program descriptor, and the program’s entry
point.

Next the kernel sets up for the REI instruction mechanism. The user-
specified program mode, from the PRG$B_MODE field of the program
descriptor, is placed on the stack. And, if the specified mode is user,
the program PSL on the stack is initialized to specify user access mode.
Finally, the address of the KER$ENTER_PROCESS subroutine is

4-40 Job and Process Creation and Deletion

pushed on the stack as the address to which control is to be transferred.
The kernel then executes an REI instruction, which pops these PSL and
PC values from the stack into their respective registers. The process
is now executing in its base access mode at location KERSENTER_
PROCESS.

4.4.3 Phase 3: Entering the Program Code

The main objective of the final phase of job creation is to set up entry
to the program at its transfer address so that program execution can
begin.

When the master process continues executing following the REI in-
struction executed in the second phase, the KERSENTER_PROCESS
subroutine executes. This routine, which executes at the close of both
job and process creation, causes the process, in this case the master
process, to begin executing its actual code (when the process next runs).

If debugging was requested and the debugger is present in the system,
the debugger bootstrap, subroutine BOOTSTRAP_PROCESS (in mod-
ule [DEBUGILCLNUC), is entered before the new job’s master process
executes program code. The debugger bootstrap calls a debugger sub-
routine, INIT PROCESS_CONTEXT, to establish the process-specific
debug context for the process in the last page of P1 address space;

see Figure 4—6. INIT_PROCESS_CONTEXT also initializes debugger-
related portions of the job context block (JCX) in PO memory, and sends
a message to VAXELN$DEBUG_PORT to announce the presence of
the master process. Furthermore, unless the user requested that this
job’s processes start without debugger intervention, the debugger boot-
strap calls the debugger’s first-chance exception handler as if a KER$_
DEBUG_SIGNAL exception occurred, which causes the process to await
a debugger command. If a debugger command starts execution (for ex-
ample, the GO command), control returns to the debugger bootstrap,
which then executes an REI instruction to start program execution.

Similarly, if performance collector PC coverage activity was requested,
the performance collector utility is entered before the master process
executes program code.

The KERSENTER_PROCESS subroutine checks for build-time selection
of the debugger or performance collector to run in conjunction with
this job. A CALLG instruction is executed to transfer control to the
debugger, to the performance collector utility, or directly to the program
entry point.

Job and Process Creation and Deletion 4-41

While executing, if the master process reaches the end of its code
without issuing a KER$EXIT procedure call (or a KER$DELETE for
itself), the RET instruction generated by the compiler is executed.
When this happens, control returns to the KERSENTER_PROCESS
subroutine, at the instruction after the CALLG used to invoke the
process code. KERSENTER_PROCESS proceeds to initiate the orderly
termination of the master process, as follows:

1. The process exit status and the user-supplied status value address
are pushed onto the stack.

2. The KER$EXIT kernel procedure is called. The call does not re-
turn; the KER$EXIT kernel procedure completes with a call to the
KER$DELETE kernel procedure, which deletes the master pro-
cess, the job, and all the job’s subprocesses. After job deletion, the
kernel branches to the internal routine KER$SCHEDULE_JOB to
reschedule the system.

The KER$EXIT and KER$DELETE kernel procedures are described in
Section 4.6.

4.5 Process Creation

The goal of process creation is to create a context for a single thread of
execution of a VAXELN program — either a master process to execute
the program’s main code or a subprocess to execute a routine or process
block in the program. When the KERSCREATE_PROCESS kernel
procedure (in module CREATEPRO) is invoked, the kernel creates

a process with a unique context, represented in its PCB and PTX,

and a private P1 virtual address space, mapped by its P1 page table.
Additionally, a process implicitly shares in the environment that has
been created for it by system initialization and by the creation of its job,
including the S0 address space common to every process in the system,
the PO address space (containing the program code) common to every
process in the job, and the JCB into which it and all the job’s other
processes are linked. Once the process is created, a scheduling pass is
made. When the process is scheduled to run, execution of program code
by the new process begins.

This section focuses on the creation of subprocesses, as initiated by calls
to the KERSCREATE_PROCESS kernel procedure. For a description of
the creation of a master process, see Section 4.4. Subprocess creation,
like job creation, proceeds through three phases:

4-42 Job and Process Creation and Deletion

1. The initial KER§CREATE_PROCESS procedure call is handled.
This phase creates the minimal process context that will allow the
new subprocess to continue its own creation. Thus the creating
process can be decoupled from the created subprocess and continue
executing its own code.

At the conclusion of this phase, a scheduling pass is made, which
can result in the process being selected to run immediately or being
placed in the ready process queue for its priority. Saved in the PC
field of the new process’s PTX is the address of its continuation
point within the CREATEPRO module, the FINISH_PROCESS
subroutine. The initial procedure call exits by executing an REI
instruction, returning status to the caller. Section 4.5.1 describes
this phase.

2. When the system state permits, the new subprocess is placed in
the running state by the scheduler and executes a CREATEPRO
module subroutine, FINISH_PROCESS, that finishes creating the
process environment.

This phase concludes when the kernel executes an REI instruc-
tion to transfer control to a CREATEJOB module subroutine,
KER$SENTER_PROCESS, and to the base program mode, user or
kernel, specified in the program’s descriptor. Section 4.5.2 describes
this phase.

3. Process creation is completed in the user-specified program mode.
This phase sets up entry to the routine or process block transfer
address. (If debugging was requested and the debugger is present,
control is first transferred to the debugger bootstrap.) Section 4.5.3
describes this phase.

Complete descriptions of the process-specific data structures established
by process creation are provided in Section 4.2. The same section
describes the jobwide data structures established by job creation.
Chapter 3 describes the SO region, implicitly shared by all VAXELN
processes.

4.5.1 Phase 1: Creating Minimal Process Context

Subprocess creation is initiated by a call to the KER$CREATE_
PROCESS kernel procedure. The KER$CREATE_PROCESS procedure
can be called implicitly, such as when a CREATE PROCESS command
is issued from the debugger, or explicitly by application software.

Job and Process Creation and Deletion 4-43

The main objective of the initial phase of subprocess creation is to
construct the minimal process context necessary to allow subprocess
creation to continue under the control of the subprocess. By returning
from the initial KERSCREATE_PROCESS procedure call as quickly
as possible, the kernel decouples the creating process from the created
process so that each process can continue executing in the normal
scheduling environment. When the subprocess has been provided with
enough context to be scheduled, an REI instruction is executed to exit
the system call and return control to the caller.

The kernel creates a minimal process context for the subprocess as
follows:

1. KER$CREATE_PROCESS call arguments are verified.

The PCB, representing software context, is created and initialized.
The PTX, representing hardware context, is created and initialized.
The process’s P1 page table is allocated.

The first page of kernel stack is allocated.

The PCB representing the subprocess is entered in the job’s object
tables.

7. A scheduling pass is made, which can result in the new process
being selected to run or being placed in the ready-process queue for
its priority.

A

4.5.1.1

Step 1 — Verify Call Arguments

The first phase of process creation begins with KER§CREATE_
PROCESS argument checks. The kernel checks the process-argument
list and exit-status address passed to KERSCREATE_PROCESS as
follows:

¢ If the count of process arguments included in the KER$CREATE_
PROCESS argument list exceeds 31, the kernel procedure exits
with a KER$_BAD_COUNT status.

® The location designated by the caller to receive status when the
created process exits is examined. If an address was specified that
is not in the PO region, the kernel procedure exits with KER$_
BAD_VALUE status. PO address space is shared among the job’s
processes (and survives subprocess deletion).

4-44 Job and Process Creation and Deletion

4.5.1.2 Step 2 — Create the Process Control Block

After verifying call arguments, the kernel prepares to build process
structures by allocating an initial set of resources out of SO address
space. First the kernel allocates two pool blocks that will be used to
link process arguments and wait control blocks (WCBs) into the PCB.
A call is made to the internal kernel subroutine KERSALLOCATE_
POOL, described in Chapter 9; the kernel procedure exits with KER$_
NO_POOL status if insufficient pool space is available.

Next, the kernel allocates a page from the communication region of SO
address space that will hold the PTX and the PCB. A call is made to the
kernel routine KER$ALLOCATE_REGION, described in Chapter 9; the
kernel procedure exits with KER$_NO_MEMORY status if insufficient
memory is available.

The kernel then begins building the PTX and PCB, representing the
hardware and software context of the new process, and other structures
that link into the PTX and PCB. The PTX begins at the beginning
(offset 0) of the system page shared by the PTX and PCB; the PCB
begins at offset 128 from the beginning of the same page.

The kernel begins creating the PCB as follows:

1. The PCB is cleared.

2. The listhead for the process’s wait queue — the queue of WCBs
representing processes waiting for this process’s termination — is
initialized to an empty queue. The link fields are PCB$A_WAIT_
FLINK and PCB$A_WAIT_BLINK.

3. The structure type field, PCB$B_TYPE, is set to the value OBJ$K_
PROCESS, indicating that this kernel structure represents a pro-
cess.

4. The process priority field, PCB$B_PRIORITY, is set to the initial
process priority, 0 to 15, that was specified for this program in the
Program Description menu and stored in the PRG$B_PROCESS_
PRIORITY field of the program descriptor. The created process
begins executing at this priority; a process’s priority can be altered
with KER$SET_PROCESS_PRIORITY.

5. The PCB$A_JCB field is set to point to the JCB of the creating job.

6. The process’s PCB is inserted at the end of the job’s queue of all
its processes, linked through the PCB$A_PROCESS_FLINK and
PCB$A_PROCESS_BLINK fields of the PCB. The queue listhead
resides in fields JCB$A_PROCESS_FLINK and JCB$A_PROCESS_
BLINK of the JCB.

Job and Process Creation and Deletion 4-45

7.

10.

11.

12.

The process generation number in the JCB (field JCB$W_
PROCESS_GENERATION) is increased by 1, and the resulting
value is recorded in the PCB’s generation number field, PCB$W_
GENERATION. A value of n indicates that this process is the nth
created in this job.

The process’s context switch count in field PCB$W_CONTEXT_
COUNT is cleared; this records how many times the process has
been switched into the running state by the scheduler.

The caller-specified exit address is copied to the PCB$A_EXIT_
ADDRESS field of the PCB. If a valid PO address (as verified in
step 1) was supplied, process status will be returned to the specified
address when or if the process terminates.

A standard VAX argument list is created for the caller-specified
process arguments and linked into the PCB. The kernel uses one
of the two pool blocks previously allocated from system pool. If no
arguments were specified, only the longword count (0) is copied to
the pool block.

A timer wait control block (WCB) is created in the PCB$B_WCB
field of the PCB, with a pointer (at offset PCB$B_WCB + WCB$A_
LIST) to a list of four other WCBs residing in a pool block. (The
pool block used is the second of the two previously allocated.)

The WCB is the kernel structure for handling KER$WAIT proce-
dure calls that synchronize process execution with events or the
availability of resources. Each process has a timer WCB and at
least four additional WCBs, each representing an element poten-
tially involved in satisfying a wait request. WCBs and the role
of KER$CREATE_PROCESS in initializing them are described in
detail in Chapter 11.

The PTX address is calculated and placed in the PCB$A_PTX field
of the PCB. (The PTX resides at the start of the system page shared
by the PTX and PCB.)

4.5.1.3 Step 3 — Create the Process Hardware Context Block
The kernel next begins filling in the PTX as follows:

1.

The name block field, PTX$A_NAME_BLOCK, of the PTX is
cleared; initially the subprocess has no name. A process can name
itself or another process in the same job with a KER§NAME_
OBJECT (in VAXELN Pascal) or KER$CREATE_NAME procedure
call.

4-46 Job and Process Creation and Deletion

The physical address of the PTX is derived and placed in the
PCB$A_HWPTX field of the PCB. The physical address of the PTX
is used (rather than its virtual address) when the kernel inserts
its address into the hardware process control block base register
(PCBB) when the process is scheduled to run.

The four stack pointer address fields in the PTX are set equal to
P1$K_KERNEL_STACK_INIT — 7FFFF DF0; — the P1 address
of the initial top of the kernel stack, which equals the base of
the kernel stack. Kernel and user stack allocation occurs later

in process creation. The executive and supervisor stack fields
(PTX$A_ESP and PTX$A_SSP) are never used.

Note that the initial kernel stack top, PISKERNEL_STACK_INIT,
is =16 bytes offset from the bottom (the high-address end) of the
kernel stack page, indicated by constant PI$KERNEL_STACK_
TOP. Intervening are four P1 context longwords — P1$GA_JCX,
P1$GA_ADA_CTX, P1$GA_ADA_DATA, and P1$GA_CRTL_CTX
— that hold jobwide, Ada, and C RTL context addresses. Although
the four longwords share a page with the beginning of the kernel
stack, they are not part of the kernel stack. This is illustrated in
Figure 4-6.

In preparation for the second phase of process creation, the general
register fields of the PTX are set up with values used in that phase.
One of the saved values is the transfer address for the process’s
code, as provided in the initial call to KER§CREATE_PROCESS.

The PC and PSL fields of the PTX are prepared for transfer to
the next phase of process creation. The PTX$A_PC field receives
the address of the FINISH_PROCESS subroutine within module
CREATEPRO. When the new process is first scheduled to run, it
will reenter the CREATEPRO module at FINISH_PROCESS.

The PTX$L_PSL field is cleared to initialize access mode to kernel
(0) and IPL to 0 for when the process is first scheduled to run.

The POBR and POLR processor register fields in the PTX are set
up. These values will be loaded into the POBR and POLR registers
when the process runs. The POBR and POLR processor registers
define the PO address space of the process and help the processor
locate the corresponding physical memory. The PTX$A_POBR and
PTX$L_PO_LIMIT fields are established as follows:

e The PTX$A_POBR field receives the POBR value, indicating the
virtual base address of the process’s PO page table, copied from
the JCB (field JCB$A_PO_BASE).

Job and Process Creation and Deletion 4-47

If the target VAX is KA620-based (such as an rtVAX 1000),
the JCB’s POBR value is translated to a physical base ad-
dress before it is stored in the PTX. (PO and P1 page tables
in a KA620 system are physically contiguous and accessed by
physical address, which saves virtual address translations for
process-space memory references.)

e The POLR and ASTLVL subfields of the PTX$L._P0_LIMIT field
are set up respectively with the POLR value, indicating the
effective length of the PO page table, copied from the JCB field
JCBS$L_PO_LIMIT; and the value PSL$C_USER + 1 (equal to
4), indicating no asynchronous exception is pending.

4.5.1.4 Step 4 — Allocate a P1 Page Table

The process’s P1 page table is established. A P1 page table slot is al-
located that holds the process’s P1 page table and P1 region allocation
bitmap. In addition, the P1BR and P1LR processor register fields in
the PTX are set up. The P1BR and P1LR values will be loaded into the
P1BR and P1LR registers when the process runs. These registers de-
fine the P1 address space of the process, by describing the inaccessible
portion of it. The P1BR register contains the virtual address of what
would be the page table entry (PTE) for the first page of P1 memory
(location 4000000036. The P1LR register contains a value indicating
the number of nonexistent PTEs (corresponding to inaccessible pages),
following which is the first existent PTE (corresponding to the first
accessible page).

The page table structures and related PTX fields are set up as follows:

1. The subroutine KERSALLOCATE_P1_SLOT, in module ALLOCATE,
is called to allocate and initialize a P1 page table slot. The
KER$SALLOCATE_P1_SLOT routine is described in Chapter 9.

The subroutine allocates a P1 page table slot (using the P1 slot
allocation bitmap) and returns the system virtual addresses of the
two items of interest in the slot — the P1 page table and the P1
region allocation bitmap.

2. The PTX$A_P1BR field receives the base address of the process’s
P1 page table. The value placed in this field is the page table base
address that will be used in address translation — the base ad-
dress of the nonexistent portion of the P1 page table. The value is
calculated by converting the system virtual address of the mem-
ory allocated for the P1 page table (as stored in field PCB$A_
P1_BASE of the PCB) to reflect the base address of the P1PTE
that would map virtual address 400000001¢. If the target VAX is a

4-48 Job and Process Creation and Deletion

KA620-based system (such as an rtVAX 1000), the P1BR value is
translated to a physical address.

3. The P1LR subfield of the PTX$L_P1_LIMIT field is set up with
the P1LR value, indicating the length in PTEs of the nonexistent
portion of the P1 page table (corresponding to inaccessible memory
pages).

4.5.1.5 Step 5 — Allocate the First Page of Kernel Stack

The next step performed in the initial phase of subprocess creation is
allocation of one page of the subprocess’s kernel stack. The remainder
of the kernel stack and a user stack (if the process is to execute in user
mode) will be allocated in the second phase of subprocess creation. The
initial page of kernel stack is part of the minimal context the subpro-
cess needs to be scheduled to execute the second phase of subprocess
creation.

4.5.1.6 Step 6 — Enter the PCB into the Job’s Object Table

The PCB, as the kernel object representing the process, is entered
into the job’s object tables. The kernel allocates an object pointer table
entry by calling the internal subroutine KER$ALLOCATE_OBJECT.
The allocated pointer table entry receives the address of the PCB. The
process object identifier returned by KERSALLOCATE_OBJECT is
placed in the PCB$L_ID field of the PCB, and its sequence number is
placed in the field PCB$L_SEQUENCE.

4.5.1.7 Step 7 — Initiate a Scheduling Pass

At the conclusion of the first phase of process creation, the kernel
calls the KERSREADY_PROCESS kernel subroutine, which initiates
a scheduling pass. The process might be selected to run immediately
— for example, if the created process has a higher priority than the
creating process (and the job continues in the running state) — or
might be placed in the ready-process queue for its priority to await a
change in system state that allows the job and process to run.

Finally, the KER§CREATE_PROCESS procedure returns to its caller
with an REI instruction. When the newly created process is selected
to execute by the scheduler and begins running, it runs in kernel mode
and executes the FINISH_PROCESS subroutine to finish creating the
subprocess.

Job and Process Creation and Deletion 4-49

4.5.2 Phase 2: Finishing Creation of the Process Environment

The main objective of the second phase of subprocess creation is to
complete construction of the subprocess environment so that control
can be transferred to the user-specified program mode, kernel or user,
for the final phase, which sets up entry to the routine or process block
transfer address.

The kernel takes the following steps to complete creation of the process
environment:

1. The remaining portion of the kernel stack is allocated and, if the
job’s program mode is user, a user stack and guard page are allo-
cated.

2. Transfer to program mode and to the KER$ENTER_PROCESS
subroutine is set up.

4.5.21 Step 1 — Allocate the Process Stacks

To finish allocating the subprocess’s stacks, the kernel calls the subrou-
tine KERSALLOCATE_PROCESS_STACK (in module CREATEJOB).
Using the stack sizes specified in the program descriptor,
KER$ALLOCATE_PROCESS_STACK allocates the remainder of the
kernel stack (beyond the page already allocated) and, if the program
mode is user, the user stack. If the user stack is allocated, an extra
guard page is also allocated between the user stack and the kernel
stack, to mark the end of the fixed-length kernel stack.

The KER$ALLOCATE_PROCESS_STACK subroutine executes as
follows:

1. Field JCB$A_INITIAL_STACK of the JCB is set to the value P1$K_
KERNEL_STACK_INIT, the P1 initial kernel stack address. (The
kernel stack entry in Table 4-5 further discusses the initial ad-
dress.) The initial-stack JCB field will be overwritten with the
initial user stack address in a subsequent step, if the job’s program
mode is user.

2. The kernel stack size, in pages, is extracted from the program
descriptor (field PRG$W_KERNEL_STACK) and is reduced by
one to account for the page already allocated. If more pages are
needed, the number of P1 page table entries required to map the
additional kernel-stack pages is allocated with a call to kernel
subroutine KERSALLOCATE_P1_PTE. The PTEs are then filled
in with page frame numbers (generated by successive calls to the

4-50 Job and Process Creation and Deletion

KER$ALLOCATE_FRAME subroutine) and with the following bits
set in the remaining fields: PTE$M_VALID (valid), PTE$C_URKW
(access), PTE$C_KOWN (owner), and PTE$K_RW_DATA (type).

3. If the job’s program mode (PRG$B_MODE) is kernel, process stack
allocation is complete. Steps 4 and 5 are bypassed.

4. If the job’s program mode is user, the user stack size, in pages,
is extracted from the program descriptor (field PRG$W_USER_
STACK); if 0, a value of 1 is substituted, to guarantee 1 page of
user stack for the process. Also, 1 is added to the count to allow
for a guard page to separate the kernel and user stacks. Field
JCB$A_INITIAL_STACK is reset to the initial user stack address,
which is calculated by offsetting the address of the end of the kernel
stack by the byte length of the guard page, —=512. The initial user
stack address is then written to the processor’s internal user stack-
pointer register (PR$_USP), in preparation for entering user mode
in the third phase of process creation.

5. The number of P1PTEs required to map the user stack and
the guard page are allocated with a call to kernel subroutine
KER$ALLOCATE_P1_PTE. Using the prototype read/write data
PTE in field JCB$L_RW_DATA_PTE of the JCB, the user-stack
PTEs are then filled in with page frame numbers (generated by
successive calls to the KERSALLOCATE_FRAME subroutine).
Finally, the PTE for the guard page is filled in to indicate the page
is inaccessible.

6. PILR is updated from the PCB$L_P1_LIMIT field of the PCB
(updated during the P1 mapping allocations), the P1 context ad-
dresses (except P1$GA_JCX) are cleared, and KERSALLOCATE_
PROCESS_STACK returns.

4.5.2.2 Step 2 — Begin Program Execution

The final step in the second phase of subprocess creation is to transfer
control to the user-specified program mode and to the KER$SENTER_
PROCESS subroutine, which will set up entry to the process entry
point specified in the KER$CREATE_PROCESS call.

Prior to the execution of the REI instruction that triggers the possible

change of access mode, general registers are set up with the addresses

of the process’s arguments, the PCB, the JCB, the job context page, the
job’s program descriptor, and the routine’s entry point.

Job and Process Creation and Deletion 4-51

The kernel sets up for the REI instruction mechanism. The user-
specified program mode is pushed onto the stack. If the specified mode
is user, the program PSL on the stack is initialized to specify user
access privileges. Finally, the address of the KERSENTER_PROCESS
subroutine (in module CREATEJOB) is pushed on the stack as the
address to which control is to be transferred. The kernel then executes
an REI instruction, which pops these PSL and PC values from the
stack into their respective registers. The process is now executing in its
base access mode at location KERSENTER_PROCESS.

4.5.3 Phase 3: Entering the Process Code

The main objective of the final phase of subprocess creation is to set
up entry to the process code at its transfer address (specified in the
initial KER$CREATE_PROCESS call), so that execution can begin.
This phase is identical to the final phase of job creation, in which the
master process is set up to enter the program at its transfer address.

When a process continues executing following the REI instruction exe-
cuted in the second phase, it executes the KERSENTER_PROCESS
subroutine. This routine, which executes at the close of both job

and process creation, causes the process to be entered and program
execution to begin (when the process next becomes eligible to run).

If debugging was requested and the debugger is present in the system,
the debugger bootstrap, routine BOOTSTRAP_PROCESS (in module
[DEBUGILCLNUC), is entered before the new subprocess executes
process code. The debugger bootstrap calls a debugger subroutine,
INIT_PROCESS_CONTEXT, to establish the process-specific debug
context for the subprocess in the last page of P1 address space; see
Figure 4-6. INIT_PROCESS_CONTEXT also sends a message to
VAXELN$DEBUG_PORT to announce the presence of the subprocess.
Furthermore, unless the user requested that this job’s processes start
without debugger intervention, the debugger bootstrap calls the debug-
ger’s first-chance exception handler as if a KER$_DEBUG_SIGNAL
exception occurred, which causes the subprocess to await a debugger
command. If a debugger command starts execution, control returns

to the debugger bootstrap, which then executes an REI instruction to
start subprocess execution.

Similarly, if performance collector PC coverage activity was requested,
the performance collector utility is entered before the subprocess exe-
cutes program code.

4-52 Job and Process Creation and Deletion

The KER$ENTER_PROCESS subroutine checks for build-time selection
of the debugger or performance collector to run in conjunction with
this job. A CALLG instruction is executed to transfer control to the
debugger, to the performance collector utility, or directly to the process’s
routine, function, or process block entry point.

While executing, if the process reaches the end of its code without
issuing a KER$EXIT procedure call (or a KER$DELETE for itself),

the RET instruction generated by the compiler is executed. When this
happens, control returns to the KERSENTER_PROCESS subroutine,
at the instruction after the CALLG used to invoke the process code.
KERSENTER_PROCESS proceeds to initiate the orderly termination of
the process, as follows:

1. The process exit status and the user-supplied status value address
are pushed on the stack.

2. The KER$EXIT kernel procedure is called. The call does not re-
turn; the KER$EXIT kernel procedure completes with a call to
the KER$DELETE kernel procedure, which deletes the process.
After process deletion, the kernel branches to the internal routine
KER$SCHEDULE_PROCESS to schedule the next process.

The KER$EXIT and KER$DELETE kernel procedures are described in
Section 4.6.

4.6 Job and Process Exit and Deletion

Deleting a VAXELN process with the KER§DELETE kernel procedure
deactivates an execution thread within the system. If the process
undergoing deletion is a master process, the entire job is terminated,
its subprocesses are deleted, and its system resources are freed. (If
the job was executing a dynamically loaded program, deletion may
also unload the program from the system.) If the process’s termination
began with an implicit exit — due to the process reaching the end of its
block or routine — or with an explicit call to KER$EXIT from program
code, additional orderly cleanup is performed before the process is
deleted.

A VAXELN process is deleted under the following circumstances:

e Implicit exit from program code. The process reaches the end of the
procedure code it is executing. A RET instruction in the compiler-
generated code is executed, returning control to the KER$ENTER_
PROCESS subroutine (in module CREATEJOB) that initiated the

Job and Process Creation and Deletion 4-53

process’s execution. The KER$ENTER_PROCESS subroutine calls
the KER$EXIT procedure on behalf of the process. KER$EXIT
performs orderly cleanup and then invokes the KER$DELETE
kernel procedure to delete the process.

e Explicit exit from program code. The process executes a KER$EXIT
procedure call in the program code. KER$EXIT performs its
cleanup and then invokes KER$DELETE.

¢ Explicit deletion from program code. The process executes a
KER$DELETE procedure call to delete itself or is the object of
a deletion call by another process. (The process alsa may be the
target of a DELETE PROCESS request from the debugger, or be
forced into deletion by a kernel or RTL module that detects a fatal
error.)

¢ Unhandled exception. An exception is raised in the process and is
not handled by the process or from the debugger. (This includes
unhandled asynchronous exceptions, such as those raised by the
KER$SIGNAL and KER$RAISE_PROCESS_EXCEPTION pro-
cedures.) The kernel forces the process to terminate by calling
KERS$EXIT with the exception (signal) name as the exit status. For
more details on exception handling, see Chapter 6.

¢ Fatal process-level bugcheck. Some serious error in the pro-
cess’s context has caused the kernel to issue a fatal bugcheck
for the process. The subroutine KER$BUG_CHECK (in module
BUGCHECK) forces the process to exit by calling KERSEXIT with
KER$_BUGCHECK as the exit status.

* Subprocess’s master process is deleted. Deleting a master process
causes KERSDELETE to be invoked for each subprocess in the job.

The VAXELN procedure that deletes object-related kernel resources,
KER$DELETE (in module DELETE), is described in Chapter 10.
Section 4.6.1 describes the actions KER$DELETE takes to delete a
VAXELN subprocess. Section 4.6.2 describes the additional job object
rundown, memory deallocations, and dynamic program unloading
involved when a master process is deleted.

4-54 Job and Process Creation and Deletion

4.6.1 Process Deletion

This section describes the steps in process deletion that are common
to both subprocess and master process deletion. The additional actions
that are performed for master-process deletion — deletion of the job,
deallocation of job resources, and dynamic program unloading — are
described in Section 4.6.2.

The actions taken by the KER§DELETE procedure to delete a process
are as follows:

1.

If no exit status has been set for the process — as indicated in field
PCB$L_EXIT_STATUS of the PCB — the status value KER$_NO_
STATUS is placed in that field.

The process’s accumulated CPU time, in field PCB$L_CPU_TIME,
is added to the accumulated job CPU time in field PCB$L_JOB_
CPU_TIME of the master process PCB. The resulting value repre-
sents the total accumulated CPU time of all deleted processes in
the job.

The object table entry allocated for the process PCB is freed with a
call to the internal subroutine KER$FREE_OBJECT.

If the process creator requested exit status, and the location speci-
fied for it is writeable in the program’s mode, the kernel moves the
exit status from the PCB$L_EXIT STATUS field of the PCB to the
caller-specified location.

The waits of all processes waiting on this process deletion are
potentially satisfied. All the process’s WCBs are dequeued and
processed in turn. For each WCB linked into the process’s PCB,
the wait state is set to satisfied (WCB$B_SATISFIED), then (unless
the process was waiting on itself) the internal routine KERSTEST_
WAIT is called to determine whether the wait on the process be-
ing deleted is completely satisfied as a result. If so, the internal
routines KER$SATISFY_WAIT and KER$UNWAIT, described

in Chapter 11, are called to formally satisfy the wait. The wait
completion status returned is KER$_SUCCESS.

If the current process is deleting a process other than itself (that is,
a process not in the running state), the specified process is removed
from the appropriate state queue or JCB pointer field — the ready
queue for its priority if it is in a ready state, the wait queues it
resides in if it is in a waiting state, or the JCB$A_NEXT_PCB slot
in the JCB if it is the designated next process to run in the job.

Job and Process Creation and Deletion 4-55

If the current process is deleting itself, an SVPCTX instruction is
executed to get onto the interrupt stack and off the process stack.

7. The process’s P1 page table and page table entries are freed with
a call to the local subroutine FREE_PTE and the internal routine
KER$FREE_P1_SLOT.

8. The control blocks associated with the process are freed. A series
of calls to the internal routine KER$FREE_POOL frees the process
argument block, pointed to by the PCB$A_ARGUMENT field of the
PCB, and all pool blocks occupied by the process’s WCBs, pointed
to by the PCB$B_WCB field of the PCB. The pointer to the PCB is
cleared from the process’s name block — if the process was named.
The process’s PCB is unlinked from the job’s list of processes.
Finally, the SO page containing the PCB and the PTX is freed with
a call to the internal routine KER$FREE_REGION.

9. If the current process is deleting itself, a new process must be
scheduled to run, so the procedure branches to KER$SCHEDULE_
PROCESS, which leads to an exit through the REI instruction.

10. If deleting the last process in the job’s list — the master process —
a new job must be scheduled to run on the current processor, so the
procedure branches to KER$SCHEDULE_JOB, which leads to an
exit through the REI instruction.

11. The KER$DELETE call exits with an REI instruction, returning
successful completion status KER$_SUCCESS.

4.6.2 Master Process Deletion

When a master process is deleted, the kernel deletes all processes in
the job (following the steps listed in Section 4.6.1 for each process),
deletes the job, and frees the job’s resources. Additionally, if the pro-
gram executed by the job is a dynamic program and a request has been
received to unload it, the program is unloaded, provided no other job is
executing it.

The actions taken by the KER$DELETE kernel procedure (in module
DELETE) to delete a master process are all the steps listed for a
subprocess in Section 4.6.1, along with the following additional steps:

1. The KER$GQ_PREV_JOB_TIME global variable, which accumu-
lates the CPU time used by deleted jobs, is updated. The accumu-
lated job CPU time in field PCB$L_JOB_CPU_TIME of the master
process PCB is converted to standard VAX time units (by multi-
plying times the time interval value in global longword KER$GL_

4-56 Job and Process Creation and Deletion

10.

TIME_INTERVAL), and the quadword result is added to KER$GQ_
PREV_JOB_TIME.

The kernel procedures KER$CREATE_MESSAGE and KER$SEND
are used to send a job termination message to the job exit port, if
one was specified by the job’s creator.

If the current process is a subprocess and is deleting the master
process, the current process is made the master process; this allows
the KER$DELETE procedure to be called from the current process
to delete all the job’s objects.

The kernel loops through the job’s linked list of ports, pointed
to by the JCB$A_PORT_FLINK field of the JCB, and calls
KER$DELETE to delete each one.

If the program executed by the job is a dynamic program, as de-
termined by referencing the program description pointed to by the
JCB$A_PROGRAM field of the JCB, the program reference count
field, PRG$W_REF_COUNT, is decreased by 1 to indicate that a job
executing the program has been deleted. If the program descriptor
indicates a request has been received to unload the program on
completion, and if PRG$W_REF_COUNT indicates no more jobs are
executing it (a zero value), the internal subroutine KER§DELETE_
PROGRAM is called to remove the program from the system.

All job-created objects are deleted. The kernel walks the tables of
job objects, pointed to by the JCB$A_OBJECT_TABLE field of the
JCB, and deletes each object. The pool space occupied by the object
tables is freed, and the SO page containing the object base table is
freed. The object tables are described in Chapter 10.

The job’s PO page table and all its entries are freed. The internal
subroutine KER$FREE_PO_SLOT, described in Chapter 9, is called
to free the PO slot containing the page table and the PO region and
slot allocation bitmaps.

The job’s process queue-listhead pool block, pointed to by field
JCB$A_PROCESS_QUEUES of the JCB, is freed with a call to
internal subroutine KER$FREE_POOL.

The job’s JCB is removed from the system job list and, if appropri-
ate, its bits in the KERAW_CLASS_MASK array and the global
active summary, KER$GL_ACTIVE_SUMMARY, are cleared.

Finally, the SO page containing the JCB and the SO page containing
the PTX and the PCB are freed with calls to the internal subroutine
KER$FREE_REGION. A final branch is taken to the internal
subroutine KER$SCHEDULE_JOB to schedule the next job.

Job and Process Creation and Deletion 4-57

Chapter 5

Software Interrupts, Kernel
Synchronization, and Time Support

Software interrupts, synchronization, and time services are critical

to the operation of a real-time system. Software interrupts, which
invoke specific service routines, allow vital system functions to occur
asynchronously to the execution of jobs and processes. To maintain
the integrity and consistency of its internal data bases, the VAXELN
Kernel synchronizes its operations to enforce exclusive access to critical
data and code sections. In addition, the kernel maintains a system
clock and a timer mechanism and provides a set of procedures to
support time-based synchronization.

This chapter describes the kernel operations related to these topics:

¢ Software interrupts and their service routines are surveyed in
Section 5.1.

¢ The kernel’s internal synchronization techniques are described in
Section 5.2.

¢ The time support provided by the kernel is described in Section 5.3.

All three of these mechanisms depend to some degree on architecturally
defined vectors in the system control block (SCB). Figure 5-1 shows the
general layout of a VAX SCB. The first four blocks of vectors appear on
the architecturally defined first half-page of the SCB and are shared by
all VAX processors. The size and contents of the remainder of the SCB
vary with processor type.

Software Interrupts, Kernel Synchronization, and Time Support 5-1

In particular, the software interrupt vectors on the first page of
the SCB support the VAXELN services described in this chapter.
(Chapter 6 describes the role of the exception vectors in VAXELN
condition handling.)

Figure 5-1: General Layout of a VAX SCB

Exception Vectors

Processor Fault Vectors

Software Interrupt Vectors

Clock and Console Vectors

Processor-Specific Adapter
and Device Vectors

MLO-003226

5.1 Software Interrupts

The software interrupt mechanism supported by the VAX hardware
plays a key role in the kernel’s management of system events, such as
job and process scheduling and device I/O. Software interrupt service
routines running at interrupt priority levels (IPLs) 2 through 8 perform
a number of the kernel’s most important functions.

This section describes how software interrupts are requested and
granted and summarizes their use by the kernel.

5-2 Software Interrupts, Kernel Synchronization, and Time Support

5.1.1 Software Interrupt Mechanism

A software interrupt is an interrupt requested by a write to the soft-
ware interrupt request register (SIRR) rather than through an inter-
rupt from an external device. The kernel requests a software interrupt
to invoke system functions as they are needed, without having to test
periodically whether each function must be performed.

The VAX interrupt microcode responds to software interrupt requests
as it does to hardware interrupts: it dispatches through the appropriate
SCB vector, which contains the address of the interrupt service routine
(ISR). The setting of the lowest two bits in the vector specifies whether
the interrupt will be serviced on the kernel or the interrupt stack.

The VAX architecture provides 15 vectors in the SCB for software in-
terrupts at IPLs 1 through 15. IPLs are assigned to software interrupt
services on the basis of two factors: their relative importance and their
need to synchronize access to shared data. A software interrupt at a
particular IPL is requested by writing that IPL into the SIRR (PR$_
SIRR). The kernel generally uses symbolic values and macros to re-
quest software interrupts. For example, to reschedule the system, the
kernel invokes the RESCHEDULE macro:

RESCHEDULE
mtpr #IPL$K RESCHEDULE, #PR$_SIRR

Some hardware interrupt service routines, such as the interval timer
ISR, request software interrupts as well. In addition, the REI in-
struction requests IPL 2 software interrupts to deliver asynchronous
exceptions.

5.1.2 VAXELN Software Interrupt Service Routines

Table 5—1 shows the software interrupt service routines used by the
kernel and its subsystems. None of these routines is described in
this section. Instead, as indicated in the table, the routines are dis-
cussed in the larger context of the kernel services they perform. For
example, the IPL 2 ISR plays a central role in the delivery of asyn-
chronous exceptions and is therefore discussed in Chapter 6, Condition
Handling.

Software Interrupts, Kernel Synchronization, and Time Support 5-3

Table 5-1: VAXELN Software Interrupts and Service Routines

Service Routine

IPL Purpose Stack

9-15 Unused N/A

8 Servicing device queue Interrupt

7 Software timer Interrupt

6 Secondary processor Interrupt
service

5 Kernel debugger Interrupt

4 Job-level rescheduling Kernel

3 Unused N/A

2 Asynchronous exception Kernel
delivery

None

KER$DEVICE_SIGNAL in module SIGNALDEV.
When the KER$SIGNAL_DEVICE procedure

is called, the kernel places the device object in
the device queue and requests a software in-
terrupt at IPL 8. This service routine removes
device objects from the queue and unblocks the
processes waiting on them. See Section 11.3.2.

KER$SOFTWARE_TIMER in module
TIMERINT. The ISR for the hardware timer
requests this software interrupt when the first
entry in the timer queue has expired. The soft-
ware timer ISR removes expired entries from
the queue and unblocks the processes waiting
on them. Section 5.3.5 describes software timer
ISRs.

KER$SOFTWARE_AMP in module BIPORT.
This service routine provides fork dispatching
for KA80O interprocessor interrupts on closely
coupled symmetric multiprocessing systems.

KER$DEBUG_INTERRUPT in meodule
INITIAL. This service allows entry into the
kernel debugger by executing a Breakpoint
(BPT) instruction within the kernel. This soft-
ware interrupt can be requested by the console
or the SET SESSION/KERNEL command in the
local debugger.

KER$RESCHEDULE in module SCHEDJOB.
This service routine saves the hardware context
of the current process, then finds another job
and/or process to run. Process rescheduling
within a job is requested through an IPL 2
interrupt.

None

KER$AST_INTERRUPT in module ASTDELIVR.
This service routine delivers an exception

asynchronously into the current process. See
Section 6.5.

The kernel treats all software interrupts, except the asynchronous-
exception delivery and rescheduling interrupts, as systemwide events

5-4 Software Interrupts, Kernel Synchronization, and Time Support

that are serviced outside the context of a specific process. The
rescheduling interrupt is taken on the kernel stack of the current
process. The interrupt service routine immediately executes a SVPCTX
instruction, saving the process’s context and switching execution to
the interrupt stack. The asynchronous exception interrupt is the only
interrupt that is serviced in the context of a specific process.

5.2 Kernel Synchronization

Within the kernel, synchronization involves blocking all but one of two
or more events when their simultaneous occurrence might disrupt the
proper operation of the system. Most often, such synchronization is re-
quired to ensure the integrity of shared data, so that a single thread of
execution has exclusive access while reading or writing sensitive data
structures. At the level of job and process execution, synchronization
involves the use of kernel objects — areas, events, semaphores, and
ports — and the KER$WAIT and KER$SIGNAL procedures to synchro-
nize execution with real-time events and to control access to shared
data and critical regions of code. Chapter 11 is devoted solely to the
topic of job and process synchronization.

The kernel relies on a combination of the following software tech-
niques and VAX hardware features to synchronize access to shared
data structures:

e Interlocked instructions. These VAX instructions, such as INSQHI
and REMQHI, ADAWI, and BBSSI, synchronize multiproces-
sor access to shared queues, aligned words, and bit fields. See
Section 5.2.1.

¢ Elevated IPL. Elevating processor IPL on single-processor systems
blocks all further system activity that occurs at that IPL and below.
See Section 5.2.2.

e Multiprocessor spinlocks. On tightly coupled symmetric multipro-
cessing systems, elevated IPL is inadequate to synchronize access
to system structures. Spinlocks — special-purpose bits that repre-
sent specific system resources — are obtained with the interlocked
test-and-set instructions (for example, BBSSI) to enforce exclusive
access by a single processor. See Section 5.2.3.

Software Interrupts, Kernel Synchronization, and Time Support 5-5

Interprocessor interrupts. Occasionally, on tightly coupled symmet-
ric multiprocessing systems, one processor must inform another
processor of an event; this is a form of synchronization. The ker-
nel provides a mechanism to allow interprocessor synchronization
through interprocessor interrupts. See Section 5.2.4.

5.2.1 Interlocked Instructions

When a VAX interlocked instruction accesses a structure, it inhibits a
similar interlocked access to the same structure by any other processor
in the system. The VAX architecture provides the following interlocked
instructions:

ADAWI (Add Aligned Word, Interlocked)

BBCCI (Branch on Bit Clear and Clear, Interlocked)

BBSSI (Branch on Bit Set and Set, Interlocked)

INSQHI and INSQTI (Insert into Queue Head/Tail, Interlocked)
REMQHI and REMQTI (Remove from Queue Head/Tail, Interlocked)

These instructions are used throughout the kernel where a single
access to a shared structure is required. Here are some examples of
such usage:

The global value KERSGW_ERRSEQ, the error log entry sequence
number, is incremented with the ADAWI instruction.

Multiprocessor spinlocks (see Section 5.2.3) are obtained with the
BBSSI instruction and released with the BBCCI instruction.

System pools blocks are obtained from the list of free blocks with a
single REMQHI instruction and are returned with a single INSQTI
instruction.

5.2.2 Elevated IPL

The primary purpose for raising IPL is to block interrupts at the
selected IPL value and all lower values. The kernel uses specific IPL
values to synchronize access to certain structures.

§-6 Software Interrupts, Kernel Synchronization, and Time Support

The IPL, stored in the processor status longword (PSL) register bits
<20:16>, is altered by writing the desired IPL value to the privileged
register PR$_IPL. This change in IPL is usually accomplished with the
SETIPL macro:

.MACRO SETIPL NEWIPL
mtpr NEWIPL, $#PRS_IPL
.ENDM SETIPL

This macro changes IPL to the value specified by NEWIPL. Other
macros are defined to set IPL to specific levels; for example, the
DISABLE_SWITCH macro sets IPL to 3, preventing delivery of the
IPL 2 interrupt, which enables one process to preempt another.

To synchronize successfully, IPL must be raised — but not lowered —
to the appropriate synchronization level. Lowering defeats any attempt
at synchronization and also runs the risk of a reserved operand fault
when an REI instruction is later executed (an REI instruction that
attempts to elevate IPL causes the fault).

Table 5-2 shows several IPLs that are used for synchronization within
the kernel.

Table 5-2: Common IPL Values Used by the Kernel for Synchronization

Value
Name (decimal) Meaning
IPL$K_KERNEL_DEBUG 31 Disable all interrupts.
IPL$K_POWER 30 Disable all interrupts.
IPL$K_INTERPROCESSOR 23 Block interprocessor interrupts.
IPL$K_SYNCHRONIZE 8 Synchronize access to kernel data struc-

tures.

IPL$K_TIMER 7 Block software timer software interrupts.
IPL$K_RESCHEDULE 4 Block job rescheduling.
IPL$K_DISABLE_SWITCH 3 Block process context switching.
IPL$K_AST_LEVEL 2 Block asynchronous exception software

interrupts.

The most common instances of IPL synchronization are the uses of
IPL$K_DISABLE_SWITCH and IPL$K_SYNCHRONIZE. The kernel’s
procedure-dispatching code (described in Section 8.2) raises IPL to
IPL$K_DISABLE_SWITCH before branching to the kernel procedure

Software Interrupts, Kernel Synchronization, and Time Support 5-7

code. Raising IPL to this level prevents the delivery of the IPL 2 in-
terrupt, which initiates a context switch to preempt a process. Process
switching within a job must be inhibited during execution of most ker-
nel procedures, because another process, which shares PO address space
with the current process, could delete or corrupt memory required for
the execution of the procedure.

IPL$K_SYNCHRONIZE (8) is the IPL at which the device and timer
queues are serviced. Before most kernel data structures are accessed
(for example, the scheduler database), IPL must be raised to this level.
By raising IPL to 8, all other processes that might access the same
systemwide data structure are blocked from execution until IPL is
lowered. While the processor is executing at IPL 8, certain systemwide
events, such as scheduling and timer and device queue servicing,

are blocked. More important operations, however, such as hardware
interrupt servicing, can continue.

Within the kernel, IPL is elevated to IPLSK_SYNCHRONIZE with the
SYNCHRONIZE macro:

.MACRO SYNCHRONIZE
setipl #IPL$K SYNCHRONIZE
.ENDM SYNCHRONIZE

The SETIPL macro call within SYNCHRONIZE generates the MTPR
instruction that writes IPL 8 to the PR$_IPL register.

5.2.3 Spinlocks

In a tightly coupled symmetric multiprocessing system, each processor
has its own interrupt priority level, independent of the others. On
these systems, then, raising IPL ensures synchronization on a single
processor but not across the entire system. Therefore, the kernel
employs a mechanism called the spinlock to provide synchronization on
multiprocessor systems. Anywhere the kernel synchronizes by raising
IPL on a single-processor system, it must also acquire a spinlock on a
multiprocessor system.

A spinlock is a bit that represents a system resource or critical section
of code. When the bit is clear, the resource or code section is available.
To acquire the lock, a processor sets the bit. When another processor
finds the bit set, it loops — spins — on the lock bit until the lock’s
owner releases it by clearing the bit; the other process can now acquire
the lock and access the resource.

5-8 Software Interrupts, Kernel Synchronization, and Time Support

The bits that constitute the kernel’s spinlocks reside in a single
longword in the kernel data block, KER$GL_MULTIPROCESSOR_
LOCK. Table 5-3 shows the spinlocks currently defined in KER$GL_
MULTIPROCESSOR_LOCK and the resources they protect.

Table 5-3: Kernel Spinlocks

Bit
Spinlock Position Function
KER$V_GENERAL 0 Protects most kernel resources, such as the sched-
uler and memory management databases.
KER$V_BUGCHECK 1 Allows only one processor to bring down the system
during a fatal system bugcheck.
KER$V_CREATE_DEVICE 2 Protects the device database during device creation
by KER$CREATE_DEVICE.
KER$V_VIRT_CONSOLE 3 Ensures that a processor has exclusive access to

the virtual console.

In the kernel, spinlocks are usually acquired by use of the LOCK
and SEIZE macros. The LOCK macro normally appears where IPL
would be raised to IPL$K_SYNCHRONIZE and, in fact, performs that
operation as well:

.MACRO LOCK LOCK_NAME
synchronize
seize LOCK_NAME
.ENDM SYNCHRONIZE

The call to the SYNCHRONIZE macro raises IPL to IPL$K_
SYNCHRONIZE on the current processor. The call to the SEIZE macro
then generates the code to acquire the specified spinlock.

The SEIZE macro is conditionalized to generate spinlock instructions
only for multiprocessing versions of the kernel; therefore, on single-
processor systems, synchronization remains a matter of raising IPL to
IPL$K_SYNCHRONIZE. The SEIZE macro uses the BBSSI test-and-
set instruction to acquire the specified spinlock. If the spinlock bit is
clear, the BBSSI instruction sets it to acquire the lock, and execution
continues with the next instruction. If the bit is already set, meaning
that the lock is in use, the BBSSI instruction is reexecuted. Thus this
call to the SEIZE macro —

SEIZE LOCK=GENERAL

— would generate code like this:

Software Interrupts, Kernel Synchronization, and Time Support 5-9

10%: BBSSI #KER$V_GENERAL, W~KER$GL_MULTIPROCESSOR_LOCK, 10§

NEXT_ INSTRUCTION:

A spinlock is relinquished with the RELEASE macro. Like the SEIZE
macro, RELEASE is conditionalized to generate code only for multipro-
cessing versions of the kernel. For those systems, RELEASE generates
the requisite BBCCI instruction to clear the specified spinlock bit.
Since RELEASE is called only after a call to SEIZE, the processor
should not need to spin to clear the lock bit.

The UNLOCK macro is the complement of the LOCK macro — it
relinquishes the previously acquired spinlock and lowers IPL from
IPL$K_SYNCHRONIZE to IPL$K_DISABLE_SWITCH:

.MACRO UNLOCK LOCK_NAME
release LOCK_NAME
disable_switch

.ENDM SYNCHRONIZE

UNLOCK is called only from kernel code that was executing at IPL$K_
DISABLE_SWITCH before calling the LOCK macro. This is the case
for the majority of kernel procedures, which execute at least at IPL 3.
Kernel code that wishes to relinquish a lock without affecting IPL calls
the RELEASE macro directly.

5.2.4 Interprocessor Interrupts

On tightly coupled symmetric multiprocessing systems, the kernel
provides a way for one processor to synchronize its activities with one
or more other processors by requesting an interprocessor interrupt.
Interprocessor interrupts are generated on the VAX 6000 and VAX 8800
series processors at IPL 23.

Interprocessor interrupts are generated by the INTERRUPT _CPU
and INTERRUPT_ALL_CPUS macros (in modules MPS8800HDR and
MP6CCHDR). An argument to the INTERRUPT_CPU macro specifies
the number of the processor to be interrupted. Both macros take

an argument that specifies the reason for the interrupt. The reason
corresponds to a bit in the global bit field KER$AB_REASON in the
kernel data block. Table 5—4 shows the reason bits defined in KER$AB
REASON and describes their meanings to the processors that receive
the interrupt.

5-10 Software Interrupts, Kernel Synchronization, and Time Support

Table 5—-4:

Interprocessor Interrupts

Reason

Bit
Position Meaning

KER$V_JOB_SCHEDULE 0 Initiate job scheduling. This interprocessor

interrupt is requested by the scheduler when
it discovers that a job running on another
processor requires preemption.

KER$V_FLUSH_TB 1 Flush the entire address translation buffer.

This interprocessor interrupt is requested by
kernel memory allocation routines whenever
system page tables entries are altered. The
interrupt informs all processors that their
translation buffers may be invalid.

KER$V_CROSS_JOB_SIGNAL 2 Request an IPL 2 interrupt to deliver a debug-

ger halt signal to a process. This interprocessor
interrupt is requested by the debugger when

it discovers that a user has requested that a
process running on another processor be halted.
The IPL 2 interrupt on the target processor
allows the halt request to be delivered as an
asynchronous exception.

KER$V_REQUEST_SHUTDOWN 3 Perform an orderly processor shut-down. This

interprocessor interrupt is requested by a
processor undergoing a fatal system bugcheck
to bring down the other processors in the
system.

The macros set the appropriate bit in the KER$AB_REASON mask
and then request the interprocessor interrupt. The interrupt ser-
vice routine, KER$INTERPROCESSOR_INTERRUPT (in modules
GENMP8800 and GEN6CC), executing at IPL 23 on the interrupt
stack, scans the reason mask until it finds the set reason bit. It then
clears the bit, performs the requested action, and dismisses the inter-
rupt.

5.3 Time Support

Support for activities that must occur at an absolute date and time
or must measure an interval of time is implemented in both the VAX
hardware and in the VAXELN Kernel. This chapter describes the
kernel’s support for these time-based operations.

Software Interrupts, Kernel Synchronization, and Time Support 5-11

A hardware component called the interval clock interrupts the pro-
cessor at regular intervals. The kernel uses this clock to keep time
and to service time-dependent wait requests. It is the key to all time-
dependent activities and is described in Section 5.3.1.

A single time is maintained under VAXELN, the current date and time
(the system time). Another time, the time elapsed since the system was
bootstrapped (the system uptime) is fabricated and returned to users,
such as the debugger and the display utility, on request.

Keeping time and servicing time-dependent requests require both a
hardware interrupt service routine (ISR) for the interval clock and a
software interrupt service routine. The hardware ISR, described in
Section 5.3.4, maintains the system time and requests the software
timer interrupt as necessary. The software timer ISR, described in
Section 5.3.5, supports time-dependent waits by examining a time-
ordered queue of requests and unblocking their associated processes as
their expiration times occur.

The kernel also provides a number of procedures to service time-related
requests: KER$SET _TIME, KER$GET_TIME, KER$GET UPTIME.
These procedures are described in Section 5.3.6.

5.3.1 Interval Clock

The VAX hardware clocks are updated regularly by timing circuitry.
Under VAXELN, only the interval clock is used to maintain the system
time; no use is made of the internal time-of-day clock.

All VAX processors implement an interval clock, which can interrupt
at interrupt priority level (IPL) 22 or 24 at intervals of at least ten
milliseconds. In processors that employ the VAX subset architecture,
this timer is implemented as a single bit, in the internal register PR$_
ICCS, whose setting enables interrupts every ten milliseconds. The
MicroVAX, VAXstation, and VAX 6000 series processors implement
this minimum interval clock and can therefore interrupt only at ten-
millisecond intervals.

On VAX processors that implement the full VAX architecture, such
as the VAX-11/750 and VAX 8820, two additional processor registers,
PR$_ICR and PR$_NICR, allow further control of the interval clock.

5-12 Software Interrupts, Kernel Synchronization, and Time Support

The interval clock is updated at one-microsecond intervals with an
accuracy of at least 0.01 percent (an error of fewer than nine seconds
per day). The frequency at which the interval clock causes an interrupt
is determined by the value in PR$_NICR.

In the full implementation, the three interval clock registers are used
as follows:

e The interval clock control/status register (PR$_ICCS) controls the
interrupt status of the interval clock. This register is set at system
initialization, then reset by the interval clock ISR to indicate that
the interrupt has been serviced and to reenable interrupts (see
Section 5.3.4).

* The next interval count register (PR$_NICR) defines how often
the interval clock will cause a hardware interrupt—a clock “tick.”
At system initialization of processors that support intervals other
than ten milliseconds, this processor register is set to the value
specified by the user as the Time interval entry on the System
Characteristics Menu. This interval defines the minimum gran-
ularity for time-related operations. For example, the smallest
amount of time a process can wait is one clock tick — the time
interval.

The interval value is stored, in units of 100 nanoseconds, in the
kernel parameter KER$GL_TIME_INTERVAL. Before the kernel
initializes PR$_NICR, it converts this value to microseconds. The
default interval value is ~10000, which specifies an interval clock
inte.rupt period of ten milliseconds (10,000 microseconds). On
subset processors, attempts to set PR$_NICR are ignored; the clock
will interrupt only at ten-millisecond intervals.

e Every microsecond, the hardware increments the interval count
register (PR$_ICR). When the interval clock is initialized, the
processor copies the negated value of PR$_NICR to PR$_ICR. As
each microsecond passes, the value of PR$_ICR is incremented from
the PR$_NICR value toward zero. When PR$_ICR becomes zero,
the register overflows, with the following results:

1. The hardware copies the contents of PR$_NICR into PR$_ICR
to define the next interval.

2. The hardware sets a bit in PR$_ICCS to indicate the overflow
condition. This causes an interval clock interrupt.

Software Interrupts, Kernel Synchronization, and Time Support 5-13

In VAX subset processors, which contain only the single-bit version of
PR$_ICCS, the value written to PR$_NICR during system initialization
is ignored. Only the original setting and subsequent resetting of the
single interrupt-enable bit in PR$_ICCS to enable ten-millisecond
interrupts is significant.

The IPL at which the hardware interrupt occurs is either 22 or 24,
depending on the processor type. Earlier VAX processors, such as the
VAX-11/750, use IPL 24. The VAX architecture now defines 22 as the
IPL associated with the interval clock.

5.3.2 Timekeeping Under VAXELN

Timekeeping under VAXELN involves maintaining the system time
and servicing time-dependent waits. The system time is stored in the
64-bit global value KER$GQ_SYSTEM_TIME. This value represents
the number of 100-nanosecond intervals since 00:00 hours, November
17, 1858, the base time for the Smithsonian Institution astronomical
calendar. KER$GQ _SYSTEM_TIME is updated, by default, every ten
milliseconds by the interval clock ISR. On processors that implement
the full interval clock, the interrupt interval can be set by the user in
the System Builder (see Section 5.3.1).

Because the value of KER$GQ _SYSTEM_TIME is set to 0 when the
kernel is assembled and is not changed by system initialization, the
system time on VAXELN systems begins at the Smithsonian base time.
The KER$SET_TIME procedure allows the system time to be set under
program control to a correct value, as described in Section 5.3.6.1.

The kernel maintains other global values for time-related operations.
These are shown in Table 5-5. (All the values except KER$GL_TIME_
INTERVAL are defined in module SYSTEMDAT. The time interval is
defined in module PARAMETER.)

Table 5-5: Time-Related Kernel Values

Value

Use

KER$GB_TIME_SET A flag to indicate that the system time has been set. This

flag is set the first time the system time is set. When the
flag is clear, the KER$GET_TIME procedure warns its
callers that they are receiving the uncorrected base system
time.

5-14 Software Interrupts, Kernel Synchronization, and Time Support

Table 5-5 (Cont.): Time-Related Kernel Values
Value Use

KER$GQ_CLOCK_OFFSET An accumulator for all changes to the system time.
Stored in units of 100 nanoseconds, this value allows the
KER$GET_UPTIME procedure to calculate system uptime
based on the system time.

KER$GQ_IDLE_TIME An array that accumulates, in 100-nanosecond intervals, the
idle time for each processor.

KER$GQ_START_TIME The time at which system time was last set.

KER$GQ SYSTEM_TIME The absolute system time in 100-nanosecond intervals.

KER$GQ _TIME_QUEUE Listhead of the timer queue, which contains the timer
wait control blocks representing timed process waits. See
Section 5.3.3.

KER$GL_TIME_INTERVAL The interval clock interrupt period in units of 100 nanosec-

onds. This value is based on the Interval time entry on
the System Characteristics Menu. The value entered there
in units of microseconds is multiplied by 10 to generate the
value for KER$GL_TIME_INTERVAL. The default value is
100,000 nanosecond intervals, or 10 milliseconds.

This value is stored in 100-nanosecond units so that the
interval clock ISR can then update the system time by
adding KER$GL_TIME_INTERVAL to KER$GQ_SYSTEM_
TIME, which uses the same units.

5.3.3 Timer Queue and Timer Wait Control Blocks

The timer queue, central to the processing of timed waits, is a list of
timer wait control blocks (WCBs), each containing a quadword time
value representing the absolute system time at which a process wait
expires. The list is ordered by these time values; the most imminent
time comes first, the most distant comes last.

The listhead for this queue resides at KER$GQ_TIME_QUEUE. The
listhead is actually the first eight bytes of a dummy timer WCB. (The
structure of the WCB is described fully in Section 11.1.1.) Several
fields in the WCB relate to its use in the timer queue. The fields
WCB$A_WAIT_FLINK and WCB$A_WAIT_BLINK allow the WCB to
be linked into the queue. The field WCB$Q_TIME contains the time
value representing the system time at which the wait expires. The
second bit in the WCB$B_WAIT field (WCB$V_WAIT_DELTA) signifies

Software Interrupts, Kernel Synchronization, and Time Support 5-15

how the timed wait was specified to the KER$WAIT procedure. If the
bit is set, then the wait time was specified as a interval (relative or
delta) time. If the bit is clear, an absolute time was specified. The
setting of the WCB$V_WAIT_DELTA bit allows the KER$SET_TIME
procedure to adjust only the interval wait times of processes if the
system time is reset.

As shown in Figure 5-2, the dummy WCB located at KER$GQ_TIME_
QUEUE acts as the first WCB in the timer queue, and its forward
and backward links comprise the actual listhead for the queue. Its
WCB$Q_TIME field is permanently set to —1. This value is used

by the KER$WAIT procedure for comparison when it inserts timer
WCBs into the queue. Because real timer WCBs contain absolute time
values (that is, positive values), they are inserted into the queue fol-
lowing the dummy WCB.. The negative value of WCB$Q TIME in the
dummy WCB also allows both the hardware and software timer ISRs
to determine quickly that the timer queue is empty.

If the timer queue is not empty, the interval timer ISR, described in
Section 5.3.4, checks to see whether the time value in the first real
WCB in the queue is less than or equal to the value of the system time.
If so, the ISR requests a software interrupt to awaken the software
timer ISR, described in Section 5.3.5. When it runs, this ISR walks the
timer queue and unblocks every process whose wait has expired.

5.3.4 Interval Clock Iinterrupt Service Routine

The interval clock interrupt service routine, KER$HARDWARE_TIMER
in module TIMERINT, services the hardware interrupt generated by
the interval clock when the time defined in KER$GL_TIME_INTERVAL
expires. On VAX-11/725, 730, and 750 targets this is an IPL 24 inter-
rupt; on others, it is an IPL 22 interrupt.

The interval clock ISR has three major functions:

¢ Updating the system time
* Performing process and idle-time accounting
¢ Checking the timer queue for expired process waits

5-16 Software Interrupts, Kernel Synchronization, and Time Support

Figure 5-2: Timer Queue

Dummy WCB

A

WCBSA_WAIT_FLINK

WCBS$A_WAIT_BLINK

WCB$Q_TIME
(Equails -1)

A}

WCBS$A_WAIT_FLINK

A

WCBS$A_WAIT_BLINK

WCB$Q_TIME
A<B<C

Y

WCBS$A_WAIT_FLINK

A

WCB$A_WAIT_BLINK

WCBS$Q_TIME
B<C<D

WCB$A_WAIT_FLINK

A

WCB$A_WAIT_BLINK

WCBS$Q_TIME
C<D

:KER$GQ_TIME_QUEUE

MLO-003226

On tightly coupled symmetric multiprocessing systems, this interrupt
routine also maintains “watchdog timers,” which allow one processor to
monitor the status of another processor in the system. If a clock tick
has expired and the watched processor has not updated a counter, a
fatal system bugcheck is taken to bring down the entire system.

Software Interrupts, Kernel Synchronization, and Time Support 5-17

On all systems, the task of maintaining the system time and checking
the timer queue belongs to the single or primary processor alone.
KER$HARDWARE_TIMER executes as follows:

1.

2.

The interval clock CSR, PR$_ICCS, is reset to indicate that the
interrupt has been serviced and to reenable the timer.

The value of KER$GQ _SYSTEM_TIME is updated by adding to it
the value of KER$GL_TIME_INTERVAL.

The address of the first entry in the timer queue is obtained. If the
queue is empty, this is the address of the dummy timer WCB.

The updated system time is compared to the time value in the first
timer WCB.

If the system time is less than or equal to the time in the WCB,
then that first element has expired (this is never the case when the
queue is empty), and a software interrupt is requested by writing
IPL$K_TIMER (7) to PR$_SIRR. When IPL drops below IPL$K_
TIMER, the software timer ISR runs to service the timer queue.

The interrupt-stack field in the PSL at the time of the interrupt
is checked. If it is set, meaning that the system was executing
outside of process context, the clock interval is charged against
the processor’s idle time by adding KER$GL_TIME_INTERVAL to
KER$GQ_IDLE_TIME. (On tightly coupled symmetric multipro-
cessing systems, KER$GQ_IDLE_TIME is an array indexed by the
processor number; therefore, KER$GL_TIME_INTERVAL is added
to the appropriate element of KER$GQ _IDLE_TIME.)

If the processor was in process context at the time of the inter-
rupt, the clock tick is charged against the interrupted process by
incrementing the value of PCB$L_CPU_TIME in the current PCB.

The interrupt is dismissed with the REI instruction.

5.3.5 Software Timer Interrupt Service Routine

The software time interrupt service routine, KER$SOFTWARE_TIMER
in module TIMERINT, is invoked through the IPL§K_TIMER software
interrupt. The software timer interrupt is requested by the interval
clock }aardware ISR when it finds that the entry in the timer queue has
expired.

5-18 Software Interrupts, Kernel Synchronization, and Time Support

KER$SOFTWARE_TIMER services the timer queue as follows:

1. The LOCK macro is executed to ensure exclusive access to the
timer queue and other system data.

2. The address of the first WCB in the timer queue is obtained. If the
queue is empty, this is the address of the dummy timer WCB.

3. The system time, KER$GQ_SYSTEM_TIME, is compared to the
value of WCB$Q_TIME in the timer WCB.

If the system time is greater than or equal to the time in the WCB,
the internal subroutine KERSUNWAIT is called to unblock the pro-
cess that owns the expired WCB. KER$UNWAIT removes the WCB
from the head of the timer queue and places the associated process
into the ready state, regardless of the state of other wait conditions
it may have specified. If the waiting process had specified a wait
result variable, it is set to 0 to signify that the wait has timed out.

4. If the WCB has not expired, the interrupt is dismissed. Otherwise,
control loops to step 2 to test the next queue entry. The next entry
will always be at the head of the queue, because KER§UNWAIT
removes the expired entries from the head of the queue.

The role of KER$§WAIT in placing WCBs in the timer queue is described
in Section 11.2, and the function of KER§UNWAIT is described in
Section 11.3.3.3.

5.3.6 Time-Related Kernel Procedures

The kernel provides three procedures to allow callers to set the system
time and to obtain the system time and the time that the system has
been operating (uptime). The following sections describe these proce-
dures, KERSET_TIME, KERGET_TIME, and KER$GET_UPTIME,
all of which reside in module TIME.

The KER$WAIT_ANY and KER$WAIT_ALL procedures allow a process
to wait until a specified date and time or for a specified interval. These
procedures are described in Chapter 11.

Software interrupts, Kernel Synchronization, and Time Support 5-19

5.3.6.1 KER$SET_TIME

The procedure KER$SET_TIME executes in kernel mode and allows
its caller to replace the value of KER$GQ _SYSTEM_TIME with a
specified 64-bit time value. The caller can create the binary time value
before calling KER$SET_TIME by using the run-time library function
ELN$TIME_VALUE to convert an ASCII time string. KER$SET_TIME
is also responsible for adjusting the time values in the WCBs in the
timer queue if they specify a wait for an interval time.

KER$SET_TIME expects two arguments: the address of an optional
status value and the address of a 64-bit variable containing the new
system time. The procedure executes as follows:

1.

The current system time, KER$GQ_SYSTEM_TIME, is subtracted
from the time specified by the caller, and the difference is saved.

The difference between the specified time and the current time
is used to update the wait time values in timer WCBs that were
specified as relative waits.

The time difference is negated and added to the quadword
KER$GQ_CLOCK_OFFSET. Before the correction to the system
time is added to KER$GQ_CLOCK_OFFSET, the LOCK macro

is executed to ensure the procedure’s exclusive access to system
time values and the timer queue. (The corrections to the system
time are accumulated in KER$GQ_CLOCK_OFFSET so that the
KER$GET_UPTIME procedure can calculate the system’s elapsed
time based on the current time; see Section 5.3.6.3.)

The caller’s time value is copied to KER$GQ_SYSTEM_TIME,
effectively resetting the system time to the new value.

The caller’s time value is copied to KER$GQ_START_TIME, record-
ing the time at which the system time was last set.

The timer queue is scanned for timer WCBs with the WCB$V_
WAIT_DELTA bit set in WCB$B_WAIT. For each one, the time

difference calculated earlier is added to the time value in WCB$Q_
TIME.

The timer queue is reordered to correct any discrepancies created
by the adjustments to the timer WCB time values.

IPL is restored, the spinlock is released, and KER$_SUCCESS
status is returned to the caller.

5-20 Software Interrupts, Kernel Synchronization, and Time Support

The time values in timer WCBs are adjusted so that changes in system
time do not affect the expiration times of interval waits. Adjustment is
ultimately required because the values for timed waits — both absolute
or relative — are stored as absolute system times. For relative waits,
this absolute time is calculated in the KER$WAIT procedure by adding
the specified relative time to the current system time. The result is
entered into the WCB$Q_TIME field of the timer WCB, which is then
inserted into the appropriate position in the timer queue. KER$SET_
TIME, however, makes no adjustments to waits specified as absolute
times. These waits are left to expire at their specified system times.

For example, if a process enters a five-minute wait one minute after the
system is booted, but before the time is reset from the base time (the
time would be 17-NOV-1858 00:01:00.00), its absolute expiration time
would be recorded in WCB$Q_TIME as 17-NOV-1858 00:06:00.00, that
is, five minutes after the time at which the wait was requested. If, one
minute later, another process sets the system time to a more relevant
value, such as 15-0CT-1989 08:20:00.00, the time value for the first
process must be adjusted to preserve the remaining portion of its wait.
Otherwise, its wait would expire immediately at the next clock tick, not
in the expected four minutes.

KERS$SET_TIME calculates the necessary adjustment by subtracting
the value of KER$GQ _SYSTEM_TIME at the time of the call from the
new system time specified, yielding, in this case, a difference of well
over a century. Adding this value to the absolute time in WCB$Q_
TIME would result in a new absolute expiration time of 08:24:00.00
15-OCT-1989, showing that four minutes remain in the five-minute
wait.

This adjustment mechanism works the same way with less extreme
adjustments to the system time. The adjustment preserves the rela-
tionship of an interval wait’s expiration time to the new system time.
If the system time were to be set back by five minutes, the subtraction
from KER$GQ_SYSTEM_TIME would yield a difference of negative
five minutes. Adding this negative offset to the values in the relative
timer WCBs would adjust their timeout values back by the required
five minutes.

Software Interrupts, Kernel Synchronization, and Time Support 5-21

5.3.6.2 KERSGET_TIME

The procedure KER$GET_TIME executes in the caller’s mode and
returns the 64-bit value KER$GQ_SYSTEM_TIME. The caller can then
use the run-time library routine ELN$TIME_STRING to convert the
binary time value to an ASCII string.

KERSGET_TIME expects two arguments: the address of an optional
status value and the address of a 64-bit variable to receive the system
time. The procedure executes by simply copying the value of KER$GQ_
SYSTEM_TIME to the caller’s quadword variable.

The status returned by the procedure depends on the setting of the low
bit in the global value KER$GB_TIME_SET. If the bit is set, then the
system time has been set and KER$_SUCCESS is returned. If The bit
is clear, then system time has not been set. To warn the caller of this,
the alternate success status KER$_TIME_NOT_SET is returned.

5.3.6.3 KER$GET_UPTIME

The procedure KER$GET _UPTIME executes in kernel mode and re-
turns a 64-bit interval time value representing the time since the
system was booted. The caller can then use the run-time library rou-
tine ELN$TIME_STRING to convert the binary time value to an ASCII
string.

KERSGET_UPTIME expects two arguments: the address of an op-
tional status value and the address of a 64-bit variable to receive
the system uptime. Its operation depends on the value of KER$GQ_
CLOCK_OFFSET, which is updated by each call to the KER$SET_
TIME procedure to keep a running tally of adjustments to the system
time.

To calculate the system uptime, KER$GET_UPTIME executes as fol-
lows:

1. The values of KER$GQ_SYSTEM_TIME and KER$GQ_CLOCK_
OFFSET are added, yielding the actual uptime for the system.

2. The uptime value is negated and returned to the caller. Negating
the uptime value transforms it to interval time format. This neg-

ative value can then be passed to the run-time library function
ELNS$STIME_STRING.

5-22 Software Interrupts, Kernel Synchronization, and Time Support

If the system time has not been set from the base time, represented
in KER$GQ_SYSTEM_TIME as 0, KER$GQ_CLOCK_OFFSET will
always be 0. Adding the offset to the system time, then, will simply
yield the number of 100-nanosecond intervals that have passed since
the system was initialized.

If the system time has been reset from the base time, KER$GQ_
CLOCK_OFFSET contains the negative value of all the adjustments
made to the system time. By adding this negative value to the current
system time, KER$GET_UPTIME effectively rolls back any changes to
the system time to yield the number of 100-nanosecond intervals that
have transpired since the system was initialized.

Software Interrupts, Kernel Synchronization, and Time Support 5-23

Chapter 6

Condition Handling

Conditions are errors or anomalies detected by hardware and software
and reported by the system software to a condition handler defined by
the user. The VAXELN Kernel and its counterpart under the VMS op-
erating system both employ the VAX condition-handling facility as set
out in the VAX Procedure Calling and Condition Handling Standard.
There are differences between the two implementations, but their
functions parallel each other closely.

In particular, the VAX condition-handling facility defines the following
aspects of condition handling:

e How a condition handler is declared and canceled
e How a condition handler is located and invoked
* How a condition handler may respond to a condition

The facility also provides that the same condition handlers be called in
response to conditions detected by both hardware and software. This
mechanism, called uniform condition dispatching, allows application
software to centralize its handling of all errors in a single condition-
handling procedure.

VAXELN extends this condition-dispatching mechanism to include
software-generated conditions called asynchronous exceptions. An
asynchronous exception allows one process to interrupt another asyn-
chronously to the latter process’s execution. The VAX hardware’s
support for asynchronous system traps (ASTs) and the VAXELN
Kernel’s condition-dispatching mechanism work together to deliver
asynchronous exceptions.

Condition Handling 6-1

The following sections describe the implementation of the VAX
condition-handling facility within the VAXELN Kernel:

Section 6.1 defines VAX conditions.

Section 6.2 describes the data structures involved in dispatching
and handling conditions.

Section 6.3 describes how conditions detected by hardware are
prepared for dispatching.

Section 6.4 describes how conditions detected by software are
prepared for dispatching.

Section 6.5 describes how asynchronous exception conditions are
generated and prepared for dispatching.

Section 6.6 describes the uniform condition-dispatching mechanism;
namely, how the kernel locates and calls a condition handler and
how it deals with handled and unhandled conditions.

Section 6.7 describes the options available to a condition handler,
including unwinding the stack to change the flow of execution.

6.1 Conditions Detected by Hardware and Software

Conditions fall into two categories, based on whether the condition is
detected by the hardware/microcode or by software:

Exception conditions. An exception condition is the processor’s
response to an anomaly or error it encounters while executing an
instruction. The hardware/microcode responds by changing the
flow of execution, directing it to an exception service routine. Each
exception routine is identified by its own longword vector, defined
by the VAX architecture, in the SCB.

An exception condition may be classified as a trap, a fault, or an
abort:

— A trap is an exception condition that occurs at the end of the
instruction that causes the error. The PC pushed onto the stack
by the hardware/microcode exception sequence is the address
of the instruction following the offending instruction. Example:
integer divide by zero.

6-2 Condition Handling

— A fault is an exception condition that occurs during an instruc-
tion and leaves registers and memory in a consistent state.
The PC pushed onto the stack during the exception sequence
is the address of the instruction that caused the error, so that
eliminating the fault and restarting the instruction is possible.
Example: access control violation.

— An abort is an exception condition that occurs during an in-
struction and potentially leaves registers and memory in an
inconsistent state, so that the instruction cannot be safely
restarted, completed, or undone. Example: kernel stack not
valid.

These hardware-detected errors occur synchronously, that is, at
predictable points in the flow of process execution. The VAXELN
Kernel recognizes another class of exception, called asynchronous
exception conditions. Asynchronous exception conditions are gen-
erated outside the flow of process execution. These exceptions are
in fact requested by software and are delivered asynchronously
to a process through the cooperation of the kernel and the VAX
hardware’s support for ASTs, as described in Section 6.5.

* Software conditions. A software condition is an error or anomaly
detected by the system or a user program and treated in a particu-
lar way. When software detects such an error, it transforms it into
a software condition by calling the kernel procedure KER$SRAISE_
EXCEPTION. (Programs can also call the run-time library VMS-
emulation routines LIB$SIGNAL and LIB$STOP, which then call
KER$RAISE_EXCEPTION.)

The description of the kernel’s processing of software conditions
begins with Section 6.4.

6.2 Data Structures for Condition Handling

The structures central to the VAX condition-handling facility are de-
fined by the VAX Procedure Calling and Condition Handling Standard.
This section describes the following structures:

* The call frame. This structure, built by the CALLG and CALLS
instructions, records information about a called procedure that al-
lows the kernel to trace the path of procedure calls down a process’s
stack.

Condition Handling 6-3

¢ The condition-handler argument list. This structure, built by the
kernel, is passed to a condition handler to enable it to locate the
signal and mechanism arrays, which contain information about the
condition.

® The signal array. This structure, built by the kernel, is passed to
a condition handler and describes the condition — signal — that
resulted in the calling of the handler.

® The mechanism array. This structure, built by the kernel, is passed
to a condition handler and records information about the kernel’s
search for a condition handler.

This set of data structures applies to the VAX condition-handling
facility as a whole. Another set of data structures exists to support
the delivery of asynchronous exception conditions to a process. These
structures are described separately in Section 6.5.1.

6.2.1 Call Frames

A VAX call frame saves information about the caller’s state to be
restored when the called procedure completes. The call frame also con-
tains information that allows the kernel to trace the calling hierarchy
down the stack.

Figure 61 shows the structure of the VAX call frame created on

the stack by the CALLG and CALLS instructions. The figure also
shows the location of the argument list transmitted on the stack by the
CALLS instruction. Table 6-1 describes the fields in the frame. The
symbols in the second column are defined in the $SFDEF macro in the
VMS STARLET macro library.

The called procedure’s local stack environment begins on top of its

call frame. The value of the frame pointer (FP) points to the first
longword at the top of the call frame. When an exception or software
condition occurs, the kernel’s condition-dispatching logic searches down
the stack, through successive call frames, until it locates a frame that
has established a condition handler by storing its address in that first
longword in the call frame. The kernel is able to locate lower frames by
using the saved FP value in one call frame to locate the top of the next
lowest frame on the stack.

6—4 Condition Handling

Figure 6-1: VAX Call Frame for CALLG and CALLS

3130 29 28 27 16 15 543 0
-
Condition Handler Address (initially 0) l«—FP=SP
SPA| S | 0 |Maskbits <11:05| PSW bits <15:5> 0
Saved AP
Saved FP
Call
Frame< Saved PC
<—FP+20
Saved Registers
(indicated in mask)
L 0-3 Byte Stack Alignment Block (as indicated by SPA)
0 Arg. Count |[€—AP
CALLS
Only ﬁ Arguments
(as indicated by argument count)
\
MLO-003227

Condition Handling 6-5

Table 6-1:

Structure of a VAX Call Frame

Field

Symbols

Meaning

Condition handler
address

SPA (stack pointer
alignment) bits

S bit

Mask bits

PSW bits

Saved AP

Saved FP

Saved PC

SF$A_HANDLER

SF$V_STACKOFFS
SF$S_STACKOFFS

SF$V_CALLS
SF$S_CALLS

SF$W_SAVE_MASK
SF$V_SAVE_MASK
SF$S_SAVE_MASK

SF$W_SAVE_PSW

SF$L_SAVE_AP

SF$L_SAVE_FP

SF$L_SAVE_PC

6-6 Condition Handling

The address of the condition handler estab-
lished for the frame. The CALL instructions
set this field to 0 and the frame pointer to
point to this longword. A condition handler is
established when its address is written to this
field.

The low two bits of the stack pointer (SP)
value at the time of the CALL. This value is
subtracted from SP by the CALL instructions
to align the stack on a longword boundary.

The bit that indicates how the call frame was
created. The bit is set if CALLS was executed;
the bit is clear if CALLG was executed. If the
S bit is set, the RET instruction clears the
CALLS argument list from the stack.

The lowest twelve bits of the procedure entry
mask, indicating which registers were saved on
the stack on entry to the procedure.

The high 11 bits of the processor status word
(PSW), indicating the settings of the integer
overflow (IV), floating underflow (FU), and
decimal overflow (DV) trap-enable bits at the
time of the CALL.

The value of the argument pointer at the time
of the CALL.

The value of the frame pointer at the time
of the call. This value defines the calling
procedure’s stack environment and is used by
the condition-dispatching logic to scan back
through frames on the stack.

The value of the program counter at the time of
the CALL. This is the address of the instruction
following the CALLS or CALLG instruction

to which control will return when the called
procedure returns.

Table 6-1 (Cont.):

Structure of a VAX Call Frame

Field

Symbols

Meaning

Saved registers

Stack alignment
block

SF$L_SAVE_REGS The values of the registers specified in the

None

procedure’s entry mask. Procedures compliant
with the VAX Procedure Calling and Condition
Handling Standard save only registers R2
through R11. Registers RO and R1 are for the
return of function values.

Zero to three bytes added to the stack to align
it on a longword boundary. The number of
bytes here matches the value of the SPA bits.

6.2.2 Condition-Handler Argument List

When the kernel calls a condition handler, it passes two arguments

in a standard VAX argument list: the address of the signal array and
the address of the mechanism array. These longword arrays, described
in Sections 6.2.3 and 6.2.4, respectively, give the handler information
about the nature of the condition and the number of call frames that
have already been searched for a handler.

Figure 62 shows the structure of the argument list, and Table 6-2
describes its fields. The symbols listed in the second column are defined
in the $CHFDEF macro in STARLET.MLB.

Figure 6-2: Condition-Handler Argument List

Argument Count (2) [«—— AP

Signal Array

Mechanism Array

NMLO-003228

Condition Handling 6-7

Table 6-2: Structure of the Condition-Handler Argument List

Field Symbol Meaning

Argument count None The number of arguments passed to the han-
dler (always 2)

Signal array CHF$L_SIGARGLST The address of the signal array

Mechanism array CHF$L_MCHARGLST The address of the mechanism array

6.2.3 Signal Arrays

A condition handler examines the signal array to determine what
condition — signal — caused it to be invoked. For exception condi-
tions, part of the array is created by the hardware/microcode, and
the rest is created within the service routine specific to the exception
(see Section 6.3); for software conditions, the array is created by the
KER$RAISE_EXCEPTION kernel procedure (see Section 6.4); and
for asynchronous exception conditions, the array is created by the
KER$AST_INTERRUPT IPL 2 software interrupt service routine (see
Section 6.5).

Figure 6-3 shows the structure of the VAX signal array, and Table 6-3
describes the information it conveys to the condition handler. The
symbols in the table’s second column are defined in the $CHFDEF
macro in STARLET.MLB.

6-8 Condition Handling

Figure 6-3: Signal Array

Argument Count ft—— AP+4

Signal Name

Possible Additional Arguments

Exception PC

Exception PSL

MLO-003220

Condition Handling 6-9

Table 6-3: Structure of the Signal Array

Field Symbol Meaning

Argument count CHF$L_SIG_ARGS The total number of condition arguments
passed in the signal array. The minimum
number is 3 — the signal name, the exception
PC, and the exception PSL.

Signal name CHF$L_SIG_NAME A unique bit configuration that identifies the

Additional argu-
ments

Exception PC

Exception PSL

exception or software condition. The control,
facility number, message number, and severity
fields in the signal name are defined in the
VAX Procedure Calling and Condition Handling
Standard.

None Zero or more additional arguments that pass
additional information about the exception
or software condition. The number of addi-
tional arguments in the array is determined by
subtracting 3 from the argument count.

None The value of the program counter at the time
the condition was signaled. For traps and
software conditions, this value is the address of
the instruction following the one that generated
the condition. For faults, this value is the
address of the instruction that generated the
condition.

None The value of the processor status longword at
the time condition was signaled. The condition-
dispatching logic can use this value to de-
termine the access mode of the process that
generated the condition.

6.2.4 Mechanism Arrays

A condition handler can determine the circumstances of its calling by
examining the mechanism array. Information in this array records how
many call frames were searched for handlers before the current handler
was called and identifies the frame (by FP value) that established the
handler. These data are useful when the handler wants to unwind

the stack to the frame that established it (see Section 6.7.2). For both
exception and software conditions, the mechanism array is created

6-10 Condition Handling

by the kernel’s condition-dispatching logic (in module EXCEPTION).
Section 6.6.1 describes this process.

Figure 6—4 shows the structure of the VAX mechanism array, and
Table 6—4 describes the information it conveys to the condition handler.
The symbols in the table’s second column are defined in the $CHFDEF
macro in STARLET.MLB.

Figure 6-4: Mechanism Array

Argument Count (4) j«<—— AP4+8

Frame

Depth

Saved RO

Saved R1

MLO-003230

Table 6-4: Structure of the Mechanism Array

Field Symbol Meaning
Argument count CHF$L_MCH_ARGS The number of arguments in the mechanism
array. This value is always 4.
Frame CHF$L_MCH_ The value of the frame pointer that defines
FRAME the stack environment for the procedure that

established the called condition handler. The
handler can use this value to unwind the stack
to the frame that established it.

Depth CHF$L_MCH_ The number of call frames searched to locate
DEPTH the current condition handler. The handler can
use this value to unwind the stack to the frame
that established it.

Condition Handiing 6-11

Table 6-4 (Cont.): Structure of the Mechanism Array

Field Symbol Meaning
Saved RO CHF$L_MCH_ The value of RO at the time the condition was
SAVRO signaled. Since the VAX calling standard pro-

hibits saving RO on entry into a procedure,

the condition-dispatching logic must save that
value here. It is restored when execution con-
tinues after the condition is handled. A handler
can return information to the procedure that
raised the condition by altering the contents of

this field.
Saved R1 CHF$L_MCH_ The value of R1 at the time the condition was
SAVR1 signaled. As with RO, the calling standard

prohibits the saving of R1.

6.3 Exception Conditions

When a synchronous exception is detected by the hardware/microcode,
the processor and the kernel cooperate to build the signal array on
the appropriate stack and transfer control to the uniform condition-
dispatching logic to complete processing the condition. Section 6.3.1
describes the processor’s role in creating the signal array, and
Section 6.3.2 describes the role played by the kernel.

6.3.1 Initial Processor Actions

When the hardware/microcode detects an exception, the processor
responds by taking the following actions:

1. Depending on the exception, access mode and stack may be
changed. In general, the processor uses the settings of the low
two bits of the exception’s SCB vector to determine on which stack
the exception is serviced. Table 6-5 summarizes the stack choices
resulting from this architectural mechanism and the VAXELN
SCB’s definitions of exception vectors.

2. The exception PC is pushed onto the stack.
3. The exception PSL is pushed onto the stack.
4. Exception-specific parameters may be pushed onto the stack.

6-12 Condition Handling

5. Control is transferred to the service routine whose address is stored
in the SCB vector for the exception. The service routine then
finishes constructing the signal array and transfers control to the
routine that dispatches the exception, as described in Section 6.3.2.
Table 6-6 shows the exceptions defined by the VAX architecture,
their byte offsets in the SCB, their types, the number of their
additional parameters, and the names of their service routines.

Table 6-5: Selection of Exception Stack

Kernel or User On Interrupt

Exception Mode? Stack? Exception Stack

Machine check KorU N/A Interrupt

Kernel stack not valid K No Interrupt

Subset emulation KorU N/A Same

Change mode to kernel KorU No Kernel

Change mode to kernel K Yes Processor halt

All others KorU No Kernel

All others K Yes Interrupt

Table 6-6: VAX Exception Vectors Under VAXELN

Vector Extra

Exception (Hex.) Type Params. Service Routine/Remarks

Machine check 4 Abort/Fault 0 Handling based on processor type,
as described in Section 7.3. Process-
level, nonfatal machine checks
are reflected back to the service
routine KER$MCHECK in module
EXCEPTION.

Kernel stack not 8 Abort 0 KERS$KERNEL_STACK in module

valid EXCEPTION. See Section 6.3.2.3.

Reserved/privileged 10 Fault 0 KERS$DIGITAL_RESERVED in

instruction module EXCEPTION. This service

routine also serves as the entry point
for bugchecks, and this vector is also
used as the entry point to the VAX
floating-point emulation routines.
See Section 6.3.2.4.

Condition Handling 6-13

Table 6-6 (Cont.):

VAX Exception Vectors Under VAXELN

Vector Extra

Exception (Hex.) Type Params. Service Routine/Remarks

Customer reserved 14 Fault 0 KER$CUSTOMER_RESERVED in

instruction module EXCEPTION.

Reserved operand 18 Abort/Fault 0 KER$RESERVED_OPERAND in
module EXCEPTION.

Reserved address- 1C Fault 0 KER$RESERVED_MODE in module

ing mode EXCEPTION.

Access violation 20 Fault 2 KER$ACCESS_VIOLATION in
module EXCEPTION. This service
routine also handles the dynamic
expansion of the user stack. See
Section 6.3.2.1.

Translation not 24 Fault 2 KER$ACCESS_VIOLATION in

valid module EXCEPTION. Since the
kernel does not page, this fault is
reflected as an access violation.

Trace pending 28 Fault 0 KER$TRACE_TRAP in module
EXCEPTION.

Breakpoint instruc- 2C Fault 0 KER$BREAKPOINT in module

tion EXCEPTION.

Compatibility mode 80 Abort/Fault 1 KER$COMPATIBILITY in module
EXCEPTION.

Arithmetic 34 Fault/Trap 1 KERS$SARITHMETIC in module
EXCEPTION. See Section 6.3.2.2.

Change mode to 40 Trap 1 KER$KERNEL_SERVICE in module

kernel DISPATCH. See Section 8.2.

Change mode to 44 Trap 1 KER$CHANGE_EXECUTIVE in

executive module EXCEPTION. This ac-
cess mode is not supported under
VAXELN.

Change mode to 48 Trap 1 KER$CHANGE_SUPERVISOR

supervisor in module EXCEPTION. This ac-
cess mode is not supported under
VAXELN.

Change mode to 4C Trap 1 KER$CHANGE_USER in module

user EXCEPTION.

6-14 Condition Handling

Table 66 (Cont.): VAX Exception Vectors Under VAXELN

Vector Extra
Exception (Hex.) Type Params. Service Routine/Remarks
Emulation start C8 Trap 10 VAX$EMULATE in module
[EMULATIVAXEMULATE. This
vector is for string-instruction emu-
lation.
Emulation continue CC Trap 0 KER$EMULATE_FPD in module

[EMULATIVAXEMULATE. The
vector for continuing an interrupted
emulated string instruction.

6.3.2 Initial Kernel Actions

Once the processor has transferred control to the appropriate exception
service routine, that routine takes the following steps to finish building
the signal array to allow processing to continue in the common dispatch
code:

1. The exception (signal) name is pushed onto the stack, for example,
SS$_ACCVIO for an access control violation.

2. The total argument count for the signal array is pushed onto the
stack. For example, an access control violation has an argument
count of 5: the exception PC, the exception PSL, two additional
parameters, and the signal name.

3. Control is transferred to the global entry point KER$REFLECT in
module EXCEPTION, the start of the uniform condition-dispatching
mechanism. Section 6.6 describes the function of KER$REFLECT.

Table 6-7 shows the signal name pushed onto the stack for each ex-
ception serviced by a routine in module EXCEPTION. The table also
shows the final number of arguments in the signal array. The following
sections, as noted in the table, describe the exceptions that require
additional processing before their service routines pass control to the
dispatch code.

Condition Handling 6-15

Table 6-7: Exceptions Serviced by Module EXCEPTION

Signal
Array

Exception Signal Name Size Remarks

Access-control SS$_ACCVIO 5 See Section 6.3.2.1.

violation

Arithmetic excep- Varies 3 See Section 6.3.2.2.

tion

Breakpoint instruc- SS$_BREAK 3

tion

Change mode to SS$_CMODUSER 4 The additional parameter is the

user change mode code.

Compatibility mode SS$_COMPAT 4 The additional parameter is the
compatibility exception code.

Customer reserved SS$_OPCCUS

instruction

Kernel stack not KER$_KERNEL_ 3 See Section 6.3.2.3.

valid STACK

Machine check KER$_MACHINECHK 3 Machine-check exceptions reported to
a process have no extra parameters in
the signal array. The machine-check
parameters have been examined,
possibly written to the error log,
and discarded by the machine-check
handler.

Reserved/privileged SS$_OPCDEC 3 See Section 6.3.2.4.

instruction

Reserved address- SS$_RADRMOD 3

ing mode

Reserved operand SS$_ROPRAND 3

Trace pending SS$_TBIT 3

6.3.2.1 Access Control Violation Exceptions

The processor transfers control to the service routine KER$ACCESS_
VIOLATION in the following circumstances:

6-16 Condition Handling

The memory management hardware/microcode detects an architec-
turally defined memory access control violation, such as attempting
to access privileged or nonexistent virtual memory.

* A translation-not-valid fault occurs (V bit clear in a PTE). Under
VMS, this exception is the entry into the paging subsystem. Since
VAXELN does not page, this exception is reflected to the process as
a normal access violation. VAXELN memory management always
sets the V bit when constructing page table entries, so this fault
is probably the result of a kernel-mode program corrupting a page
table.

In response to an access violation fault, the processor pushes two
extra exception parameters onto the stack: the inaccessible virtual
address and a bit mask describing the reason for the fault. The ex-
ception service routine KERJACCESS_VIOLATION first examines the
PSL to determine whether the faulting process was in user mode. If
so, the routine first assumes that the fault resulted from user-stack
overflow and passes the virtual address parameter to the local sub-
routine KERSEXPAND_STACK to try to expand the stack. If the
address argument is a P1 virtual address, KERSEXPAND_STACK calls
KER$ALLOCATE_MEMORY to expand the user stack. If the expan-
sion fails, or the address is not in P1 address space, the subroutine
returns failure status.

If KER$EXPAND_STACK fails, the service routine pushes the signal
name SS$_ACCVIO and the signal array argument count (5) onto the
stack and transfers control to the dispatch code.

6.3.2.2 Arithmetic Exceptions

Seven possible arithmetic exceptions can occur on processors sup-
ported by VAXELN. For each exception, the processor pushes a
unique exception parameter onto the stack. The service routine
KER$ARITHMETIC, in module EXCEPTION, does not then simply
push a generic exception name onto the stack. Instead, the exception
parameter is used to create a unique signal name with the following
formula:

signalname = (8 * code) + SS$_ARTRES

Table 68 shows the arithmetic exception names, their codes, and their
symbolic representations.

Condition Handling 6-17

Table 6-8: Signal Names for Arithmetic Exceptions

Exception Code Type Symbol

Integer overflow 1 Trap SS$_INTOVF
Integer divide by 2 Trap SS$_INTDIV
zero

Decimal overflow 6 Trap SS$_DECOVF
Subscript range 7 Trap SS$_SUBRNG
Floating overflow 8 Fault SS$_FLTOVF_F
Floating divide by 9 Fault SS$_FLTDIV_F
zero

Floating underflow 10 Fault SS$_FLTUND_F

6.3.2.3 Kernel-Stack-Not-Valid Exceptions

A kernel-stack-not-valid exception indicates that the kernel stack was
not valid while the processor was pushing information onto the stack
while initiating an exception or interrupt. This exception is serviced by
the KERSKERNEL_STACK routine on the interrupt stack at IPL 31.

The service routine first determines whether the base of the kernel
stack is actually accessible. If not, a fatal KRNLSTAKNYV bugcheck is
initiated. If so, the kernel stack pointer is reset to the original base
of the kernel stack, ensuring that at least one page of stack space is
available. KERSKERNEL_STACK then takes the following steps to
report the exception:

1. The exception PC and PSL are copied from the interrupt stack to
the reset kernel stack.
2. The KER$_KERNEL_STACK signal name is pushed onto the stack.

3. The signal array argument count (3) is pushed on the stack to
complete the signal array.

4. The frame pointer is cleared, making the calling hierarchy un-
traceable and eliminating the possibility that the exception will be
reported to a condition handler established by the user.

5. Control is transferred to the dispatch code to complete the process-
ing of the exception.

6-18 Condition Handling

6.3.2.4 Reserved Instruction Exceptions

A reserved/privileged instruction exception can indicate an attempt to
execute an opcode not supported by the processor. This can occur, for
example, when a floating-point instruction is attempted on a proces-
sor without microcode for that type of floating-point format. Software
emulation of floating-point instructions is invoked through a service
routine for this exception. (If floating-point emulation is enabled, the
service routine — VAX$OPCDEC in module [EMULAT]JFPEMULATE
— tests to determine whether the reserved opcode indicates an emu-

lated floating-point instruction. If not, it transfers control to the service
routine KER$DIGITAL_RESERVED.)

KER$DIGITAL_RESERVED first checks whether the reserved opcode
is FFyg, followed by FEg or FD;g. This sequence is used by the ker-
nel to initiate bugchecks. If the sequence matches, KER$DIGITAL _
RESERVED transfers control to KER$BUG_CHECK (in module
BUGCHECK) to process the bugcheck.

If a bugcheck is not indicated, the service routine pushes the signal
name SS$_OPCDEC onto the stack, completes the signal array by
pushing the argument count (3) onto the stack and transferring control
to the dispatch code.

6.4 Software Conditions

The kernel procedure KER$RAISE_EXCEPTION (in module RAISE)
gives software a way to raise a signal in response to an error. The
condition sequence initiated by calling KER$RAISE_EXCEPTION
parallels the sequence generated by the hardware.

The vectors for most kernel procedures call KERSRAISE_EXCEPTION
to signal an error condition when the failed procedure’s caller has not
specified a status variable. This process is described in Section 8.4.2.
KER$RAISE_EXCEPTION is also available to user programs to report
any irregularities the program encounters during execution.

The primary function of KER$RAISE_EXCEPTION is to build a signal
array on the caller’s stack and pass control to the common dispatch
code, which then delivers the signal to the caller’s process in the caller’s
mode. The signal array constructed by KER$RAISE_EXCEPTION is
identical to the array constructed for an exception condition. The
signal name and additional arguments in the array are those passed as
arguments to KER$RAISE_EXCEPTION.

Condition Handling 6-19

KER$RAISE_EXCEPTION executes in the mode of its caller (see
Section 8.3, Dispatch to Procedures That Execute in the Caller’s Mode)
and takes the following steps to create the signal array and dispatch
the software condition:

1. The CALLS bit in the call frame for KER$RAISE_EXCEPTION is
cleared. Clearing this bit means that the argument list (containing
the signal name and any additional arguments) will not be removed
from the stack when a RET instruction is executed.

(The initial setting of the CALLS bit shows whether the procedure
was called with a CALLS or CALLG instruction. The remainder
of this description applies to the case of CALLS. Handling of the
CALLG case differs slightly but the outcome is identical.)

2. The caller’s saved PC and saved PSW are copied from the call frame
for KER$RAISE_EXCEPTION and saved. These values become the
exception PC and PSL values in the signal array.

3. The saved PC field in the call frame is replaced with an address
within KER$RAISE_EXCEPTION.

4. A RET instruction is executed to clear the call frame from the
stack. Execution continues within KER$RAISE_EXCEPTION but
is now on the caller’s frame.

5. The stack is manipulated to construct the signal array. This opera-
tion restores the exception PSL and PC from their saved locations,
moves the signal name and additional arguments above them, and
tops off the stack with the argument count for the array.

6. Control is transferred to the dispatch code, at KER$REFLECT,
which will add the mechanism array to the stack and dispatch the
software condition.

6.5 Asynchronous Exception Conditions

Asynchronous exceptions are a mechanism for signaling an asyn-
chronous event to a process. As soon as possible after the asynchronous
event occurs, the asynchronous signal is delivered to the process.

Under VAXELN, asynchronous exception conditions have a limited and
specialized role, unlike their counterparts under the VMS operating
system, asynchronous system traps (ASTs). Asynchronous exceptions
have the following roles under VAXELN:

* To signal a process to force its exit

6-20 Condition Handling

* To signal a process to gain its attention
¢ To notify a process that power-failure recovery is in progress
* To halt a process with the debugger

Asynchronous exceptions are delivered to a process through the uni-
form condition-dispatching mechanism described in Section 6.6. Each
type of asynchronous exception has a kernel procedure dedicated to

its delivery. Calling one of these procedures results in a call to the
internal procedure KER$SIGNAL_AST, which posts the exception to
the process through the cooperation of the hardware and software. The
asynchronous exception is ultimately delivered to the target process
through the IPL 2 interrupt service routine KER$AST_INTERRUPT.

Because the asynchronous exception is delivered in the same way as
any other synchronous exception or software condition, a process must
respond to the asynchronous event with special handling in a condition
handler. For example, it can respond to a forced-exit signal, generated
by KER$SIGNAL, by performing process-level cleanup, such as freeing
jobwide resources (for example, removing messages from a port or
unlocking a mutex).

Section 6.5.1 describes the software and hardware elements that coop-
erate to deliver asynchronous exceptions. Section 6.5.2 then describes
the routines used to request asynchronous exceptions. Section 6.5.3
next describes the kernel routine KER$SIGNAL_AST, used to post an
asynchronous exception to a process. Section 6.5.4 describes the AST
delivery ISR, and, finally, Section 6.5.5 describes the kernel procedures
that disable and reenable the delivery of asynchronous exceptions.

6.5.1 Data Structures and Hardware Features for Asynchronous
Exceptions

The VAX hardware/microcode and several software data structures co-
operate to deliver a requested asynchronous exception to a process. The
hardware components are the REI instruction, the ASTLVL privileged
register, and the IPL 2 software interrupt. The data structures that
support asynchronous exceptions are the process control block and the
process hardware context block. The following sections describe these
components and data structures. Discussion of the IPL 2 interrupt,
however, is deferred until Section 6.5.4.

Condition Handling 6--21

6.5.1.1 REI Instruction

The REI (Return from Exception or Interrupt) instruction initiates the
delivery of an asynchronous exception to a process by requesting an
IPL 2 interrupt. The requested IPL 2 interrupt, however, is not in fact
granted until processor IPL drops to user IPL.

The REI microcode requests the IPL 2 interrupt when the following
conditions accompany the execution of the instruction:

1. Execution must be returning to process context. If the interrupt
stack bit is set in the PSL (PSL<IS>) being restored, the REI mi-
crocode makes no further test and does not request the interrupt.
The asynchronous exception must be delivered in process con-
text and therefore cannot take place when execution is in system
context.

2. The access mode of the process whose PSL is being restored must
be as privileged or less privileged than the access mode for which
an asynchronous exception is pending. In other words, the REI
microcode checks the value of the ASTLVL privileged register. If
its value is less than or equal to the current mode field in the
PSL being restored, the interrupt is requested. This test prevents
a user-mode process (access mode = 3) running temporarily in
kernel mode (access mode = 0) from being interrupted to deliver
an asynchronous exception. The delivery will occur only when the
process returns to user mode through the subsequent execution of
the REI instruction.

The role of the ASTLVL register in the REI tests is described in
Section 6.5.1.2.

6.5.1.2 ASTLVL Register

The privileged processor register ASTLVL (PR$_ASTLVL) is used

in conjunction with the REI instruction to control IPL 2 software
interrupts. This register is part of the hardware context of a process
and has a save area in the process hardware context block (PTX),
described in Section 6.5.1.3. The LDPCTX (Load Process Context)
instruction copies the ASTLVL value from the PTX save area to PR$_
ASTLVL when a process is switched into execution.

6-22 Condition Handling

Under VAXELN, two possible values in PR$_ASTLVL indicate to the
REI microcode that an asynchronous exception is pending against the
current process:

® The value 0 in PR$_ASTLVL indicates that an asynchronous excep-
tion is pending against a kernel-mode process.

¢ The value 3 in PR§_ASTLVL indicates that an asynchronous excep-
tion is pending against a user-mode process.

When no asynchronous exception is pending against a process, the
value of PR$_ASTLVL is 4. No IPL 2 interrupt will be requested by the
REI microcode, because no access mode can be greater than or equal to
the ASTLVL of 4.

6.5.1.3 Hardware Context Block

When a process is switched into execution by the LDPCTX instruction,
the value of the PR§_ASTLVL register is determined by the value of its
save area in the process’s PTX. This save area is in bits <26:24> of the
PTX$L_PO_LIMIT field of the PTX.

When the kernel requests an asynchronous exception against a process
that is not currently executing, it writes the base, or program (JCB$B_
MODE), access mode of the target process (0 or 3) into the PTX$V_
ASTLVL bit field in the PTX. When the process next becomes current,
the restoration of PR$_ASTLVL from the PTX and the subsequent
executior of REI cause the asynchronous exception to be delivered
through the IPL 2 software interrupt.

When a process is created, the value of PTX$V_ASTLVL is set to

4, signifying that no asynchronous exception is pending against the
process. Because the SVPCTX instruction does not save the value

of PR$_ASTLVL in the PTX$V_ASTLVL, when the kernel changes
PR$_ASTLVL it also changes PTX$V_ASTLVL. When an asynchronous
exception has been delivered, the kernel returns the values of both
PTX$V_ASTLVL and PR$_ASTLVL to 4.

Condition Handling 6-23

6.5.1.4 Process Control Block

The kernel requests an asynchronous exception against a process by
setting a specific bit in the process control block (PCB) of the process to
receive the asynchronous exception.

The PCB$B_REASON field in the PCB contains the bits that represent
the asynchronous exceptions pending against a process. When set,
these bits have the following meanings:

e PCB$V_SIGNAL_DEBUG (bit 0) represents an asynchronous ex-
ception generated by a call to KERSRAISE_DEBUG_EXCEPTION.

e PCB$V_SIGNAL_POWER (bit 1) signifies an asynchronous excep-
tion generated by the power-failure recovery sequence.

¢ PCB$V_SIGNAL_QUIT (bit 2) signifies an asynchronous exception
generated by a call to KER$SIGNAL.

e PCB$V_SIGNAL_PROCESS (bit 3) signifies an asynchronous
exception generated by a call to KER$RAISE_PROCESS_
EXCEPTION.

e PCB$V_SIGNAL_DISABLE (bit 4) signifies that a process has
disabled the delivery of asynchronous exceptions by calling the
kernel procedure KER$DISABLE_ASYNCH_EXCEPTION.

When the IPL 2 interrupt service routine executes, it tests the bits
in PCB$B_REASON to determine the reason for the interrupt. The
reason bits are tested in the following order:

1. PCB$V_SIGNAL_DISABLE
2. PCB$V_SIGNAL_POWER
3. PCB$V_SIGNAL_DEBUG

4. PCB$V_SIGNAL_QUIT

5. PCB$V_SIGNAL_PROCESS

If the disable bit is set, the scan completes, and the interrupt is dis-
missed. Otherwise, asynchronous exceptions are mutually exclusive:
as soon as a set bit is discovered, it is cleared and the corresponding
signal is delivered to the process. If, for example, both a debug and
process-quit signal are pending against the process, the debug signal is
delivered first. Only after that first asynchronous exception is delivered
will the process-quit signal be delivered through a subsequent IPL 2
interrupt. (This process is described in Section 6.5.4.)

6-24 Condition Handling

6.5.2 Uses of Asynchronous Exception Conditions

The kernel delivers the following asynchronous exceptions:

® Process signal. This asynchronous exception is delivered to a
process specified in a call to KER$SIGNAL.

® Process attention signal. This asynchronous exception is deliv-
ered to a process specified in a call to KER$RAISE_PROCESS_
EXCEPTION.

* Power failure. This asynchronous exception is delivered to pro-
cesses during power failure recovery. The exception is delivered
only when the process’s job has Powerfailure exception set to Yes
in its program description.

¢ Debugger HALT command. This asynchronous exception is deliv-
ered to a process specified in a debugger HALT command.

The first two applications of the asynchronous exception mechanism
are available to users through the kernel procedures KER$SIGNAL
and KER$RAISE_PROCESS_EXCEPTION. The remaining two are
used internally by the kernel and debugger. All four are alike in that
the events they represent must be delivered asynchronously to the
normal execution of the target process, and all are delivered through
the VAXELN uniform condition-dispatching mechanism described in
Section 6.6.

The following sections describe these asynchronous exceptions.

6.5.2.1 Process Signal Exception

The asynchronous exception that signals a process is generated by a
call to the KER$SIGNAL kernel procedure (in module SIGNAL), which
specifies the object identifier for the process to receive the signal. The
intention in signaling a process is to force its exit with the KER$_
QUIT_SIGNAL status. If the process has established a condition
handler that returns a continue status in response to the quit signal,
the process will not exit.

KER$SIGNAL requests the quit signal against the target process by
passing the appropriate bit number in PCB$B_REASON (PCB$V_
SIGNAL_QUIT) to the internal subroutine KER$SIGNAL_AST, de-
scribed in Section 6.5.3. KER$SIGNAL_AST then sets that bit in the
target process’s reason mask and adjusts ASTLVL values to request an
IPL 2 interrupt the next time the target process executes.

Condition Handling 6-25

6.5.2.2 Process Attention Signal Exception

The asynchronous exception that requests process attention is gen-
erated by a call to the KERSRAISE_PROCESS_EXCEPTION kernel
procedure (in module RAISE), which specifies the object identifier for
the process to receive the signal. The intention is to force the process
to respond to the KER$_PROCESS_ATTENTION signal in a manner
defined by the program. The process should have a condition handler
that checks for this signal and takes a predefined action as a result. If
the condition handler does not return a continue status, the process is
forced to exit.

KER$RAISE_PROCESS_EXCEPTION requests the attention signal
against the target process by passing the appropriate bit number
in PCB$B_REASON (PCB$V_SIGNAL_PROCESS) to the internal
subroutine KER$SIGNAL_AST.

6.5.2.3 Power-Failure Exception

The asynchronous exception that generates a power-failure signal
is requested by the power failure-recovery routine KER$RESTART
(in module POWERFAIL). During recovery, KERSRESTART scans
the global job list for programs that have requested power-failure
notification (the PRG$V_POWER_RECOVERY bit is set in PRG$B_
OPTION_FLAGS).

When it locates such a program, KER$RESTART walks the list of PCBs
for that job and, for each process, passes the appropriate bit number in
PCB$B_REASON (PCB$V_SIGNAL_POWER) to the internal subrou-
tine KER$SIGNAL_AST. When each process next executes, the KER$_
POWER_FAIL signal will be delivered. The process should have a con-
dition handler that checks for this signal and takes a power-recovery
action as a result. If the condition handler does not return a continue
status, it is forced to exit.

6.5.2.4 Debugger HALT Command

The asynchronous exception that results in the halting of a process
under debugger control is generated by the debugger HALT com-
mand. When the debugger receives a HALT command, it calls the
internal kernel procedure KER$RAISE_DEBUG_EXCEPTION (in mod-
ule DEBUGUTIL), passing the specified job and process numbers as
arguments.

6-26 Condition Handling

KER$RAISE_DEBUG_EXCEPTION searches the global job list to lo-
cate the target job. It then searches that job’s process list to locate the
target process. KERSRAISE_DEBUG_EXCEPTION then requests the
debug exception signal against the target process by passing the appro-
priate bit number in PCB$B_REASON (PCB$V_SIGNAL_DEBUG) to
the internal subroutine KER$SIGNAL_AST.

When the kernel’s condition-dispatching logic calls the debugger’s first-
chance handler, the request for the process halt is intercepted by the
debugger. The target process is then placed in the debug command
wait state to allow the user to interact with the process. Because the
signal is intercepted by the debugger, the process does not require a
condition handler to trap the signal.

6.5.3 Requesting an Asynchronous Exception

All requests for asynchronous exceptions are directed to a single in-
ternal subroutine, KER$SIGNAL_AST (in module ASTDELIVR). This
routine accepts two register arguments: the bit number in the PCB$B_
REASON mask that represents the requested signal and the address
of the target process’s PCB. KER$SIGNAL_AST is responsible for set-
ting the correct bit in the PCB$B_REASON mask and inserting the
appropriate values into PR$_ASTLVL and PTX$V_ASTLVL to request
the IPL 2 software interrupt. The ASTLVL values are set to the base
access mode of the target process (JCB$B_MODE).

KER$SIGNAL_AST executes as follows:

1. The requested bit is tested in PCB$B_REASON. If that bit is
already set, the requested signal is already pending against the
process, and the subroutine returns. Otherwise, the appropriate bit
is set.

2. The PCB$V_SIGNAL_DISABLE bit is tested in PCB$B_REASON.
If that bit is set, the target process has disabled the delivery of
asynchronous exceptions. Therefore, the subroutine returns.

3. The execution state of the current process is tested.
If the target process is running, the value of PR$_ASTLVL must
be set. When the kernel procedure that called KER$SIGNAL_AST

executes an REI to dismiss the CHMK exception, the microcode
requests an IPL 2 interrupt to deliver the asynchronous exception.

Condition Handling 6-27

If the target process is not running, the PTX$V_ASTLVL field in
its hardware context block is modified as well. The point at which
the asynchronous exception is delivered depends on the scheduling
state of the target process:

a. Ready. When the process is next scheduled to run, the sched-
uler’s final execution of an REI instruction to return to normal
system operation immediately delivers the asynchronous excep-
tion.

b. Waiting. If the target process is waiting, KER$SIGNAL_AST
calls the internal subroutine KER§UNWAIT to place it into
the ready state. When the process is next scheduled to run,
the scheduler’s final execution of an REI instruction to re-
turn to normal system operation immediately delivers the
asynchronous exception.

After the asynchronous exception is delivered, however, the
target process returns to its original waiting state (unless
its wait conditins were satisfied in the meantime). This re-
sumption of the wait is made possible by the interaction of
the KER$UNWAIT routine and the kernel vectors for the
KER$WAIT kernel procedures. KER$UNWAIT is described
in Section 11.3.3.3.

c. Suspended. If the target process is suspended from execution,
the asynchronous exception can be delivered only when the
process is returned to the ready state. The delivery of the
asynchronous exception then awaits the next execution of the
process.

4. The subroutine returns to its caller.

6.5.4 Delivering an Asynchronous Exception: The IPL 2 interrupt

The IPL 2 software interrupt service routine, KER$AST _INTERRUPT,
executes in response to the IPL software interrupt. This interrupt is
normally requested by microcode (the REI instruction), based on the
contents of the ASTLVL register, rather than by the MTPR instruction
in the kernel. The MTPR request is used in the single case of process
preemption within a job. When the IPL 2 interrupt occurs, control is
transferred to KERSAST_INTERRUPT (in module ASTDELIVR), the
address in the SCB vector for the IPL 2 software interrupt.

6-28 Condition Handling

The responsibility of KERSAST_INTERRUPT is to determine the cause
of the interrupt. Two possible causes exist:

® The current process has an asynchronous exception pending against
it. This is the case when KER$SIGNAL_AST has set PR$_ASTLVL
or PTX$V_ASTLVL to request an interrupt against the current
process.

* The current process is being preempted. This is the case when the
current process has a lower priority than another process that has
just become ready within the current job. The IPL 2 interrupt is
requested by the KER$READY_PROCESS subroutine (in module
SCHEDPRO), which inserts the PCB address of the preempting
process into the JCB$A_NEXT_PCB field of the current JCB and
requests an IPL 2 interrupt by writing IPLJK_AST_LEVEL to
PR$_SIRR.

KER$AST _INTERRUPT determines that preemption is required
by checking the value of JCB$A_NEXT _PCB field and branching to
the scheduler if the value is nonzero.

KER$AST_INTERRUPT is entered on the kernel stack in the context
of the target process. If the target process is a user-mode process, exe-
cution is switched to the user stack before the asynchronous exception
is delivered. Because KER$AST INTERRUPT builds a signal array on
the appropriate stack and executes in the context of the target process,
the kernel can deliver the asynchronous exception through the uniform
condition-dispatching mechanism as if it were a synchronous exception
detected by hardware. When the asynchronous exception is delivered,
a condition handler established by the target process should take a
predefined action in response to the asynchronous exception.

KER$AST_INTERRUPT delivers an asynchronous exception as follows:

1. General registers RO through R3 are saved on the stack as working
registers.

2. The value of JCB$A_NEXT PCB is tested in the current JCB.
If that field contains a value, then the IPL 2 interrupt has been

requested to start preempting the current process. Control is
passed to the scheduler as follows to perform the preemption:

a. The current PSL is pushed on the stack.

b. A BSBW instruction is executed to transfer control to
KER$RESCHEDULE in module SCHEDJOB.

Condition Handling 6-28

When KER$RESCHEDULE executes the SVPCTX instruction,
the return PC pushed onto the stack by the BSBW and the
PSL pushed previously become the return PC and PSL saved
in the current process’s hardware context block. When this
preempted process runs again, it continues execution at IPL
2, on the kernel stack, at the instruction after the BSBW in
KER$AST INTERRUPT.

If an asynchronous exception was requested against the pre-
empted process while it was out of execution, the remainder of
KER$AST _INTERRUPT delivers it. If the REI that is executed
after the preempted process is restored requests an IPL 2 inter-
rupt (this happens if the preempted process is in user mode),
the request is not granted because the restored process is al-
ready running at IPL 2 in kernel mode. When IPL returns to

0 after the asynchronous exception is delivered, the additional
IPL 2 interrupt is granted and dismissed if no further bits in
PCB$B_REASON are set.

3. The LOCK macro is executed to block other software interrupts.

4. The values of PR$_ASTLVL and PTX$V_ASTLVL are set to 4 to
prevent another IPL 2 interrupt from being requested for this
process.

5. The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is set to
disable further asynchronous exceptions against this process.

If PCB$V_SIGNAL_DISABLE is already set, asynchronous excep-
tions are disabled for the process. The interrupt is dismissed as
follows:

a. The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is
cleared to reenable asynchronous exceptions.

b. The general registers are restored.
c. The REI instruction is executed.

6. The base access mode of the process is obtained from JCB$B_
MODE.

7. The current access mode of the process is compared to its base
access mode. If the current mode is kernel and the base mode is
user, the interrupt cannot be delivered until the mode returns to
user. Such spurious IPL 2 interrupts are rare and are dismissed as
follows:

a. The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is
cleared to reenable asynchronous exceptions.

6-30 Condition Handling

c.
d.

If any of the other bits in PCB$B_REASON is set, the values of
PR$_ASTLVL and PTX$V_ASTLVL are reset to 3.

The general registers are restored.

The REI instruction is executed to dismiss the interrupt and
restore IPL to its previous value.

8. The bits in PCB$B_REASON are tested; the first set bit that is
found will be the asynchronous exception that is serviced. The bits
are tested in the following order:

a.
b.
c.

d.

PCB$V_SIGNAL_POWER
PCB$V_SIGNAL_DEBUG
PCB$V_SIGNAL_QUIT
PCB$V_SIGNAL_PROCESS

If no bits are set, the spurious interrupt is dismissed as follows:

a.

b.
c.

The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is
cleared to reenable asynchronous exceptions.

The general registers are restored.
The REI instruction is executed.

9. The set bit is cleared, and the appropriate signal name (for exam-
ple, KER$_QUIT_SIGNAL) is pushed onto the stack.

10. Control is transferred to a subroutine to perform the following
steps:

a.

d.

IPL is lowered from IPL$K_SYNCHRONIZE to 0. The asyn-
chronous exception will be delivered at user IPL; lowering it to
that level here allows normal system activity to resume as soon
as possible.

If the asynchronous exception is to be delivered to a user-mode
process, the data saved on the kernel stack is copied to the
user stack. The internal subroutine KER$EXPAND_STACK
(in module EXCEPTION) is called to expand the user stack if
necessary. If the expansion fails, the asynchronous exception is
turned into an access violation.

A PSL appropriate to the access mode of the process (and
reflecting IPL 0) is constructed on the kernel stack, and the
return address from the subroutine call is pushed on top of it.

The general registers are restored.

Condition Handling 6-31

e. An REI instruction is executed to return the process to its base
access mode. If that mode is user, execution is switched to the
user stack.

Execution continues at the instruction following the subroutine call,
at IPL 0 and in the appropriate access mode.

11. The argument count (3) of the items remaining on the stack is
pushed onto the stack. The following items are now on the stack:

¢ The argument count

¢ The asynchronous exception signal name
® The PC at the time of the interrupt

¢ The PSL at the time of the interrupt

12. The local procedure DELIVER_AST is called with the CALLG
instruction. The argument list in the called procedure points to the
information on the stack.

DELIVER_AST performs the following steps to deliver the asyn-
chronous exception:

a. A condition handler is established to detect the target process’s
unwinding of the stack. The handler is also called first in
the kernel’s search for a handler. Since this handler simply
resignals, its presence has no impact on the delivery of the
asynchronous exception.

If the stack is unwound, the handler is called with the signal
name SS$_UNWIND. When this occurs, the handler calls
KER$ENABLE_ASYNCH_EXCEPTION to reenable asyn-
chronous exceptions for the process and reset the value of
ASTLVL if any further asynchronous exceptions are pending.
The handler then resignals to allow the unwinding to resume.

b. A standard VAX signal array is built on the stack as follows:
i The current PSL is pushed onto the stack.

ii The address of the RET instruction at the end of DELIVER_
AST is pushed onto the stack. This PC and the PSL become
current if the process continues from the asynchronous
exception.

iii The signal name and argument count are pushed from the
CALLG argument list onto the stack.

c. Control is transferred to KER$REFLECT in module EXCEPTION,
the start of the uniform dispatching mechanism (see Section 6.6).

6-32 Condition Handling

From this point, the asynchronous exception is treated like any
synchronous exception or software condition.

d. If the process continues from the asynchronous exception,
control returns to the RET instruction in DELIVER_AST when
the exception is dismissed. The execution of the RET returns
control to the main line of KER$AST _INTERRUPT, after the
CALL to DELIVER_AST.

13. A call is made to KERSENABLE_ASYNCH_EXCEPTION. As de-
scribed in Section 6.5.5, this procedure resets PCB$V_SIGNAL_
DISABLE and checks to see whether any more asynchronous excep-
tions are pending against the process. If so, the value of ASTLVL is
set accordingly.

14. An REI is executed to dismiss the IPL 2 interrupt. Because IPL
has already been lowered to 0, this REI has no effect on IPL.

If further asynchronous exceptions are pending against the process,
the REI requests a further IPL 2 interrupt to deliver the next one
indicated by the reason mask.

If the process to which the asynchronous exception was delivered had
been in the wait state before the IPL 2 interrupt was granted, after
the interrupt is dismissed, its execution continues within the kernel
vector for KER$WAIT_ANY or KER$WAIT_ALL. Within the vector,
the value of RO is tested, and the wait is reexecuted if the value is 0.
Since the KERSUNWAIT procedure guarantees that the value of RO
will be zero when the process reenters execution, waiting processes
interrupted by asynchronous exceptions resume their waiting states
after the exception is dismissed.

6.5.5 Disabling and Enabling Asynchronous Exceptions

The kernel provides two procedures to disable and reenable the delivery
of asynchronous exceptions. KER$DISABLE_ASYNCH_EXCEPTION
(in module ASTCONTRL) disables the delivery of asynchronous ex-
ceptions by setting the PCB$V_SIGNAL_DISABLE bit in the PCB$B_
REASON mask of the calling process. KER$SIGNAL_AST checks this
bit and denies all requests for asynchronous exceptions against the
process while the disable bit is set.

Condition Handling 6-33

KER$ENABLE_ASYNCH_EXCEPTION reenables the delivery of asyn-
chronous exceptions to the calling process by once again clearing the
PCB$V_SIGNAL_DISABLE bit in the reason mask. The procedure also
checks whether any asynchronous exceptions are now pending against
the process by checking the other bits in PCB$B_REASON. If any bits
are set, the procedure requests the delivery of an asynchronous excep-
tion by writing the process’s base access mode to both PTX$V_ASTLVL
and PR$_ASTLVL.

As it returns, the procedure executes an REI instruction, which re-
quests an IPL 2 interrupt to deliver the pending asynchronous excep-
tion.

6.6 Uniform Condition Dispatching

Once the signal array has been built on the stack, there is no difference
in the way the kernel handles synchronous exceptions, asynchronous

exceptions, and software conditions. The kernel’s operations, beginning
at global label KER$REFLECT in module EXCEPTION, are as follows:

1. The mechanism array is constructed on the stack.

2. If the current mode is kernel and the kernel debugger is present,
the condition state is passed to the kernel debugger. If the condi-
tion is handled there, the condition is dismissed.

3. If the condition was raised by a user-mode process but is being
serviced on the kernel stack, the signal and mechanism arrays are
copied to the user stack, and the mode is returned to user.

4. The condition-handler argument list is constructed on the stack.

5. If string-instruction emulation is enabled, a subroutine in the
emulator is invoked to alter the exception PC, making it appear
that the exceptions occurred at an emulated instruction instead of
within the emulator.

6. If the debugger is present, it is called to perform a first-chance
examination of the condition. The debugger checks to see whether
the exception is one of the following:

¢ Breakpoint exception (breakpoint reached, SS§_BREAK)

* Process exit signal (for processes under control of the debugger,
KER$_EXIT_SIGNAL)

* Debugger attention signal (KER$_DEBUG_SIGNAL)

6-34 Condition Handling

® Trace bit pending trap (used to implement breakpoints, SS$_
TBIT)

* Reserved operand fault (used to implement STEP/OVER com-
mands, SS$_ROPRAND)

If the first-chance handler intercepts one of these conditions, it sets
a success bit and returns. The condition is then dismissed.

7. IfIPL is elevated above process level (0) and the kernel debugger is
enabled, it is called. This could be the case when a device interrupt
service routine is being debugged.

8. The call frames on the stack are searched for an established condi-
tion handler. If one is found, it is called.

9. If the condition is handled, it is dismissed. Otherwise, the stack is
searched for another handler.

10. If no handler deals with the condition, the debugger is called as
a last-chance handler. If the condition can be handled within the
debugger, the condition is dismissed. Otherwise, the process is
deleted.

11. If the debugger is not present, the process is deleted.

The following sections describe several of these steps in greater detail.

6.6.1 Building the Mechanism Array and Argument List

To construct the mechanism array above the signal array, KER$REFLECT
pushes the following values onto the stack:

* A zero longword. This longword separates the signal and mech-
anism arrays and provides compatibility with VMS condition-
dispatching logic. Later, the high byte of this longword is used to
save the original argument count for the signal array. This value
must be saved, because condition handlers can alter the signal ar-
ray argument count for their own purposes. The saved value allows
the signal array to be cleared from the stack when the condition
is dismissed. (Under VMS, the longword also stores the code that
distinguishes a call to LIB$SIGNAL from a call to LIB$STOP.)

* The contents of registers R1 and RO.

¢ The value —1. This is the initial frame depth in the mechanism ar-
ray and flags the initial pass in the search for a condition handler.

¢ The current value of the frame pointer. This is the FP of the frame
that raised the signal.

Condition Handling 6-35

® The value 4 — the number of arguments in the mechanism array.

On top of the mechanism array, KERSREFLECT constructs the
condition-handler argument list by pushing the following values onto
the stack:

* The address of the mechanism array
* The address of the signal array

¢ The value 2 — the number of arguments in the condition-handler
argument list

In addition, the original argument count for the signal array is copied
to the high byte of the VMS-compatibility longword, which separates
the signal and mechanism arrays on the stack. This value is used when
the ci:{ondit‘.ion is dismissed to clear the top of the signal array from the
stack.

After these operations, the stack appears as shown in Figure 6-5.
When a condition handler is called, the argument pointer (AP) points
to the argument count in the condition-handler argument list. Then,
using the CHF$L_SIGARGLST and CHF$L_MCHARGLST offsets from
AP, the handler can obtain any value in either of the arrays.

6.6.2 Reflecting the Condition Back to the Originator’s Mode

Exception conditions are reported to a process in the mode in which the
exception occurred. If a user-mode process raises an exception that is
serviced on the kernel stack, such as an access violation or arithmetic
trap, KERSREFLECT copies the signal and mechanism arrays to the
user-mode stack and restores the access mode to user by executing an
REI instruction.

All exception conditions likely to be reported to a user-mode process are
serviced on the kernel stack, so this process is always necessary. For
software conditions raised by KER$RAISE_EXCEPTION, the process
is never necessary, because that procedure executes in the mode of its
caller.

6-36 Condition Handling

Figure 6-5: Condition Stack

2

Address of Signa! Array

Address of Mechanism Array |

4
These longwords
are used and Frame
modified by
the handler Depth
search procedure.
Saved RO
Saved R1

VMS Compatibility Longword

.
<%

N Argument count (N) is the
number of longwords in a
Signal Name signal array (N>=3)

Additional Exception Parameters
4 Pushed by Hardware or) 4
{ Additional Arguments Passed to {
KER$RAISE_EXCEPTION

Exception PC or PC following
call to KER$RAISE_EXCEPTION

Exception PSL

< SP Before Exception

MLO-003231

6.6.3 Dispatching the Condition

The major goal of the kernel’s condition-dispatching logic is to locate
a condition handler in a call frame and call it, passing the condition-
handler argument list to the handler.

Condition Handling 6-37

At this point in the dispatch sequence, the signal and mechanism ar-
rays have been set up on the stack for the access mode in which the
condition will be reported. As the search for the condition handler
proceeds, the frame and depth fields in the mechanism array are up-
dated to indicate how far the search has progressed. These fields in the
mechanism array provide useful information to condition handlers that
choose to unwind the stack to an earlier call frame (see Section 6.7.2).

The search for a condition handler begins at the global label
KER$DISPATCH_EXCEPTION in module EXCEPTION, where the
local procedure SEARCH is called. Within SEARCH, AP points to the
top of the condition-handler argument list.

If SEARCH succeeds in locating a handler, the handler is called. If the
handler cannot handle the condition (called resignaling the condition),
SEARCH is called again. This process continues until a handler deals
with the condition (called continuing from the condition) or SEARCH
cannot locate another handler.

Figure 6—6 shows the code sequence used, first to call SEARCH and
then to call a condition handler at the address returned by SEARCH.
In the sequence, SP points to the condition-handler argument list.
This argument list is passed to both the SEARCH procedure and the
condition handler.

Figure 6-6: Locating and Calling a Condition Handler

KERSDISPATCH_EXCEPTION::

CALLG (SP) , BASEARCH ; search for a handler
BLBC RO, LAST_CHANCE ; no handler, try debugger
CALLG (SP), (R1) ; call the handler

When a handler continues from a condition, the condition is dismissed
by the following sequence:

1. The condition-handler argument list and mechanism array are
removed from the stack. As the mechanism array is removed, the
saved values of RO and R1 are restored.

2. All but the last two longwords in the signal array are cleared from
the stack. These remaining longwords are the exception PC and
PSL.

6-38 Condition Handling

3. An REI instruction is executed to pop the exception PC and the
exception PSL into the appropriate processor registers. In the
case of faults, execution resumes at the instruction that raised the
signal. For traps (and KER$RAISE_EXCEPTION emulates a trap),
execution resumes at the instruction following the one that caused
the signal.

If no handler is found or all handlers resignal, the kernel attempts
to call the debugger as a last-chance handler, as described in
Section 6.6.4.1.

The following sections describe how a condition handler is established,
how the SEARCH procedure locates the handler, and what special
handling occurs when another signal is raised before the first one is
dismissed.

6.6.3.1 Establishing a Condition Handler

Under the VAX architecture, a condition handler is established by
writing the address of the handler procedure in the first longword
at the top of the call frame. As the kernel searches the stack for a
condition handler, it examines this longword in each call frame.

Because the frame pointer always points to this longword, the following
VAX instruction establishes a condition handler:

MOVAB handler, (FP)

Under the control of a higher-level language, such as VAXELN Pascal
or VAX C, a language statement or library routine (ESTABLISH or
vaxc$establish) performs the same function. In the case of VAXELN
Pascal, the ESTABLISH statement actually places the address of the
procedure PASSHANDLER into the handler longword. When called,
PAS$HANDLER then calls the procedure the user specified in the
ESTABLISH statement. This arrangement places extra call frames on
the stack but has no impact on the kernel’s dispatch logic.

A condition handler is canceled by removing its address from the
handler longword:

CLRL (FP)

Issuing the Pascal REVERT statement and calling vaxc$establish
with a null argument perform this function for their callers.

Condition Handling 6-39

6.6.3.2 Searching the Call Stack

When called from KER$DISPATCH_EXCEPTION, the SEARCH pro-
cedure examines one call frame after another, beginning at the top of
the stack, until it locates a frame that has established a handler or it
runs out of frames to search. As each frame is examined, the depth and
frame arguments in the mechanism array are updated. If SEARCH is
called again (because a handler has resignaled), it resumes its search
beginning at the call frame pointed to by the last frame argument it
set. This ensures that no call frame is searched more than once.

SEARCH takes the following steps to locate a condition handler:

1.
2,

The frame pointer argument is obtained from the mechanism array.
The depth argument in the mechanism array is increased by 1.

If this increment causes the depth to become 0, then the cur-
rent frame belongs to the procedure that raised the signal, and
execution skips to step 6. This is the case the first time that
SEARCH is called, because the original frame depth is set to —1
by KER$REFLECT.

The current frame is tested to see whether it is the frame of a
condition handler. If so, more than one condition has been signaled
and special handling is required, as described in Section 6.6.3.3.
The saved frame pointer in the current call frame is obtained. If no

saved FP is available, the bottom of the call stack has been reached,
and SEARCH returns failure status.

The saved FP value is written to the frame argument in the mecha-
nism array. This means that the next frame down the stack will be
examined for a handler.

The handler longword in the updated frame argument is tested. If
it contains a nonzero value, a success flag is set and the handler
address is returned to KER$DISPATCH_EXCEPTION.

If the handler longword is zero, SEARCH loops back to step 1 to
continue the search.

As each handler is called, the updated depth and frame arguments in
the mechanism array provide it with the following information:

The depth argument represents the number of frames that have
been searched for a handler before the current handler was called.

6-40 Condition Handling

e The frame argument represents the value of the saved FP in the
call frame that established the current handler.

6.6.3.3 Dealing with Multiple Active Signals

If a signal is raised in a condition handler or in a procedure called by a
condition handler, a situation called multiple active signals is reached.
To avoid an infinite loop of conditions, the SEARCH procedure called by
KER$DISPATCH_EXCEPTION modifies its search algorithm so that
those frames searched while servicing the first condition are skipped
while servicing the second condition.

For this skipping to work correctly, call frames of condition handlers
must be uniquely recognizable. The frames are made so by calling
condition handlers from a standard site within module EXCEPTION.
Figure 6-7 shows how this call site is identified by the global label
KER$CALL_HANDLER_PC.

Figure 6-7: Common Call Site for Condition Handlers

KER$DISPATCH_EXCEPTION: :

CALLG (SP) ,B~SEARCH ; search for a handler
BLBC RO, LAST_ CHANCE ; no handler, try debugger
CALLG (SP), (R1) ; call the handler

KER$CALL HANDLER PC::
NOP
BLBC KER$DISPATCH_EXCEPTION ; handler resignaled

The global label KER$CALL_HANDLER_PC represents the address of
the instruction following the call to the condition handler. Within the
handler’s call frame, the saved PC always corresponds to the value of
KER$CALL_HANDLER_PC. When SEARCH locates a call frame that
has KER$CALL_HANDLER_PC as its saved PC, it branches to a code
sequence that finds the call frame of the procedure that established the
current condition handler.

This information is stored in the frame argument in the mechanism
array built for this earlier signal, directly below the earlier handler’s
frame on the stack. SEARCH locates the array by calculating the size

Condition Handling 6—41

of the handler’s call frame, which yields the location of the condition-
handler argument list. From this list the address of the mechanism
array is obtained, and from there the frame argument is obtained.

To skip the call frames searched during the earlier signal, SEARCH
continues examining call frames, beginning with the frame obtained
from the handler’s mechanism array. The depth argument is not in-
creased to reflect the frames that are skipped, because those frames are
not searched during the current signal.

Figures 6-8 and 69 show how the modified search procedure functions
during multiple active signals. Procedure A has called procedure

B, which has called procedure C, which raised signal S. Figure 6-8
shows the stack at this point. Procedures A, B, and C have established
condition handlers AH, BH, and CH, respectively.

The numbers in both figures refer to the following steps, which describe
the modified search procedure:

@ Procedure A calls B, which calls C.
@ Procedure C generates signal S.

In response to the signal, the condition-dispatching logic in module
EXCEPTION creates the signal and mechanism arrays on top of
the call frame for C and calls handler CH with a depth of 0.

CH resignals, causing its frame to be removed from the stack, and
the next frame (B) is searched.

© Since B has established a handler, BH is called with a mechanism
array depth argument of 1. Again, its frame appears on top of
the mechanism and signal arrays for signal S. (See Figure 6-9.)
The saved frame pointer in BH’s call frame points to the frame for
procedure C.

® Handler BH calls procedure X, which calls procedure Y (see
Figure 6-9).

© Procedure Y generates signal T. In the search for a handler for
signal T, the desired sequence of frames to be examined is frame
Y, frame X, frame BH, and frame A. Frames B and C should be
skipped because they were examined for signal S.

@ The search proceeds in the normal way. Frames Y, X, and BH
are examined, with handlers YH, XH, and BHH being called and
resignaling in turn. After handler BHH resignals, SEARCH is
called again. Examining the saved PC in BH’s frame, SEARCH
discovers that PC to be KER$CALL_HANDLER_PC. BH was called

6—42 Condition Handling

as a handler; therefore, SEARCH must postpone its search until it
has skipped to the frame beyond BH’s establisher.

The skipping is accomplished by locating the frame that established
BH. The address of that frame resides in the mechanism array for
signal S. To locate the mechanism array for signal S, the value of
SP before the call to BH must be calculated, using the register save
mask and stack alignment bits in the call frame. Given the value
of SP, SEARCH obtains the frame argument from the mechanism
array — this is the FP value for procedure B.

Because the frame pointed to by the frame argument has already
been searched, the next frame examined by SEARCH is the frame
pointed to by the saved FP in the call frame for procedure B — the
frame for procedure A.

Since procedure A has established a handler, AH is called. The
following depth arguments are passed to the handlers as a result of
the modified search for a handler for signal T: 0 for YH, 1 for XH, 2
for BHH, and 3 for AH.

The frame for SEARCH or for any of handlers YH, XH, BHH, and
AH is located on top of the signal and mechanism arrays for signal
T.

Condition Handling 643

Figure 6-8: Modified Search with Multiple Active Signals, Part 1

® i

2
@ Signal Array
Mechanism Array —

Signal and 4
Mechanism
Arrays for Establisher FP
Signal § @
Generated by -
Procedure C Depth = 1

RO

R1

Compatibility Longword

N

Name of Signal S

\\x

“ Other Parameters

Exception PC in C

Exception PSL

CH
@ Save Mask and PSW
Cal! Frame for Saved FP
Procedure C
Saved PCin B
< A |
BH
@ Save Mask and PSW
Call Frame for Saved FP
Procedure B
Saved PCin A B
Direction of
Growth
AH
@ Save Mask and PSW
Call Frame for Saved FP
P d
rocedure A Seved Po
MLO-00ITI

6-44 Condition Handling

Figure 6-9: Modified Search with Multiple Active Signails, Part 2

Signai and
Mechanism
Arrays tor
Signal T

®

Generated by

Procedure Y

O,

Call Frame for

Procedure Y

®

Call Frame for

Procedure X

Call Frame for
Handler BH

®

®

Signal Array

Mechanism Array

4

FP

Depth = 3

RO

R1

Compatibility Longword

N

Name of Signal T

Other Parameters

Exception PC in Y

Exception PSL

YH

Save Mask and PSW

Saved FP

Saved PCin B

XH

Save Mask and PSW

Saved FP

Saved PCin A

BHH

Save Mask and PSW

Saved FP

KER$CALL_HANDLER_PC

Saved Registers and Stack

Alignment Bytes Indicated

by Register Save Mask in
Call Frame for BH

@ Proced

\
To Cail Frame for
Procedure A
in Figure 5-8

Growth

To Call Frame for
ure C
in Figure 5-8

MLO-002288

Condition Handling 6-45

6.6.4 Dealing with Unhandied Conditions

If the condition-dispatching logic fails to find a condition handler, or if
all the condition handlers found in the stack resignal the exception, the
kernel takes two further actions to deal with the condition:

* It attempts to call the debugger as a last-chance handler.
® It forces the offending process to exit.

The following sections describe these actions.

6.6.4.1 Calling the Last-Chance Handler

The kernel does not possess its own last-chance handler. Instead, it
relies on the debugger to give the user a final chance to correct an error
condition.

Once the SEARCH procedure fails to find a condition handler in the
stack, execution branches to a test for the presence of the debugger. If
the debugger is not included in the system, control branches to a code
sequence that deletes the process (see Section 6.6.4.2).

If the debugger is included in the system (KER$GA_KERNEL_
DEBUG_CODE contains a system address), the IPL of the current
process is checked. If the IPL is at process level (0), the process-level
debugger is called. If IPL is greater than 0, a test is made to determine
whether the kernel debugger is present in the system. If so (KER$GA_
KERNEL_DEBUG_DATA is nonzero), IPL is set to IPL$K_KERNEL_
DEBUG, and the kernel debugger is called. If the kernel debugger is
not in the system, the fatal bugcheck INVEXCEPTN (invalid exception)
is taken to crash the system.

If the condition is handled by the user employing either debugger, the
signal is finally dismissed. Otherwise, the offending process is forced to
exit.

6.6.4.2 Forcing Process Exit

When a process cannot handle an exception or software condition, it
must be deleted by the kernel. The kernel first obtains the signal name
from the signal array for the condition. It then calls the KER$EXIT
procedure on behalf of the process; the signal name is the exit status.

6-46 Condition Handling

If the exiting process is a master process and was created by a
program-level call to KERSCREATE_JOB that specified an exit port,
the signal name is reported to the job’s exit port. If this process is a
subprocess and was created by a call to KER§CREATE_PROCESS that
specified an exit variable, the signal name is returned to the caller as
the exit status for the process.

6.7 Condition Handler Actions

When a condition handler is called by the condition dispatcher, several
options are available to it:

* It can fix the condition and allow execution to continue at the
interrupted point in the program.
e It can pass the condition along to another handler by resignaling.

e It can also allow execution to resume at any arbitrary place in the
calling hierarchy by unwinding a number of call frames from the
stack.

The following sections describe these options in more detail.

6.7.1 Continuing or Resignaling

A handler first determines the nature of the condition by examining the
signal name field in the signal array. If the handler determines that it
is incapable of resolving the current condition, it informs the kernel’s
condition-dispatching logic by passing an even return status (such as
SS$_RESIGNAL) back to its caller, a process called resignaling. Given
this return status, KER$DISPATCH_EXCEPTION continues its search
down the stack for another condition handler.

If the condition handler is able to resolve the condition, it informs
KER$DISPATCH_EXCEPTION of this by passing back an odd return
status (such as SS§_CONTINUE).

When KER$DISPATCH_EXCEPTION finds an odd return value in RO,
it dismisses the condition as described in Section 6.6.3.

Condition Handling 647

6.7.2 Unwinding the Call Stack: KERSUNWIND

A condition handler can change the flow of execution when a condition
occurs. This technique is called unwinding the stack and allows a
handler to pass control back to a previous level in the calling hierarchy
by discarding a specified number of call frames.

The VAXELN Pascal and VAX C languages offer this unwind capability
in the form of the up-level GOTO and longjump, respectively. Both
change program flow by calling the KER$UNWIND procedure (in mod-
ule RAISE). KER$UNWIND, however, can be called by a handler writ-
ten in any language supported under VAXELN. KER$UNWIND accepts
as input either an absolute number of frames to be unwound or the ac-
tual FP value of the frame at which execution should continue. These
alternative uses of KERSUNWIND are described in Section 6.7.2.1.

KER$UNWIND does not actually remove call frames from the stack.
Rather, it changes the return PC in the frames above the target frame
to point to a special routine within KER§UNWIND that will be exe-
cuted as each procedure exits with a RET instruction.

As each frame to be unwound executes a RET instruction, registers
saved in the call frame are restored and control is passed to the special
kernel routine, which examines the current frame for a condition han-
dler. If a handler is established for the frame, a signal and mechanism
array are built on the stack, and the handler is called with the signal
name SS$_UNWIND. When the handler returns to KER§UNWIND, a
RET is issued to discard the current call frame. This sequence contin-
ues until the stack has been unwound to the target call frame. Calling
handlers as a part of the unwind sequence allows handlers that previ-
ously resignaled a condition to regain control and perform procedure
cleanup; it also ensures correct restoration of saved registers.

6.7.2.1 Interface to KERSUNWIND

KER$UNWIND was designed to be called by both the VAXELN C and
Pascal run-time libraries and by user programs. To accommodate the
needs of these different callers, KER$UNWIND provides a flexible
calling sequence that allows its caller to specify either an absolute
number of call frames to be unwound or a target frame to which the
stack should be unwound. (The VAXELN run-time library also provides
a procedure called SYSSUNWIND, which emulates its namesake under
the VMS operating system.) This section describes the options available
to the caller of KER$UNWIND and how the procedure modifies its
execution depending on the type of unwind operation requested.

6—48 Condition Handling

KER$UNWIND takes three arguments: a status argument, a new PC
argument, and a depth, or new FP, argument. The optional new PC
argument supplies the address at which execution should resume afier
the stack has been unwound.

The value supplied as the new FP argument significantly affects the
operation of KER§UNWIND. These four values specify the following
operations:

* A frame pointer value (assumed to be any value greater than
65,535): Unwind to a specific frame. The PAS$§GOTO and
longjump routines specify a target FP when they call KERSUNWIND;
therefore, no signal need be active when the procedure is called.

This represents an optimized path through KERSUNWIND. In this
case, KERSUNWIND skips its usual search for an active condition
handler and simply searches down the call stack for the specified
frame.

As it searches, it modifies all intervening frames so that they will
be automatically unwound when KERSUNWIND exits. If a new
PC has been specified, it is placed in the saved PC field of the call
frame above the target frame on the stack.

e A depth greater than 0: Unwind that number of frames. In this
case, KERSUNWIND first searches for an active condition handler.
If no handler is found, the error status KER$_NOSIGNAL is re-
turned. Therefore, this call can be made only from a handler or
from a procedure called by a handler.

Once it has found the handler, KER§UNWIND counts down the
stack from the handler to find the call frame at the specified depth.
It then modifies all the frames up to the target frame so that they
will be automatically unwound when KER$UNWIND exits. If a
new PC has been specified, it is placed in the saved PC field of the
call frame above the target frame on the stack.

e A depth of 0: Unwind to the frame that called the establisher of the
handler. Again, a handler must be active for this call. Once it has
found the handler, KER$UNWIND finds the frame that established
the handler. It then knows that the target frame — the caller of
the establisher — is one frame further down the stack.

Next, KER§UNWIND modifies all the frames up to the target frame
so that they will be automatically unwound when KER§UNWIND
exits. If a new PC has been specified, it is placed in the saved PC
field of the call frame above the target frame on the stack.

Condition Handling 6-49

® A depth of —-1: Unwind 0 frames. Again, a handler must be active
for this call. Once it has found the handler, KERSUNWIND simply
returns — unwinds zero frames. If a new PC has been specified,
it is placed in the saved PC field of the call frame above the target
frame on the stack. In general, unwinding 0 frames means to
return execution to the frame that raised the signal. Supplying a
new PC in this case allows the caller to resume execution at a new
location within that frame. This is the main purpose for unwinding
0 frames.

6.7.2.2 A Sample Unwind

Figure 6-10 illustrates how KER$UNWIND manipulates the return
PCs in the call frames on the stack to effect the return of control to
the target frame. The example begins with the same sequence shown
in Figure 6-8. Procedure A calls procedure B, which calls procedure
C. Procedure C generates signal S. Handlers CH and BH, located by
KER$DISPATCH_EXCEPTION, resignal.

Handler AH is then called. AH decides to unwind the stack back to
the frame that established it, procedure A. To accomplish this, AH calls
KER$UNWIND with a depth argument equal to the value contained in
the depth argument of the mechanism array (the frame argument can
also be used). In this example, the depth argument is 2. After the call
to KERSUNWIND, which executes in the access mode of its caller, but
before the frame modification occurs, the stack appears as shown on
the left side of Figure 6~10.

6-50 Condition Handling

Figure 6-10:

Call Frame Modification by KER$UNWIND

Cail Frame for
KERSUNWIND

Call Frame for
Handler AH

©

Signal and
Mechanism Array
for Condition
Located Here

Call Frame for
Procedure C

Call Frame for
Procedure B

©

Call Frame for
Procedure A

Call Frame on Entry
to KERSUNWIND

0

l«— FP

Save Mask and PSW

Saved FP

AHH (if established)

Save Mask and PSW

Saved FP

KER$CALL_HANDLER_PC

Mechanism Array

Argument Count

Signal Name

Exception PCin C

CH (if established)

Save Mask and PSW

Saved FP

Return PCin B

BH (it established)

Save Mask and PSW

Saved FP

Return PC in A

AH

Save Mask and PSW

Saved FP

Signal
Array

Return PC in A’s Caller

To Previous

Frame

Return PC in These Frames

After They Have Been
Modified by KERSUNWIND

Return PC in AH

UNWIND_HANDLER

Mechanism Array

Argument Count

Signal Name

UNWIND_FRAME

UNWIND_FRAME

(Alternate Return PC)

Return PC in A’s Caller

MLO-009234

Condition Handling 6-51

The frame modification now proceeds as follows (the numbers refer to
the numbers shown in the figure):

© The stack is searched until a condition handler is located; a
handler’s frame is marked by having the value of KER$CALL
HANDLER_PC as its saved PC. (This search occurs only when the
procedure is called with a depth argument; if it is called with an FP
value, no search for a handler frame is conducted.)

If KERSUNWIND is called with a depth argument, the first call
frame modified is the frame of the first handler in the stack, in this
case, the frame for AH. Therefore, if AH had called a procedure
that then called KER§UNWIND with a depth argument of 2, that
nested procedure’s frame would not be altered by KERSUNWIND.

® KER$UNWIND’s own frame is not modified. When KER§UNWIND
exits, control returns directly to AH.

© The frame for AH is modified. The saved PC in its call frame is
replaced with the address UNWIND_HANDLER, a routine internal
to KER$UNWIND.

All return PCs of handler frames encountered on the way to the tar-
get frame are replaced with the address of UNWIND_HANDLER.
This routine forces the handler to return a continue status and
then transfers control to KER$CALL_HANDLER_PC in module
EXCEPTION to clear the mechanism and signal arrays from the
stack.

O The exception PC in the mechanism array is replaced with the ad-
dress of UNWIND_FRAME, a routine internal to KER$UNWIND.

When signal S is dismissed, execution continues on the frame

of procedure C at UNWIND_FRAME. UNWIND_FRAME checks

to see whether C has established a handler. If so, that handler

is called. When it returns, UNWIND_FRAME executes a RET
instruction on behalf of procedure C, returning execution to the call
frame for procedure B.

If a handler called from UNWIND_FRAME attempts to unwind the
stack by calling KER§UNWIND with a depth argument, its call will
fail with the status SS§_UNWINDING, indicating that an unwind
is already in progress.

© The return PCs in additional frames on the stack are modified (how
this is done depends on whether the frame belongs to a condition
handler or to a normal procedure). This modification continues
until the target frame has been reached in the stack.

6-52 Condition Handling

(6]

In the example, the return PC in the frame for procedure C, be-
cause it is not a handler, is replaced with the address of UNWIND_
FRAME

If the alternate PC argument was also passed to KERSUNWIND,
the saved PC in the frame that will return to the target frame —
that of procedure B — is replaced with the specified PC value.

Once the frames have been modified, the actual unwinding occurs in
the following sequence:

1.
2,

3.

KER$UNWIND returns control to handler AH.

When AH issues a RET instruction, control continues on the frame
for procedure C at UNWIND_HANDLER.

UNWIND_HANDLER sets the low bit in RO to force AH’s re-
turn status to continue. Control then branches to KER$CALL_
HANDLER_PC in module EXCEPTION, which clears the condi-
tion arrays off the stack, restores RO and R1, and issues an REI
instruction to dismiss the signal.

The REI pops the address of UNWIND_FRAME into the PC, where
execution continues on procedure C’s frame.

UNWIND_FRAME performs the following steps:

a. If a handler is established for this frame, it is called with the
signal name SS$_UNWIND.

b. If either RO or Rl is specified in the register save mask,
UNWIND_FRAME replaces the value of the register in the
register save area of the call frame with the current contents of
the register. (This is an unusual case; the VAX procedure call-
ing standard specifies that RO and R1 are to be used to return
status codes and function values.)

c. Control is returned with a RET instruction to whatever address
is specified in the saved PC of the current call frame.

The RET issued by UNWIND_FRAME discards the call frame for
procedure C, passing control again to UNWIND_FRAME, this time
on the frame for procedure B. UNWIND_FRAME again performs
its three steps on behalf of procedure B.

The RET that discards the call frame for procedure B passes control
back to the point in procedure A following the call to procedure B,
(if no alternate return PC was specified) where execution will
resume.

Condition Handling 6-53

In effect, UNWIND_HANDLER and UNWIND_FRAME simulate re-
turns from each nested procedure that is being unwound. These pro-
cedures never again receive control. However, the target procedure
receives control as if all the nested procedures had returned normally.

6.7.2.3 Unwinding Multiple Active Signals

KER$UNWIND modifies its actions slightly when multiple signals are
active and it has been called with a depth argument. Before modifying
saved PCs, KERSUNWIND counts down the call frames in the stack
to find the target frame for the unwind. It normally counts down the
number of frames specified by the depth argument, beginning with
the frame after the frame of the first condition handler. The frame

it reaches when the count is exhausted is the target frame for its
modification sequence.

When multiple active signals are present, KERSUNWIND parallels
the action of the SEARCH procedure in module EXCEPTION (see
Section 6.6.3.3); that is, it skips over the frames that were searched
for a handler while the first signal was active. KERSUNWIND skips
these frames by stopping its countdown until it reaches the frame that
established the handler called in response to the first signal. (None
of this applies when KERSUNWIND is called with a frame argument,
because that frame’s FP value is already known.)

The example of multiple active signals shown in Figures 6-8 and 6-9
can illustrate the modified unwinding. Recall that procedure A called
procedure B, which called procedure C, which signaled S. Handler CH
resignaled. Handler BH called procedure X, which called procedure Y,
which signaled T. Handlers YH, XH, and BHH all resignaled. Finally,
handler AH was called for signal T with a depth of 3.

If AH calls KERSUNWIND with a depth argument of 3 (to unwind
to its establisher), the top of the stack is as shown in Figure 6-11.
Assume that no alternate PC argument was specified.

6-54 Condition Handling

Figure 6-11:

Modified Unwind with Multiple Active Signals

0 <— FP
Call Frame for
KER$UNWIND Save Mask and PSW
Saved FP
Saved PC in AH
AHH (if established)
Call Frame for
Handler AH Save Mask and PSW
Saved FP
KER$CALL_HANDLER_PC
Signal and 2
Mechanism
Arrays for Signal Array
Signal T
Mechanism Array]
4

To Signal Array
in Figure 5-10

MLO-003235

The end result, then, of the operation of KER$UNWIND is as follows:

1. The stack is searched for a condition handler’s frame; in this case,
AH’s frame is found.

The saved PC in this frame is eventually replaced with the address
of UNWIND_HANDLER, and the exception PC in the signal array
for signal T is replaced with the address of UNWIND_FRAME.

2. The countdown of the stack begins. The first frame is that of
procedure Y. The saved PC in this call frame is replaced with the
address of UNWIND_FRAME. This is the first frame.

3. The next frame is that of procedure X. The saved PC in this frame
is also replaced with the address of UNWIND_FRAME. This is the
second frame.

Condition Handling 6-55

4. The next frame on the stack belongs to BH, which was called as
a condition handler (its saved PC is KER$CALL_HANDLER_PC).
Its associated mechanism array is located by climbing over saved
registers and stack alignment bytes. From this array, the frame of
BH’s establisher (B) is obtained.

The PCs in all the frames that were not counted will eventually be
modified. In this case, these are the frames for BH and C.

5. The count resumes with the frame that established BH, procedure
B. Since B was not called as a handler, it is counted as frame
3, and the countdown is complete. KER$UNWIND now knows
that the target frame for the unwind is the frame that called B:
procedure A.

The saved PC in B will not be modified. When it returns, execution
will continue in procedure A after the call to B.

6-56 Condition Handling

Chapter 7
Errorand Event Reporting

The VAXELN Kernel and certain VAXELN subsystems can monitor
their functioning and that of their associated hardware and software for
the occurrence of errors. When errors and events occur, the VAXELN
error-logging subsystem enables the software to report them in a local
or remote error log file. Some errors, such as internal processor errors
called machine checks, may require the shut-down of the system;
others errors may require that a process be forced to exit. The kernel
can shut down the system or force a process to exit using its bugcheck
mechanism.

This chapter describes the following components of VAXELN'’s sys-
temwide error reporting and handling systems:

¢ The error-logging subsystem, which enables the kernel and system
jobs, such as device drivers, to report errors and other events in a
local or remote error log file. See Section 7.1.

* The kernel’s bugcheck handling mechanism. See Section 7.2.

* The kernel’s machine-check handling mechanism and support for
recovery from machine checks. See Section 7.3.

7.1 Error Logging Subsystem

The components of the error-logging subsystem are designed to mini-
mize the kernel’s role in logging errors, especially in systems that do
not select support for error logging from the System Builder. Therefore,
the kernel component of the error-logging subsystem comprises a small
set of subroutines that allocate error message buffers and insert them
into a queue of posted buffers. The larger component of the subsystem

Error and Event Reporting 7-1

exists as a job, called the ERRFORMAT job, that removes the buffers
from the posted queue and writes them to the error-log file.

If error-logging support is included in a system, the ERRFORMAT job
is included in the system image and begins to run at system initializa-
tion. A system without error logging enabled has no ERRFORMAT job
and contains only the small core of kernel subroutines, which performs
no significant function when a loggable event occurs. Only when error
logging is included do these subroutines operate in full, and, even then,
they execute a minimal number of instructions to post log entries for
processing by the ERRFORMAT job.

The following sections describe the components and operation of the
error-logging subsystem in greater detail, focusing on the following
aspects of the system:

® The errors and events reported by the subsystem

* The components of the subsystem, including its major data struc-
tures, the ERRFORMAT job, and the error-log server that runs on
a VMS system to support remote error logging

® The operation of the subsystem in logging an error or event

7.1.1 Errors and Events Reported by the Error-Logging Subsystem

The following errors and event are logged by the error-logging subsys-
tem:

* Device errors. The peripheral mass storage devices that may be
attached to VAXELN systems and supported by the error-logging
subsystem consist of disk and tape drives using MSCP and TMSCP
interface hardware and device drivers. Devices that do not use
the VAXELN MSCP and TMSCP class drivers are not currently
supported by the error-logging subsystem. The drivers report both
controller/device hardware errors and media errors (such as bad
block replacement).

®* Machine checks. A machine check is an exception that results
when the processor or an external adapter or controller detects a
hardware error. Because machine checks are processor-specific,
each VAX processor or processor class supported by the VAXELN
has its own machine-check handler. The handler deals with the
processor-specific portions and provides an interface to the kernel’s
uniform condition-dispatching logic and bugcheck mechanism.

7-2 Error and Event Reporting

Machine-check handlers may also log the following processor-
specific hardware error:

— Bus errors
— Cache errors
— Soft (recoverable) and hard (unrecoverable) memory errors

Machine-check handling is described in Section 7.3.

Bugchecks. When the VAXELN kernel detects an internal inconsis-
tency, such as a corrupted data structure or unhandled exception, it
declares a bugcheck. If the system can continue running, a nonfatal
system bugcheck is declared, an error-log record is posted, and the
system continues operating.

In the case of a serious error whose effect on the system’s integrity
is uncertain, a fatal system bugcheck is declared to perform an
orderly shut-down of the system. The contents of any posted error-
log buffers, including those holding the bugcheck information, are
written to the system’s dump file before the system shuts down.

Bugcheck handling is described in Section 7.2.

Last-fail information. In the event of a fatal system bugcheck, the
kernel dumps as much information as possible about the state of
the system to the console terminal and, if the system dump facility
is enabled, to a dump file on a local disk. When the system is next
booted, the information in the dump file is recovered and written to
the error-log file as error/event log entries.

System service messages. Certain error conditions (such as being
unable to initialize the crash dump subsystem or dump file) cause
system service error-log entries to be posted. These entries consist
of up to 255 bytes of ASCII text and are intended to assist in the
evaluation and analysis of the final error-log report produced by the
VMS Error Formatting Utility (ERF).

The mechanism for generating these log entries is provided

by the procedure ELN$LOG_EVENT, which is included with

the ERRFORMAT module when error logging is selected. The
ELNSLOG_EVENT procedure expects two arguments: the size of
the message string and its address.

System start-up. An error-log record entry is made for each suc-
cessful system start-up or restart. System start-up can occur in one
of the following circumstances:

— Cold start, the initial bootstrap load of the system

Error and Event Reporting 7-3

— Warm start, the automatic restart of the system following a
power failure

® Mass-storage volume activities. Whenever a disk or tape volume
is mounted on a local mass storage device, the details of each
mount/dismount transaction are recorded in an error-log record
entry. A volume mount/dismount transaction contains information
such as the generic device name, device unit number, volume label,
and, on dismounts, unit error count. The VAXELN File Service
is responsible for posting all volume activity record entries to the
error-logging subsystem.

® New file creation. Whenever the error-logging subsystem creates
a local log file, a record recording that event is written to the
log. The creation of remote log files is not record directly by the
local system; instead, that activity is written by the VMS host
error-logging server (ELSE).

* Time stamps. The VAXELN error-logging subsystem posts a time-
stamp record entry every ten minutes. Posting these time-stamped
records provides a chronological audit trail of the normal operation
of the system — information valuable when sporadic or intermittent
system failures must be isolated.

7.1.2 Components of the Error-Logging Subsystem

The error-logging subsystem contains a number of components that
support logging errors and events to both local and remote locations.
The following sections describes these parts of the subsystem:

* Error-logging data structures

* The kernel subroutines that support error logging
* The ERRFORMAT job

* The system dump facility

® The error-logging server (ELSE)

7.1.2.1 Error-Logging Data Structures

The error-logging subsystem relies on a number of kernel data struc-
tures and global values. The following sections describe the error
message buffer, which contains the data for the error-log entry, and the
system global values and structures that support logging those buffers
to the error log.

7-4 Error and Event Reporting

7.1.2.1.1

Error Message Buffers

Error message buffers (EMBs) are allocated each time a hardware

or software event is to be logged. EMBs are allocated by the kernel
subroutine KERSALLOCEMB from a queue of available EMBs located
at KER$GQ_EMB_AVAIL. These 512-byte buffers hold the information
used to create an error-log entry.

Every EMB has a header, the EMB header, used by the kernel, and
an EMB record header, used in error-log analysis. The EMB header
contains the address linkages used to insert the EMB into the kernel’s
EMB queues for later processing. Table 7-1 shows the fields in an
EMB header.

Table 7-1: EMB Header Fields

Field Meaning

EMBS$A_FLINK Link to the next and previous EMB
EMB$A_BLINK

EMB$W_SIZE The size in bytes of this EMB’s log entry, not

including the EMB header itself

The EMB record header contains information required by the VMS
Error Log Utility in the generation of an error log report. Table 7-2
shows the fields in an EMB entry record header.

Table 7-2: EMB Record Header Flelds

Field Meaning

ERLS$L_SID The system identification
ERL$W_HDRREV The header revision level
ERL$L_SYS_TYPE The contents of the system-type register
ERL$L_SMP_ID The unique processor identifier
ERL$T_NODENAME The SCS node name

ERL$W_FLAGS Error log entry flags

ERL$W_ENTRY The error log entry type

ERL$Q_TIME The time the entry was posted
ERL$W_ERRSEQ The error sequence number

Error and Event Reporting 7-5

The ERL$W_ENTRY field in the record header defines the type of the
log entry for later analysis. This field can take one of the values shown
in Table 7-3. The type value is inserted in the ERL$W_ENTRY field
when the kernel initializes the record header before posting the EMB.

Table 7-3: Error-Log Entry Types and Their Values

Type Symbol Value Meaning
ERL$K_MACHINECHK 2 Machine check
ERL$K_SOFTERROR 6 Soft memory error
ERL$K_ASYNCWRITERR 7 Asynchronous write error
ERL$K_HARDERROR 8 Hard memory error
ERL$K_BIADPERR 18 VAXBI adapter error
ERL$K_BIBUSERR 19 VAXBI bus error
ERL$K_CACHEBUSERR 24 Bus/cache error
ERL$K_COLDSTART 32 Cold system start
ERL$K_NEWFILE 35 New log file creation
ERL$K_WARMSTART 36 Warm system start
ERL$K_CRASHRESTART 37 Crash-restart
ERL$K_TIMESTAMP 38 Time stamp
ERL$K_SYSSERVMSG 39 System service message
ERL$K_SYSBUGCHK 40 System bugcheck
ERL$K_VOLMOUNT 64 Volume mount
ERL$K_VOLDISMOUNT 65 Volume dismount
ERL$K_DEVATTENTION 98 ésynchronous device atten-
on
ERL$K_SOFTPARAMS 99 Software parameter
ERL$K_LOGGEDMSG 100 Logged message
ERL$K_LOGMSCP 101 Logged MSCP message
ERL$K_PROCBUGCHK 112 Process bugcheck

The remainder of the EMB contains information specific to the error
or event being logged. For example, the EMB for a volume mount or
dismount contains information such as the device and unit number, the
device name, the owner’s UIC, and the volume label.

7-6 Error and Event Reporting

The pool of EMBs is created during system initialization, when the
number of physical pages corresponding to the global parameter
KER$GW_EMB_COUNT is allocated and mapped into system ad-
dress space. This number is divided by two; the result becomes the
global value KER$GW_MAX_POSTED, which is used as the threshold
at which the ERRFORMAT job is awakened when the pool of EMBs
has been half depleted.

As each EMB is mapped, it is inserted as an entry in the queue of free
EMBs pointed to by the global structure KER$GQ_EMB_AVAIL. The
EMBs are zeroed when they are removed from the queue for use.

Preallocated EMBs, called the crash-restart logs, are also created
during system initialization. One page of physical memory is mapped
and zeroed as a crash-restart log for each processor in the system.

A crash-restart EMB is used to hold the information that explains a
system shut-down.

7.1.2.1.2 System Data ltems

A number of global data elements that support error logging reside in
the system data block. Table 7—4 shows these values and their roles in
error logging.

Table 7-4: System Data Items That Support Error Logging
Field Meaning

KER$GA_CRASHLOG An array of addresses of crash-restart EMBs
used in logging fatal system bugchecks.

KER$GA_ERRFMT_JCB The address of the job control block for the
VAXELN ERRFORMAT job. The kernel uses
this JCB to activate the ERRFORMAT job.

KER$GB_ERRLOG_ A Boolean value that indicates whether the user

ENABLE selected error logging in the System Builder. If
the lower bit of this byte is set, error logging is
enabled.

KER$GL_ERRFMT_ The identifier value for the event object used to

WAKEUP control the execution of the ERRFORMAT job.

Error and Event Reporting 7-7

Table 74 (Cont.): System Data Items That Support Error Logging

Field Meaning
KER$GQ_DEVICE_ The queue of device objects waiting for process-
QUEUE ing by the kernel. The kernel places the event

object associated with the ERRFORMAT job in
this queue to force its execution to flush the
queue of posted EMBs. See Section 11.3.2 for
more information about the device queue.

KER$GQ_EMB_AVAIL The listhead for the queue of available EMBs.

KER$GQ_EMB_POSTED The listhead for the queue of posted EMBs
waiting to be flushed to the error-log file.

KER$GW_EMB_COUNT The number of EMBs in the system, as indicated
on the Error Log Characteristics Menu. The
minimum number of EMBs is 2.

KER$GW_EMB_SIZE The size in bytes of an EMB, currently 512.

KER$GW_ERRSEQ The error sequence number. This value is
increased each time an attempt is made to
allocate an EMB and post an entry to the
error-log file. Gaps in the sequence number, as
reflected in the error log, indicate a failure to
allocate an EMB for an error-log entry.

This value is updated using the ADAWI inter-
locked instruction, which synchronizes access to
the sequence number.

KER$GW_MAX_POSTED The maximum number of EMBs that can be
posted before the ERRFORMAT job will write
them to the error log file. This value is half the
value of KER$GW_EMB_COUNT.

7.1.2.2 Kernel Error-Logging Components

A small core of error-logging support resides in the kernel, regardless of
whether the error-logging subsystem has been included in the system.
This kernel-resident code is executed when attempts are made to log
errors and events; if the error-logging subsystem is not present, control
returns immediately to the original instruction stream.

The kernel core includes the following internal subroutines (in module
ERRORLOG) to support error logging:

¢ The KER$ALLOCEMB subroutine allocates error message buffers.
See Section 7.1.3.1.1.

7-8 Error and Event Reporting

¢ The KER$COLDSTART and KER$WARMSTART subroutines post
start-up and power-failure recovery log entries, respectively.

¢ The KER$INIT_ERLHEADER subroutine, called by KERSRELEASEMB,
initializes an EMB record header.

¢ The KER$POST_ERRORLOG procedure inserts an EMB into the
queue of posted EMBS. This procedure calls the kernel subroutines
KER$ALLOCEMB and KERSRELEASEMB to allocate and post the
EMB.

e The KERSRELEASEMB subroutine releases error message buffers
by inserting them into the queue of posted EMBs, so that the
ERRFORMAT job can remove them and write them to the error-
log file. The subroutine also calls KERSWAKEUP to activate the
ERRFORMAT job if the threshold of posted EMBs has been ex-
ceeded. See Section 7.1.3.1.1.

e KER$WAKEUP activates the ERRFORMAT job by causing its event
object to be signaled. See Section 7.1.3.2.

7.1.23 ERRFORMAT Job

The ERRFORMAT job, an optional component in the error-logging
subsystem, is responsible for reading the queue of posted error-log
entries and writing them to the error log file. It is also responsible for
inserting time stamps and posting new-file-creation messages to local
log files. When the system is restarted, if last-fail information has been
written to the system dump file on a local disk, ERRFORMAT retrieves
it and posts it to the error log file. See Section 7.1.3.3.

7.1.2.4 System Dump Facliity

The system dump facility writes last-fail information to a local dump
device for later recovery by the error-logging subsystem. It does not
require any user action: if there is a system crash (fatal system
bugcheck), the last-fail data will be recovered on the next system reboot
if error logging is enabled. The error-log file can then be transferred to
a VMS system for analysis with the ERF utility.

The system dump device must be a local disk. A device driver dis-

patcher and a hard-coded, minimally functional driver is incorporated

into the final system image for which last-fail dumping is enabled.

When last-fail information is to be written to disk, the dispatcher is

ga.lled to select the proper dump driver to perform all I/O to the dump
evice.

Error and Event Reporting 7-9

7.1.2.5 Error-Logging Server

VAXELN provides for remote logging of errors over the Ethernet to

a VAX system running under the VMS operating system and partic-
ipating in the same local area network. The VMS system runs the
error-logging server (ELSE), which accepts error-logging messages
transmitted over the Ethernet from the VAXELN system. The server
writes the error log to a file on the VMS system, pointed to by the logi-
cal name ELSE$ERRORLOG, which can be read and formatted by the
VMS Error Log Utility.

ELSE may have up to 20 virtual circuits established at any given time.
Each circuit represents a connection to a VAXELN system that has
elected to use the remote logging feature of the error-logging subsys-
tem. ELSE writes a separate error log file for each VAXELN system

it serves and uses the System Communication Services (SCS) node
name or number to create the error log file name. For example, if the
VAXELN node PIGDOG uses the remote logging server, the error-log
file created by ELSE will be named PIGDOG.SYS.

7.1.3 Error-Logging Operation

The following sections describe the actual operations of the error-
logging subsystem, namely:

¢ The posting of an error or event directly from the kernel and from
a job, such as a device driver

* The awakening of the ERRFORMAT job to write out EMBs

* The operation of the ERRFORMAT job

7.1.3.1 Posting an Error or Event

When an error or event occurs, a record of its occurrence must be
posted to the error log by the kernel. Errors or events logged from job
level are posted with the KER$POST_ERRORLOG kernel procedure.
This procedure is the general interface to the error-logging subsystem
and is provided for Digital-supplied device handlers. Within the kernel
itself, this procedure interface can be bypassed, and error-log entries
can be posted directly by manipulating the EMB queues. The following
sections describe these two approaches to posting an error-log entry.
The kernel-level operation — the basis for KER$POST_ERRORLOG —
will be described first.

7-10 Error and Event Reporting

7.1.3.1.1 Posting Error-Log Entries from Kernel Level: KER$ALLOCEMB and
KER$RELEASEMB

In certain instances in the operation of the kernel, error-log en-

tries can be made without invoking the formal posting procedure
required from job context. When system start-ups, system and
process-level bugchecks, and processor-specific entries are logged,

the kernel posts them directly by calling the internal subroutines
KER$ALLOCEMB and KER$RELEASEMB. Both KER$ALLOCEMB
and KERSRELEASEMB use interlocked queue instructions to synchro-
nize access to the EMB queues.

When posting an error or event, the kernel first obtains a free EMB
by calling the internal subroutine KER$SALLOCEMB. If the buffer

is available, the kernel then initializes the EMB record header. The
failure of KER$ALLOCEMB to allocate a buffer marks the end of the
kernel’s processing of the error or event, whether or not the system has
error logging enabled.

The subroutine KERSALLOCEMB expects the size of the requested
EMB as an input value and returns the address of the allocated EMB’s
record storage area. The routine executes as follows:

1. An attempt is made to remove an EMB from the head of the queue
of available EMBs (KER$GQ_EMB_AVAIL) using a VAX interlocked
queue instruction. If the allocation fails, KER$GW_ERRSEQ is
increased by 1, and a null EMB address is returned. The kernel
will make no further attempt to post the error or event to the error
log.

2. The size of the EMB is set in the EMB$W_SIZE field of the EMB

header.

The EMB, including the EMB record header, is zeroed.

4. The address of the initialized EMB’s record storage area is returned
to the caller.

@

If the allocation of the EMB succeeds, the kernel fills in the entry-
specific fields and then passes the error-log entry type and the ad-
dress of the allocated EMB to the KER$RELEASEMB subroutine.
KER$RELEASEMB initializes the remainder of the EMB record header
and inserts the EMB into the queue of posted EMBs. This subroutine
is also responsible for tracking the number of posted EMBs and calling
KER$WAKEUP, described in Section 7.1.3.2, if the number exceeds the
threshold value. KER$RELEASEMB executes as follows:

1. The error sequence number KER$GW_ERRSEQ is increased by 1.

Error and Event Reporting 7-11

A call is made to the internal subroutine KER$INIT _ERLHEADER_
S to initialize the entry’s record header. The routine expects two
inputs: the error log entry type and the address of the EMB.

The EMB is inserted at the tail of the queue of posted entries,
KER$GQ _EMB_POSTED, with an interlocked queue instruction.

The number of posted entries, KER$GW_CNT_POSTED, is up-
dated, and a check is made to see whether the threshold has been
exceeded. If not, the routine returns.

If the threshold has been exceeded, a call is made to the internal
subroutine KER$§WAKEUP to unblock the ERRFORMAT job, which
actually writes the error log records to the log file.

7.1.3.1.2 Posting Errors and Events from Job Level: KER$POST_ERRORLOG

To post an error in the error log, jobs call the KER$POST_ERRORLOG
kernel procedure with arguments indicating the type of log entry to

be made, the address of the entry record text, and the size of that
text. This procedure builds a shell around the kernel subroutines
KER$ALLOCEMB and KER$RELEASEMB, which cannot be called
directly from a job. The MSCP and TMSCP class drivers use this
procedure to log errors and events for their associated devices.

KER$POST_ERRORLOG executes as follows:

1.

The size of error-log entry text is compared to the size of the EMB
remaining after the size of the record header and EMB header are
taken into account. If the text does not fit into the remaining space,
KER$_BAD_VALUE is returned to the caller.

Control branches to KER$SALLOCEMB to allocate an EMB.

If KERSALLOCEMB returns a null address, the allocation has
failed, and the procedure simply returns success status. The entry
is not logged. The loss of the log entry will be reflected by a gap in
the sequence number. If error-logging support is not enabled, the
kernel makes no further attempt to log the error.

The error log text is copied into the EMB following the record
header.

The entry type and the address of the now completed EMB are
passed to the KERSRELEASEEMB subroutine to post the error log
entry.

The procedure returns with success to its caller.

7-12 Error and Event Reporting

7.1.3.2 Awakening the ERRFORMAT Job with KER$WAKEUP

The mechanism that awakens ERRFORMAT is of particular impor-
tance in the error-logging operation, because the kernel must be able to
awaken the job from kernel or user mode, from process or system con-
text, at any IPL, and from any processor in a tightly coupled symmetric
multiprocessing configuration. The only mechanism that guarantees
that capability is the KER$SIGNAL_DEVICE procedure, which can be
issued from any context and at elevated IPLs — conditions under which
interrupt service routines, from which it is usually called, operate.

The kernel subroutine KER§WAKEUP, when called by KER$RELEASEMB,
performs the equivalent of calling KER$SIGNAL_DEVICE for
ERRFORMAT’s event object. The KER$WAKEUP takes the following
steps to get the job running:

1. A check is made to determine whether ERRFORMAT is present
in the system by testing the value of KER$GA_ERRFMT_JCB.
If the value is zero, then ERRFORMAT is not present and the
routine returns. If the value is nonzero, it represents the address
of ERRFORMAT’s JCB.

2. The type field in the object pointed to by KER$GA_ERRFMT_JCB
is checked to confirm that it is a JCB. If not, the routine returns.

3. Using the JCB, the event object identifier in KER$GL_ERRFMT_
WAKEUP is translated to the address of the object. If the object is
not an event object, the routine returns.

4. The event object is inserted into the device signal queue, whose
listhead is located at KER$GQ DEVICE_QUEUE. (The structure
of an event and a device object share several fields that allow the
event object to be treated as a device object.)

5. If the object is not the first entry in the queue, the routine returns,
because at least one device object has already been signaled. If it is
the first entry, then an IPL software interrupt is request to signal
to interrupt and initiate the processing of the device wait queue.
This technique guarantees that ERRFORMAT can be awakened
at any IPL from either system or process context. Section 11.3.2
describes device signaling in greater detail.

Error and Event Reporting 7-13

7.1.3.3 Operation of the ERRFORMAT Job

The ERRFORMAT job is responsible for removing EMBs from the
posted queue and writing them to the error-log file. The job is created
because the System Builder includes it in the list of jobs that require
initialization at system start-up. When ERRFORMAT initializes, it
completes the following activities:

1. It obtains its job arguments. These arguments indicate the logging
method (local disk or network) and, for local disk, the location of
the disk and log file.

2. If the error-log destination is the network, ERRFORMAT creates a
port to be used for sending error-log messages to ELSE.

3. It saves the address of its JCB as the global value KER$GA_
ERRFMT_JCB. This address is used in waking up ERRFORMAT
when the EMB threshold has been reached.

4. It creates an event object to use to block its execution until it is
awakened to write out EMBs. The identifier for the event object
becomes the global value KER$GL_ERRFMT_WAKEUP.

5. It initializes its time-stamp interval (10 minutes). When this
interval expires, the job awakens to post a time-stamp entry in the
error log.

6. It calls the kernel procedure KER$INTIALIZATION_DONE to
indicate that it has completed its initialization code.

7. It determines the logging method, either local or remote. If logging
is to a local disk, then ERRFORMAT attempts to recover any last-
fail information that may have been dumped to the disk following a
system crash. The contents of the dump file are treated as standard
EMBs and are written to the current error-log file. If the system
dump facility is currently included, the dump device and dump file
are initialized.

8. It enters a closed loop to write EMBs to the error log file. If no
EMBs require processing, the job calls KER$WAIT_ANY to wait
until it is reactivated by the kernel.

9. It wakes up every ten mintues to post a time-stamp entry and poll
the states of the system’s processors.

The ERRFORMAT job is activated by the kernel, as described in
Section 7.1.3.2, when any of the following conditions is true:

® The job is created by the start-up job.

7-14 Error and Event Reporting

* The number of posted EMBs exceeds the threshold value in
KER$GW_MAX_POSTED.

* The time-stamp interval expires.

When reawakened, ERRFORMAT first determines the cause. If the
time interval expired, a time-stamp log entry is posted with a call to
the KERJPOST_ERRORLOG procedure, and the running processor’s
status is polled with a call to KER$POLL_MACHINE. KER$POLL_
MACHINE polls for processor-specific error conditions. Any errors
detected are handled on a processor-specific basis.

If the event was signaled because the EMB threshold was reached, the
event object KER$GL_ERRFMT_WAKEUP is first cleared for the next
wait. ERRFORMAT then runs down the queue of posted log entries
and writes a record for each to the log file or over the network. After
an entry is dispatched, ERRFORMAT returns the processed EMB to
the queue of available buffers. When all the buffers have been written
out and returned to the available queue, ERRFORMAT again waits,
and the loop continues for the life of the system.

If entries are to be logged to a local disk, the log file must be opened. If
that file cannot be opened, the logged entries are lost. When the file is
being created, the first record written is a new-file-creation entry. The
subsequent log entries are appended to the end of the file. When the
last record has been written to disk, the file is closed.

If entries are to be logged remotely, ERRFORMAT must first initiate
the network link to the remote error-logging server (ELSE) by creat-
ing a DECnet virtual circuit and establishing a communication link
with the ELSE server. ELSE must be running before the attempt to
establish the circuit is made. If the circuit connection fails, then status
is returned to indicate that the remote error-logging link cannot be
established.

Once the circuit to ELSE has been established, log entries are pro-
cessed by creating a VAXELN message, transferring the contents of
the EMB to the message buffer, and sending the message with the
KER$SEND procedure. If the message cannot be sent, the message is
deleted, and the appropriate error status is returned, which will result
in the log entry being lost.

Error and Event Reporting 7-15

7.2 Bugcheck Handling

A bugcheck is declared whenever the kernel or a job detects an internal
inconsistency, such as a corrupted data structure or an unexpected
exception. Bugchecks can be fatal or nonfatal and can be systemwide
in scope or affect only a single process. Nonfatal bugchecks result in
an error-log entry being posted and the system or process continuing
execution. Fatal process-level bugchecks can force the process to exit,
whereas fatal system bugchecks can result in an orderly shut-down of
the system.

The kernel bugcheck mechanism is invoked through the execution of
the BUG_CHECK marco. For example, if the kernel cannot create the
start-up job during system initialization, it forces the system to shut
down by issuing the following fatal system bugcheck:

BUG_CHECK CRESTARTUP, FATAL

The bugchecks that the kernel uses for its own purposes are issued at
an elevated IPL in kernel access mode.

The BUG_CHECK macro, which takes a bugcheck reason code and
severity as its arguments, generates the VAX opcode FF, which results
in a reserved or privileged instruction fault (SS$_OPCDEC, opcode
reserved to DIGITAL), causing control to be transferred to the exception
service routine KER$DIGITAL_RESERVED (in module EXCEPTION).
This routine determines whether the operand specifier is either FE,
for a word-length bugcheck reason code, or FD, for a longword-length
reason code. KER$DIGITAL_RESERVED then transfers control to

the kernel’s bugcheck handler, the KER$BUG_CHECK subroutine in
module BUGCHECK.

KER$BUG_CHECK performs several steps, depending on the access
mode in which the bugcheck occurred, the IPL at the time of the
bugcheck, and the severity level in bits <2:0> of bugcheck reason code.
ght:.'l combination of these factors determine whether the bugcheck is

Four kinds of bugchecks are possible, with the following results:

* Nonfatal process-level bugcheck. The access mode can be user or
kernel, IPL is 0, and the severity code is nonfatal. The bugcheck
is logged, and the process is allowed to continue execution at the
instruction following the bugcheck invocation.

7-16 Error and Event Reporting

* Fatal process-level bugcheck. The access mode can be user or
kernel, IPL is 0, and the severity code is fatal. The bugcheck is
logged, and the KER$EXIT procedure is called to force the process
to exit with KER$_BUGCHECK exit status.

* Nonfatal system bugcheck. The access mode is kernel, the IPL is
greater than 0, and the severity code is nonfatal. The bugcheck
is logged, and the system is allowed to continue execution at the
instruction following the bugcheck invocation.

e Fatal system bugcheck. The access mode is kernel, the IPL is
greater than 0, and the severity code is fatal. The system is shut
down as follows:

1. A 512-byte bugcheck data block containing the reason and
hardware context for the crash is constructed.

2. Information describing the bugcheck is written to the console.

3. If the system dump facility is enabled, the bugcheck informa-
tion, crash-restart data, and any posted error-log buffers are
written to the local dump device.

4. Execution enters a closed loop at IPL 31 to halt the normal
operation of the system.

For fatal system bugchecks, a crash-restart error-log entry is con-
structed. It contains the bugcheck reason code and the contents of the
general and internal processor registers and the processor-specific reg-
isters. The crash-restart log entry record is built in a preallocated EMB
in system address space at the location pointed to by the global value
KER$GA_CRASHLOG, since this is the only address space from which
I/O can be performed at this point.

In a multiprocessing configuration, each processor participates in the
fatal system bugcheck sequence by independently saving its individ-
ual processor context. However, after an individual processor saves
its context and its identifier, it signals the other processors to shut
down, leaving only one to complete the shut-down of the system. Since
it is not known whether any remaining processors are capable of ac-
knowledging the request to shut down, a ten-second wait is executed,
after which it is assumed that the shut-down of all other processors is
complete and the crash sequence can continue.

In the final moments before the system is halted, the bugcheck logic
outputs last-fail information to the system console terminal. The last-
fail information consists of the following items:

* The text of the message giving the reason for the bugcheck

Error and Event Reporting 7-17

® The name of the job that was running when the bugcheck occurred
and the value of its job port (if any)

® The contents of the general processor registers
* The contents of the kernel or interrupt stack (if possible)
¢ The final shut-down message

Following the console dump, several checks are made to determine
whether the dump facility is enabled, whether the dump device and
its dump control block (DCB) are valid, and whether the dump device
has been initialized. If all these tests are successful, the virtual ad-
dress of the dump file I/O buffer is calculated, and a dump file header
is initialized and written to the dump file. Next, the bugcheck and
crash-restart information for the specific processor (or processors in

a multiprocessing system) is written to the dump file. Finally, any
posted EMB entries that have not been output to the error-log device
are written to the dump file, and the dump device is disconnected.

At this point, a check is made to see whether the currently executing
processor is the processor that crashed. If it is, a final system shut-
down message is output to the console. In any event, the processor
then enters an infinite loop at IPL 31 until the system is manually
restarted.

7.3 Machine-Check Handling

A machine check is an exception that results when the processor de-
tects an internal error in itself. VAXELN machine-check handling is
supported by a series of subroutines in the kernel that are executed
when a machine check occurs. These routines, called machine-check
handlers, are entered through vectors in the system control block
(SCB).

The initial processing of a machine check depends on the processor
type. The goal of a machine-check handler is to keep as much of the
system running as possible. To accomplish this goal, the machine-check
handler must evaluate several pieces of information that determine
how serious a specific machine check is: the nature of the machine
check itself and the access mode and interrupt priority level (IPL) at
which the machine check occurred.

The following sections provide an overview of machine-check handling
under VAXELN and describe the mechanism used to protect the system
from fatal machine checks during certain operations.

7-18 Error and Event Reporting

7.3.1 Machine-Check Handlers

The machine-check handler for each processor type or class is included
when the kernel image for that type or class is created. In addition

to machine checks initiated through the machine-check hardware
vector, there may be other hardware error vectors that can be ser-
viced by the machine-check handler. These errors include correctable
read data errors (CRDs), memory errors (bus errors, uncorrectable
ECC error, nonexistent memory), or bus adapter errors (for example,
NBIA errors on VAX 8000-series processors). The individual modules
(MCHECKnnn) supply detailed information on the specific operation of
a given machine-check handler.

In general, machine-check handlers process machine checks and other
hardware errors as follows:

1. A check is made to see whether a machine-check recovery block is
in effect. If so, a machine-check recovery sequence is invoked (see
Section 7.3.2 for a description of this recovery mechanism). If no
recovery block is in effect, or if error logging is not inhibited by
the recovery block function mask, one or more error-log entries are
posted.

2. If the machine check occurred at user IPL (0) in either access
mode, the error is reflected back to the process as a machine-check
exception condition as follows:

a. A PSL and PC at the time of the machine check are copied onto
the kernel stack. These value will become the exception PSL
and PC in the exception signal array.

b. Control is transferred, in kernel mode, to the machine-
check exception service routine KERSMCHECK in module
EXCEPTION.

c. KER$MCHECK completes the creation of the signal array
by pushing the signal name, KER$_MACHINECHK, and the
argument count, 3, onto the stack.

d. Control is transferred to the system’s uniform condition-
handling mechanism at location KERSREFLECT in module
EXCEPTION, which reports the machine-check exception
to the offending process (see Section 6.6, Uniform Condition
Dispatching).

Error and Event Reporting 7-19

3. If the machine check is unrecoverable and occurred in kernel mode
at an elevated IPL, it is considered fatal. A further determination
must be made: whether to take a fatal system bugcheck or to
attempt to recover with a machine-check recovery block. If no
recovery block is in effect, a fatal system bugcheck is taken, and
the system begins an orderly shut-down.

4. Depending on the processor type, a record is kept of the interval
between occurrences of certain machine checks. If these machine
checks begin to occur too rapidly (that is, they exceed a minimum
threshold, usually one every second), the system is considered to be
“out of control,” and a fatal system bugcheck is taken.

7.3.2 Machine-Check Recovery: KERSMACHINECHK_PROTECT

By establishing a machine-check recovery block, code running in kernel
mode at an elevated IPL can avoid taking a fatal system bugcheck
when a machine check occurs. A recovery block is a section of code pro-
tected by a special kernel mechanism. Some of the kernel’s processor-
specific initialization code uses this mechanism to intercept machine
checks that are raised when an I/O bus is probed for adapters that may
not be present.

To be protected by a recovery block, an assembly-language routine
must pass two arguments to the KERSMACHINECHK_PROTECT
subroutine (in module ERRORLOG):

¢ The address of the instruction following the protected block of code

* A mask that defines what functions are allowed in the event of a
machine check (for example, inhibit error logging or nonexistent
memory)

For example, the routine to configure I/O address space on VAX 8000-
series processors (in module INITSNN), protects its probing of the bus
by calling KER§MACHINECHK_PROTECT, as shown in Figure 7-1.
The kernel macro MCHKPRTCT_INIT generates the subroutine call
to KERSMACHINECHK_PROTECT, passing it the function mask and
the address of the instruction following the protected code in general
registers. The protected code itself is a single MOVL instruction that
attempts to read a CSR on an NBIA adapter that may or may not
exist. If the adapter does not exist, a machine check is raised, and the
recovery mechanism is activated. The kernel macro MCHKPRTCT_
END marks the end of the protected code by providing a Return from

7-20 Error and Event Reporting

Subroutine (RSB) instruction and the actual label to mark the restart
of the unprotected code.

The function mask specifies parameters for the machine-check re-
covery. Table 7-5 shows the kernel symbols (defined in module
KERNELDEF) for the function mask and their effect when passed
to KER$MACHINECHK_PROTECT.

Table 7-5: Machine-Check Recovery Function Masks

Function Symbol Meaning

MCHK$M_LOG Inhibit logging of this error.
MCHK$M_MCHK Protect against machine checks.
MCHK$M_NEXM Protect against nonexistent memory errors.

MCHKS$M_ADAPTER Protect against adapter error interrupts.

Figure 7-1: The Use of KERSMACHINECHK_PROTECT

MCHKPRTCT_INIT B~20§,- ; Protect against machine checks
#<MCH.K$M_NEXM ! MCHKSM_MCHK 1 MCHKSM_LOG>
pushal B~20§
pushl #<MCHK$M_NEXM!MCHK$M MCHK!MCHK$M LOG>

jsb G"KER$MACHINECHK_PROTECT
MOVL NBIA$L_CSR1(R10),R3 ; Protected code: read CSR 1
MCHKPRTCT_END 208 ; End of protected code

rsb

20$:
BLBC RO, 308 ; If lbc, nothing at this NBIA,

; that is, a machine check occurred

KER$MACHINECHK_PROTECT provides protection from fatal ma-
chine checks as follows:

1. The address of the machine-check recovery block for the current
processor is obtained from the processor’s machine-check data
block.

Error and Event Reporting 7-21

2. The function mask argument is copied to the recovery block. This
mask will be used by the machine-check handler if the protected
code causes a machine check.

3. Interrupts are disabled by raising the IPL to 31.

4. The protected code is called back as a subroutine. It uses the
return PC of the protected code that was pushed onto the stack by
the subroutine call to KER$MACHINECHK_PROTECT.

5. The protected code executes as a subroutine.

6. If the protected code does not generate a machine check, it executes
the RSB instruction generated by the MCHKPRTCT_END macro,
and control returns to KER$MACHINECHK_PROTECT, which
cleans up the stack and returns status to the caller at its previous
IPL. Execution then continues at the return address specified in
the call to KER§MACHINECHK_PROTECT — the instruction
following the protected code. The status value returned indicates
whether a machine check occurred while the recovery block was in
effect.

If the protected code generates a machine check, control is vectored
by the processor through the SCB to the machine-check handler.
The handler determines that a machine-check recovery block is in
effect, clears the machine check, and transfers control to the subrou-
tine KEREMACHINECHK_BUGCHK, which performs the following
operations:

1. The function mask is examined to determine that recovery from a
fatal machine check was enabled in the call to KER$MACHINECHK_
PROTECT.

2. The stack is unwound to its state before the subroutine call to
KER$MACHINECHK_PROTECT. The call frame for the previous
call, the machine-check frame, and the stack arguments for the
original subroutine call to KEREMACHINECHK_PROTECT are all
cleared from the stack.

3. The access mode and IPL of the caller are restored.
4. The machine-check code is saved for inspection by the caller’s code.
5. Control is returned to the code following the protected code block.

The code following the protected block may then continue and take
whatever action is required after determining the cause of the machine
check (if any action is required at all). The result is that the protected
code block survives a potentially fatal machine check. The survival of
the protected code guarantees the execution of some critical function for

7-22 Error and Event Reporting

the application or enables it to handle peculiarities of special hardware
that would normally generate a machine check.

Error and Event Reporting 7-23

Chapter 8

Kernel Procedures and Procedure
Dispatching

Most of the operations that the VAXELN Kernel performs at the re-
quest of VAXELN processes are implemented as procedures called
kernel procedures. The majority of these procedures are the public,
KERS$ procedures described in the VAXELN documentation. Others
are internal, private, procedures invoked on behalf of user jobs by
the kernel or other system components, such as the debugger and the
error-logging subsystem.

A call to a public or internal kernel procedure transfers control of
execution to a small procedure in the kernel called a kernel vector. The
code in the vector takes a minimal number of steps to transfer control
to the actual code of the requested kernel procedure. When control
returns to the vector after the execution of the procedure, the vector
code returns procedure and status values and control to the caller.

All but a few of the kernel procedures execute in kernel access mode,
allowing them to manipulate data structures protected from access by
jobs running in user mode (VAXELN employs only these two of the
four modes defined by the VAX architecture). Control is transferred
from a kernel-mode procedure’s kernel vector to the procedure code
itself through the kernel’s change mode to kernel (CHMK) dispatcher.
The majority of these kernel-mode procedures also execute at elevated
interrupt priority level (IPL) to synchronize access to job and system
data structures.

Kernel Procedures and Procedure Dispatching 8-1

A handful of kernel procedures execute in the mode of the caller, which
may or may not be in kernel mode. The kernel vectors for these proce-

dures dispatch control with subroutine or branch instructions, which do
not change the access mode of the caller. Nor do these procedures alter
processor IPL.,

The kernel also provides a procedure, KERSENTER_KERNEL_
CONTEXT, to allow user-mode programs to execute kernel procedures
that require their caller to be in kernel access mode.

This chapter describes the following topics related to the dispatch of
kernel procedures:

¢ The format and use of kernel vectors are described in Section 8.1.

® The flow of control in kernel procedure dispatching is described
in Sections 8.2 and 8.3. The first of these sections deals with
procedures that execute in kernel access mode and the second with
those that execute in the caller’s mode.

* The return of control and procedure status values to the caller is
described in Section 8.4.

® The function of the KERSENTER_KERNEL_CONTEXT change-
mode procedure is described in Section 8.5.

8.1 Kernel Vectors and Procedure Entry Points

As described briefly in Section 2.3, kernel procedures are entered
through a series of vectors that comprise their public entry points. This
block of kernel vectors appears at the beginning of the kernel image
portion of a system image, following the system image header, if one
exists. The vectors reside at the same locations in each release of the
VAXELN software so that user programs will not have to be relinked
with each new version of the kernel.

The kernel vectors are defined in module VECTORTAB. When the
kernel image is built, VECTORTAB is assembled with both the
SYSVECTOR module and the DISPATCH module. In the first in-
stance, VECTORTAB builds the series of kernel vectors; in the second,
it builds the dispatch table used by the CHMK exception service routine
described in Section 8.2.

8-2 Kernel Procedures and Procedure Dispatching

The kernel vectors represent the entry points for all publicly accessible
kernel procedures. When a user program codes a call to a kernel pro-
cedure, the language processor usually generates a CALL instruction
specifying the public entry point for the procedure — the documented
KER$ procedure name. This is the entry point for the called proce-
dure’s kernel vector, not for the body of the procedure itself. When
control is passed to the vector through the CALL instruction, the vector
ultimately transfers control to the location of the actual procedure code
within the body of the kernel.

A CALL instruction can be generated by a language processor, such
as the VAXELN Pascal or VAX C compiler, or can appear in VAX
assembly language code — the kernel calls its own procedures in
this manner. For example, a VAXELN Pascal call to the RECEIVE
procedure generates the following VAX instruction:

CALLS #7, KERSRECEIVE

At run time, the execution of this instruction causes the processor to
build a call frame on the caller’s stack and transfer control to the global
location KERSRECEIVE in the kernel. That location is the entry point
of the kernel vector for the KER$RECEIVE procedure.

A kernel vector is in fact a miniature procedure and therefore begins
with a procedure entry mask. Figure 8-1 shows the general structure
of a kernel vector.

Figure 8-1: Structure of a Kernel Vector

KER$procedure: :
.WORD entry-mask
CHMK #procedure-code
MOVL R1, @8(aP)
[MOVL R2, €12 (AP)]
[MOVL R3, @16(aP)]
BRW KERSRETURN_STATUS

entry point for vector
mask of registers to be saved
pass control to CHMK service
return up to 3 values to caller
[these instructions appear

in vectors that require them]
branch to common exit path

to return procedure status

Ne Ne e Ne e e Ne N

Kernel Procedures and Procedure Dispatching 8-3

In module SYSVECTOR, the procedure entry mask is generated using
a global symbol in the form KER$procedure_M. This symbol is gen-
erated when the actual procedure code is assembled. For example,
the symbol KER$RECEIVE_M appears as the word entry mask in
the KER$RECEIVE kernel vector and represents the following list of
registers to be saved when the procedure is called:

~M<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11>

Along with the entry mask symbol, a symbol in the form KER$procedure_
C is generated to represent the expected or minimum argument count
for the procedure. For example, the KERSRECEIVE procedure expects
seven arguments; therefore, the symbol KER$RECEIVE_C translates

to the number 7. This value is used later in procedure dispatching to
verify that the correct number of arguments has been passed in the
procedure call. Some procedures, such as KER§WAIT_ANY, take a
variable number of arguments; these procedures must then verify that
the required minimum number of arguments has been specified.

The execution of the CHMK (Change Mode to Kernel) instruction
causes the processor to generate an exception that will be handled

by a special routine, in which the procedure-specific CHMK code is
used to determine where control will be passed to begin execution of
the actual procedure code. Upon return from that code, many vectors
pass procedure values back to the caller using, MOVL instructions
from general registers R1 through R3 to writeable locations pointed to
by address variables in the caller’s argument list. Once values have
been returned, the vector passes control to a common exit path used to
return the procedure status and control of execution to the caller.

Three types of kernel vectors reside in the vector block, as follows:

e Vectors that invoke a kernel procedure in kernel mode via a CHMK
instruction. This group comprises the vast majority of kernel
vectors and is exemplified by the vector shown in Figure 8-1.
These vectors are entered with a CALL instruction.

¢ Vectors that invoke a kernel procedure in the caller’s mode by
transferring control via a BSBW (Branch to Subroutine with Word
Displacment) or JSB (Jump to Subroutine) instruction. No CHMK
instruction is used. These vectors are also entered with a CALL
instruction.

¢ Vectors that invoke a kernel routine in the caller’s mode by trans-
ferring control by a BRW (Branch with Word Displacement) or JMP
(Jump) instruction. No CHMK instruction is used. These vectors
are entered with a BSBW or JSB instruction.

8-4 Kernel Procedures and Procedure Dispatching

The remainder of this chapter describes how control is passed to pro-
cedures that operate in kernel mode and procedures that operate in
the caller’s mode. The kernel vectors that transfer control to each
kind of procedure are described in more detail, as are the techniques
used to return control, status, and values to the caller from the kernel
procedure.

8.2 Dispatch to Procedures That Execute in Kernel Mode

All but a few of the kernel procedures execute in kernel mode and
are entered through change-mode vectors in the kernel’s vector block.
Change-mode vectors are entered by a CALL instruction and trans-
fer control to an actual kernel procedure code through a CHMK in-
struction. All change-mode vectors use the vector model shown in
Figure 8-1.

Executing a CHMK instruction generates an exception. The CHMK
instruction microcode changes access mode to kernel and pushes the
value of the processor status longword (PSL), the value of the program
counter (PC) for the next instruction, and a specified CHMK code
operand onto the kernel stack. For example, the execution of the
instruction

CHMK #5

pushes a PSL, the PC of the instruction following the CHMK instruc-
tion, and a 5 onto the kernel stack. Control is then passed to the
exception service routine whose address is located in the CHMK entry
in the system control block (SCB).

For VAXELN, the service routine for CHMK exceptions is KER$KERNEL_
SERVICE in module DISPATCH. The module begins with a table — an
array of bytes — containing the required (or minimum) argument

counts for the kernel procedures; this count table is generated during
assembly using the KER$procedure_C symbols. The table is indexed by
the CHMK code number passed to the procedure on the kernel stack.

The CHMK dispatcher plays a central part in the overall flow of control
from a CALL to a kernel procedure to the return of status and proce-
dure values to the caller. Figure 8-2 illustrates this flow of control in
dispatching a kernel procedure call. Execution occurs as follows:

1. A CALL instruction transfers control to the kernel vector for the
called procedure, located in module SYSVECTOR.

Kernel Procedures and Procedure Dispatching 8-5

2. Upon entry into the appropriate vector, the general registers spec-
ified by the procedure’s entry mask are saved, and the CHMK
instruction is executed, placing the caller into kernel mode and
pushing the CHMK code for the procedure onto the kernel stack.

3. The execution of the CHMK instruction causes the VAX hard-
ware to transfer control to the CHMK dispatcher, KER$KERNEL_
SERVICE, whose address appears in the CHMK exception vector in
the SCB.

4. The CHMK dispatcher verifies the argument count and accessibility
of the argument list and transfers control to the KER$procedure_S
entry point via the CASEL (Case Longword) instruction.

5. The KER$procedure_S procedure body performs the requested
service and moves the procedure status into RO and any other
procedure return values into R1 through R3, as necessary. It then
executes an REI (Return from Exception or Interrupt) instruction to
return to the caller’s mode at the instruction following the CHMK
in the kernel vector.

6. Any procedure return values are copied from R1 through R3 into
the user’s address space via pointers passed in the argument list,
as described in Section 8.4.

7. Control branches to the KER$RETURN_STATUS procedure, de-
scribed in Section 8.4. This procedure evaluates the procedure’s
return status and executes a RET (Return) instruction to return
control to the instruction following the CALL instruction in the
user’s code.

Figure 8-3 shows relevant portions of the kernel’'s CHMK dispatcher,
which executes as follows when it is entered through the SCB CHMK
exception vector:

1. The kernel macro DISABLE_SWITCH inhibits context switching
of the processes within the current job by elevating the processor
interrupt priority level (IPL) to IPL$K_DISABLE_SWITCH (3).
Disabling context switching prevents another process in the job
from deleting or corrupting memory required for the execution of
the called kernel procedure. Context switching is again permitted
when the caller’s IPL is restored through the execution of an REI
instruction at the conclusion of the kernel procedure code.

8-6 Kernel Procedures and Procedure Dispatching

Figure 8-2: Control Flow in Dispatching Kernel Procedures That Use Kernel Mode

User Program

CALLx

SYSVECTOR

KER$VECTOR_START
DISPATCH (CHMK Handler)

P KER$procedure::

Entry mask CHMK Argument count table
CHMK #code sCB » KERSKERNEL_SERVICE::
—»1 Pass return values Vector Disable process switching
BRW KER$SRETURN_STATUS - Verity argument count
. Probe argument read access
CASEL #code
Offsets
Procedure Module
KER$procedure_S:: < #n
Test argument access
Execute procedure
Return status in RO :
Other returns in R1-R3 Oftsets
REI Process illegal code

REI
KER$RETURN_STATUS::
Get return status

Return status

or

Raise exception

RET

MLO-003236

2. The CHMK code is popped from the top of the kernel stack and

compared to the maximum acceptable code. If the current code
is greater than the maximum, control branches to the CASEL
instruction in step 5. This illegal code will fall through the case
statement to a location where the status value KER$_NO_SUCH_
SERVICE is set, and an REI instruction is executed to return
control to the kernel vector code in the caller’s access mode.

The number of arguments passed to the procedure is obtained from
the CALL argument list, and the argument count is compared to
the appropriate KER$procedure_C value in the argument table,
which is indexed by the CHMK code. If too few arguments are
supplied, control is transferred to a location where the status value
KER$_BAD_COUNT is set, and an REI instruction is executed to
return control to the kernel vector code in the caller’s access mode.
The actual argument count can exceed the value in the argument-
count table, because certain procedures, such as KER§WAIT_ANY,
take a variable number of arguments.

Kernel Procedures and Procedure Dispatching 8-7

4. The accessibility of the argument list to kernel-mode readers is
tested by using the IFN_READ macro, which generates a PROBER
(Probe Read Access) instruction. If the argument list is not read-
able, control is transferred to a location where the status value
KER$_NO_ACCESS is set, and an REI instruction is executed to
return control to the kernel vector code in the caller’s access mode.
This test confirms that access to the argument list is possible;
however, it does not confirm that the memory to which pointer ar-
guments point is accessible. This test is the responsibility of the
kernel procedure itself.

5. A CASEL instruction dispatches control to the actual instructions
for the requested service. Within the kernel, the internal entry
points for the kernel procedures are represented by global loca-
tions in the form KER$procedure_S. For example, the procedure
body for the KERSRECEIVE procedure begins at the global lo-
cation KER$RECEIVE_S. The table associated with the CASEL
instruction is a series of 16-bit words, indexed by the CHMK code,
containing the byte offsets to each KER$procedure_S location.
(Within the present structure of the kernel, none of the offsets
to the procedures exceeds the 32,767-byte maximum offset sup-
ported by the CASE instruction, so no special processing is required
for procedures located beyond this offset, as is true in the VMS
executive.)

Two procedures, KERSWAIT_ALL and KER$WAIT_ANY, contain spe-
cial tests in their respective kernel vectors. When control returns to
these kernel vectors from the body of the WAIT procedures, the status
value in RO is tested. If the value is 0 — meaning that the calling
process has an asynchronous exception pending against it or that the
process’s wait was interrupted by the delivery of an asynchronous ex-
ception — the vector code branches back and reexecutes the CHMK
instruction to attempt to reestablish the wait for the calling process.
When the procedure finally returns a nonzero value in R0, the branch
to KER$RETURN_STATUS is made. See Chapter 11 for more on
KER$WAIT_ANY and KER$WAIT_ALL procedures.

8-8 Kernel Procedures and Procedure Dispatching

Figure 8-3: CHMK Dispatch — KER$KERNEL_SERVICES

ARGUMENT TABLE: ; Array of bytes with argument
. ; counts, indexed by CHMK code

.BYTE #KERS$procedure C ; Argument count for nth procedure

KER$KERNEL SERVICES:: ; Begin CHMK dispatcher code
DISABLE_SWITCH ; Prevent context switching within job
mtpr #IPLSK _DISABLE_ SWITCH, #PR$_IPL

MOVZBL (AP),R1
MOVL (SP)+,R0O

; Get number of arguments passed
; Pop vector number (CHMK code) to RO

CMPL RO, #LIMIT ; Is the code within range

BGTRU CASE ; If not, don’t test argument count

CMPB R1, W ARGUMENT_TABLE[RO] ; Enough arguments?

BLSSU BAD_COUNT ; Return KER$_BAD COUNT and REI

ASHL #2,R1,R1 ; Compute number of bytes in argument list

IFN_READ R1, 4 (aAP),10$; If not readable, return KER$_NO_ACCESS and REI
prober #0,R1,4(AP)
beql NO_ACCESS

CASE: CASEL RO, #0, #LIMIT ; Dispatch to correct kernel service

offset to KER$procedure_S ; #n ~- transfer control to procedure body

RETURN_STATUS NO_SUCH_SERVICE ; Fall through to illegal code handler
movzwl #KER$_NO_SUCH_SERVICE,RO
rei

8.3 Dispatch to Procedures That Execute in the Caller’s
Mode

A small number of kernel procedures — some of them public, some
internal — execute in the mode of the process from which they are
called. Execution of a kernel procedure in the mode of the caller may
be desirable or necessary for one or more of the following reasons:

¢ The called procedure does not require kernel mode for its execution.
Example: the procedure KER$GET_TIME.

Kerne! Procedures and Procedure Dispatching 8-9

* The called procedure must execute in the mode of the caller.
Example: the procedure KER$RAISE_EXCEPTION.

® The caller must be in kernel mode even before calling the ker-
nel procedure. Examples: the kernel procedure KER$SIGNAL_
DEVICE and the internal procedure KER$INIT ERLHEADER.

* The caller is executing in system context on the interrupt stack and
therefore cannot use the CHMK instruction. Example: the kernel

procedure KER$SIGNAL_DEVICE, which is called only from device
interrupt service routines.

Some of the routines in this class are invoked with a CALL instruction,
as are the procedures that change mode; others are invoked as subrou-
tines with a BSBW or JSB instruction. Moreover, the structure of the
kernel vector for a procedure that executes in the caller’s mode depends
on the method of invocation. The following sections describe these two
forms of dispatch.

8.3.1 Routines Invoked with a CALL Instruction

The kernel vectors for procedures that execute in the caller’s mode
and that are invoked with CALL instructions transfer control to the
actual procedure code using a subroutine call instruction, either BSBW
or JSB. Figure 84 illustrates the general structure of such a kernel
vector. The use of the branch or the jump instruction depends on the
byte displacement to the subroutine entry point.

Figure 8-4: Structure of a Kernel Vector for Caller-Mode Procedures Invoked with a
CALL Instruction
KER$procedure: : ; entry point for vector
.WORD entry-mask ; mask of registers to be saved
BSBW/JSB KER$procedure_S ; transfer control to _S entry point
MOVL Rn, @n(aAP) ; return values to caller...
BRW KER$RETURN_STATUS ; branch to common exit path

; to return procedure status

8-10 Kernel Procedures and Procedure Dispatching

By bypassing the CHMK dispatcher, the BSBW or JSB subroutine
instruction transfers control to the KER$procedure_S procedure in the
mode of the caller. The body of the procedure, which is entered as

a subroutine, must test the argument count and the accessibility of
the argument list; for procedures that change mode, these tests are
performed by the CHMK dispatcher.

Figure 8-5 illustrates the flow of control in dispatching control to
a kernel procedure call using this subroutine-call vector. Execution
occurs as follows:

1. A CALL instruction transfers control to the kernel vector for the
called procedure (defined in module SYSVECTOR).

2. Upon entry into the vector, the general registers specified by the
procedure’s entry mask are saved and the BSBW or JSB instruction
is executed, pushing the return PC onto the current stack and
transferring control to the KER$procedure_S entry point.

3. The KER$procedure_S procedure body performs the requested
service and moves the procedure status into RO and any other
procedure values into R1 through R3, as necessary. It then executes
an RSB (Return from Subroutine) instruction to return to the
instruction following the BSBW or JSB in the kernel vector.

4. Any procedure return values are copied from R1 through R3 into
the user’s address space via pointers in the argument list, as
described in Section 8.4.

5. Control branches to the KER$RETURN_STATUS procedure, de-
scribed in Section 8.4. This procedure evaluates the procedure’s

return status and executes a RET instruction to return control to
the instruction following the CALL in the user’s code.

8.3.2 Routines Invoked with a Subroutine Instruction

The kernel vectors for procedures that execute in the caller’s mode and
that are invoked with a subroutine instruction transfer control to the
actual procedure code using a VAX branch instruction, either BRW or
JMP.

Kernel Procedures and Procedure Dispatching 8-11

Figure 8-5: Control Flow in Dispatching Kernel Procedures That Use the Caller’s
Mode: CALL Invocation

Kernel or
User Program SYSVECTOR
KER$VECTOR_START
. . DISPATCH
CALLx P KERSprocedure::

<< Entry mask

BSBW/JSB KER$procedure_S

»{ Pass return values .

BRW KERSRETURN_STATUS P KERSRETURN_STATUS::
. Get return status

or

Raise exception

RET

Procedure Module

KER$procedure_S::
Test argument access
Execute procedure
Return status in RO
Other values in R1-R3
RSB

MLO-003237

As a rule, kernel routines invoked in this manner share the following
characteristics:

* They are internal to the kernel and cannot be called directly from
higher-level languages.

¢ Since they are not invoked with a CALL instruction, they return
status and values directly to the caller through general registers.

¢ Since these kernel routines are invoked by a subroutine instruction
from the caller’s code, the kernel vector for the routine is coded
as a subroutine rather than as a procedure; that is, it contains no
procedure entry mask and no RET instruction.

Figure 86 illustrates the general structure of a kernel vector for a
kernel routine invoked with a subroutine call.

8-12 Kernel Procedures and Procedure Dispatching

Figure 8-6: Structure of a Kernel Vector for Caller-Mode Procedures Invoked with a
Subroutine Instruction

KERS$procedure: : ; entry point for vector
BRW/JMP KERS$procedure_S ; transfer control to _S entry point
; return via RSB in routine code

The use of the BRW or JMP instruction transfers control to the
KER$procedure_S procedure in the mode of the caller. Because the
routine is normally invoked internally by other kernel code, tests for
the correctness of the invocation are usually less stringent than they
are for routines that can be called publicly.

Figure 8-7 illustrates the flow of control in dispatching control to a
kernel routine using this branching kernel vector. Execution occurs as
follows:

1. A BSBW or JSB subroutine instruction transfers control to the
kernel vector for the routine in SYSVECTOR.

2. Upon entry into the vector, the BRW or JMP instruction transfers
control to the KER$procedure_S entry point.

3. The KER$procedure_S routine performs the requested service and
moves the procedure status into RO and any other return values
into other general registers. It then executes an RSB instruction to
return directly to the instruction following the BSBW or JSB in the
code of the caller (and not to the kernel vector).

8.4 Return of Kernel Procedure Values and Status

Kernel procedures that are invoked by a CALL instruction return
their values through MOVL instructions within the procedure’s kernel
vector. They return a status value to the caller with a common routine,
KER$RETURN_STATUS. The following sections describe the return of
procedure values and completion status.

Kernel Procedures and Procedure Dispatching 8-13

Figure 8-7: Control Flow in Dispatching Kernel Routines That Use the Caller’s
Mode: Subroutine invocation

Kernel or System Program SYSVECTOR
::KER$VECTOR_START
BSBW/JSB KER$procedure » KERS$procedure::
. i BRW/JMP KERSprocedure_S

Routine Module

KERS$procedure_S:: <
Execute procedure
Return status in RO
RSB

MLO-003238

8.4.1 Return of Procedure Values

Kernel procedures that are invoked by a CALL instruction cannot
return procedure values through the general registers, because the
registers used by the procedure are destroyed when a RET instruction
restores the caller’s register contents from the procedure call frame.
For this reason, the kernel vectors for procedures that return values
contain instructions to copy values from the procedure’s registers
into the caller’s argument variables, which have been passed to the
procedure by reference.

For example, the KERSRECEIVE procedure returns three values to
its caller: the identification of the message object used to receive the
message, the address of the message buffer, and the size in bytes

of the received message. To accomplish this, the procedure code —
KER$RECEIVE_S — determines these values, writes them to registers
R1, R2, and R3, respectively, and executes an REI instruction to return
to the kernel vector code following the procedure dispatch instruction.
The following MOVL instructions in the KER$RECEIVE vector then
copy procedure values from the registers, which will be destroyed when
control is returned to the caller, to the caller’s address space:

MOVL R1, @8 (AP)
MOVL R2, @12 (aP)
MOVL R3, @16 (AP)

8-14 Kernel Procedures and Procedure Dispatching

When KER$RECEIVE was called, the caller supplied three writeable
variables in its argument list to receive the values returned by the pro-
cedure. The addresses of those variables — pointers to the variables —
appear in the argument list at the second, third, and fourth positions,
located at offsets of 8, 12, and 16 bytes from the argument pointer (AP)
passed to the kernel procedure by the CALL instruction. The MOVL
instructions simply copy the procedure values in the registers to the lo-
cations of the caller’s writeable variables, represented in the argument
list as operands in the form @n(AP) (displacement deferred mode).
When control returns to the caller, it will find the returned procedure
values in those variables, and its general registers will be restored to
their state before the kernel procedure call. (The return of a value from
RO to @4(AP) is reserved for procedure status values.)

8.4.2 Return of Status Values

The status of a kernel procedure is returned to its caller in a writeable
variable optionally supplied as an argument to the procedure. If a
status variable is supplied, the procedure status is simply written to
that variable — the responsibility for ascertaining the success of the
procedure call belongs to the caller. If no status variable is supplied,
and if the procedure completes unsuccessfully, the kernel raises an
exception against the calling process based on the completion status
of the procedure. The evaluation of the procedure status is handled
not by the kernel procedure itself but by the common exit path for all
CALLed kernel procedures, the routine KERSRETURN_STATUS in
module DISPATCH.

Control is transferred to KERSRETURN_STATUS from the last in-
struction in the kernel vector — BRW — executed after the procedure
code has completed and all procedure values have been written back to
the caller. The purpose of this common exit routine is to examine the
status value written to general register RO by each kernel procedure,
then to take the appropriate action based on this value and on whether
the status variable was present in the procedure call. The address of
this status variable is passed to the called procedure as the first ar-
gument in its argument list and is referenced as the operand 4(AP). If
the caller specified a status variable, the status argument contains the
address of the variable; otherwise, the argument equals 0. Figure 8-8
shows the code for KER$RETURN_STATUS, which executes as follows:

Kernel Procedures and Procedure Dispatching 8-15

The address of the caller’s status variable is obtained from the
status argument.

If the status argument is nonzero, then a status variable was
specified by the caller. Therefore, the status value for the procedure
is copied to the caller’s status variable, and a RET instruction is
executed to return to the caller, removing the call frame from the
stack.

If no status variable is present (4(AP) equals 0), then the status
argument is evaluated. If the lower bit in RO is set, the procedure
was successful, and a RET instruction is executed to return to the
caller and remove the call frame from its stack.

If the lower bit in RO is clear, then the procedure did not suc-
ceed. Therefore, the status value and a zero (representing a null
status variable) are pushed onto the stack as arguments to the
KER$RAISE_EXCEPTION kernel procedure, which is called to sig-
nal an exception against the caller in the caller’s access mode. The
final RET instruction will be executed only if the caller’s process

is able to handle the exception raised by the call to KER$RAISE_
EXCEPTION.

Figure 8-8: Common Procedure Exit Code: KERSRETURN_STATUS

KERSRETURN_STATUS: :

MOVL
BNEQ
BLBC
RET

108: MOVL
RET

20§: PUSHL
PUSHL
CALLS

RET

4 (AP) ,AP ; get the status return address

108 ; i1f nonzero, a status variable exists

RO, 20$; failure status -- raise an exception
; return to caller with success

RO, (AP) ; status variable present =-- copy status there
; return to caller

RO ; push the status value

0 ; don’t specify a status variable for this call

#2, WAKER$RAISE_EXCEPTION

; raise an exception against the caller

8-16 Kernel Procedures and Procedure Dispatching

8.5 Change-Mode Service for User-Mode Jobs —
KERSENTER_KERNEL_CONTEXT

A number of kernel and run-time library procedures require that their
callers execute in kernel mode to call the procedure. The use of kernel
mode is required for procedures that interact closely with critical
data structures within the kernel, protecting them from corruption

by ordinary jobs within the system. On occasion, however, the need
arises for a program to call one of these kernel-mode procedures while
otherwise executing exclusively in user mode. The kernel procedure
KER$ENTER_KERNEL_CONTEXT gives a program the means to
temporarily elevate its access mode to kernel.

For example, a user-mode job may want to allocate a buffer in system
virtual address space using the KERSALLOCATE_SYSTEM_REGION
procedure, which normally requires its caller to execute in kernel
mode. By calling KER$ENTER_KERNEL_CONTEXT and specifying
KER$ALLOCATE_SYSTEM_REGION and the address of the argument
list for the procedure as its arguments, the user-mode caller can exe-
cute this single procedure in kernel mode to allocate the system region
buffer and then access that buffer safely from user mode. In similar
fashion, KERSENTER_KERNEL_CONTEXT can call from a user-mode
program a procedure that may have to call one or more additional
procedures that do require kernel mode.

The KER$ENTER_KERNEL_CONTEXT procedure is dispatched
through a typical kernel vector, one that uses the CHMK instruction
to place its caller into kernel mode. This elevation of mode satis-
fies the access-mode requirement of the procedure to be called via
KER$SENTER_KERNEL_CONTEXT. As shown in Figure 8-3, the first
action the CHMK dispatcher takes is to elevate the caller’s IPL to
IPL$K_DISABLE_SWITCH to disable context switching within the
current job. KERSENTER_KERNEL_CONTEXT also allows its caller
to execute the specified kernel-mode procedure at its original IPL by
lowering the caller’s IPL immediately upon entry. It then calls the
specified procedure with a CALLG instruction, specifying the address of
the argument list for the called procedure.

Figure 8-9 shows the code for KER$ENTER_KERNEL_CONTEXT,
which executes as follows:

1. The caller’s original IPL is extracted from the saved PSL that was
pushed on the stack by the CHMK in the kernel vector and is
written to RO.

Kernel Procedures and Procedure Dispatching 8-17

2. This original IPL value is written to the PR$_IPL privileged regis-
ter to return the caller’s IPL to its value at the time of the call.

3. The specified procedure is called with a CALLG instruction. The
CALLG operands are specified as deferred displacements from
the pointer arguments for the argument list and the requested
kernel-mode procedure.

4. When the called procedure completes execution, control returns to
the REI instruction following the CALLG. When executed, the REI
returns the caller to user mode and transfers control back to the
kernel vector following the CHMK instruction.

Figure 8-9: KER$ENTER_KERNEL_CONTEXT Procedure

KER$ENTER_KERNEL_CONTEXT S: :

EETZV #PSLSV_IPL,#PSLSS_IPL, -; fetch the caller’s IPL
4 (SP) ,RO ; from the stack
SETIPL RO ; reset IPL for caller

mtpr RO, #PR$_IPL

CALLG @ARG_LIST (AP), @SUBROUTINE (AP)
; call the requested routine
REI ; reenter caller’s mode

8-18 Kernel Procedures and Procedure Dispatching

Chapter 9

Memory Management and Dynamic
Allocation

Support for VAXELN virtual memory is implemented partly in VAX
hardware/microcode and partly in software. VAX microcode translates
a virtual address to a physical address using the system and process
page tables created and maintained by the VAXELN Kernel. (Virtual
address translation is documented in the VAX Architecture Reference
Manual and therefore is not described in this chapter.)

A VAXELN system image and its dynamic memory remain resident in
the physical memory of the target computer throughout the life of the
system — no paging to and from a disk is performed. This fact leads
to a number of general characteristics of memory management under
VAXELN:

¢ VAXELN systems can run in a diskless environment. Since a
VAXELN system can boot and operate without a mass storage
device, systems can function in environments that are too hostile
for mass storage devices.

¢ Memory management is simplified. Compared to a paging execu-
tive such as that of VMS, memory management under VAXELN
requires relatively few data structures and routines to support
virtual memory.

¢ Memory management overhead is reduced. No effort is required of
the kernel to keep track of valid (memory-resident) pages, nor does
the real-time programmer have to ensure the validity of a page by
locking it into physical memory. Under VAXELN, all mapped pages
of virtual memory are valid.

Memory Management and Dynamic Allocation 9-1

* The amount of system virtual memory that a system can support
is determined by the amount of physical memory available to the
system.

The structure of VAXELN virtual memory and its mapping onto physi-
cal address space is managed by the VAXELN Kernel. The kernel maps
portions of a VAXELN system into three virtual memory regions: the
system region (SO space), the program region (P0 space), and the con-
trol region (P1 space). SO space is created during system initialization,
described in Chapter 3. PO space is created during job creation, and P1
space during process creation; both are described in Chapter 4.

This chapter describes the following aspects of VAXELN memory man-
agement and allocation that are supported by the VAXELN Kernel:

® The data structures that support memory management (Section 9.1)
® The allocation and deallocation of physical memory (Section 9.2)

* The allocation and deallocation of system and user virtual memory
(Section 9.3)

* The allocation and deallocation of system pool blocks (Section 9.4)

9.1 Memory Management Data Structures

The VAXELN Kernel maintains a number of data structures to support
mapping and allocating physical and virtual memory on the target
system. Some of these structures, such as the system and process page
tables, are defined by the VAX architecture and are required hy the
VAX microcode/hardware to perform address translation. Other struc-
tures are required by the kernel to support the memory requirements
of jobs, processes, and hardware devices.

The following sections describe three classes of data structures that
support VAXELN memory management:

® Allocation bitmaps and bitmap descriptors. The kernel uses
bitmaps (a series of bits representing the elements of a resource)
to monitor the allocation of physical and virtual pages of memory
and the allocation page table. Within each bitmap, a 0 represents
an allocated item and a 1 represents a free item. Each bitmap is
paired with a bitmap descriptor that describes the location and size
of the bitmap.

8-2 Memory Management and Dynamic Allocation

* Page tables and page table entries. The kernel creates and main-
tains page tables that map system, job, and process virtual memory
to actual pages of physical memory. The mapping information for
each page of virtual memory is stored within 32-bit page table
entries (PTEs). One PTE exists for every page of virtual memory
within the system.

* System, job, and process structures. Data that support system, job,
and process virtual memory are stored in the kernel’s global data
block, the job control block (JCB), the process control block (PCB),
and the process hardware context block (PTX). Data items that
support system, job, and process memory appear in the global data
block. Items associated with PO memory are stored in the JCB, and
items associated with P1 memory appear in the PCB and PTX.

9.1.1 Allocation Bitmaps and Bitmap Descriptors

The kernel employs a simple form of data base to track the allocation
of physical and virtual memory — the bitmap. An allocation bitmap
is a series of bits in which each bit represents a page of memory or a
process page table. A set (1) bit represents an available resource; a
clear (0) bit represents an allocated resource. A cleared longword at
the end of the bitmap represents its end.

The position of a bit within the bitmap (reading from low to high bits)
represents the number of the allocated resource (the count begins at
zero). For example, the tenth physical page of memory is represented
by the tenth bit in the physical memory bitmap. That tenth bit would
be reflected as page frame 9 (the actual bit number of the tenth bit) in
the page table entry for a virtual page mapped to the tenth physical
page on a target computer. For virtual pages, the bit number equates
to the virtual page number (VPN) of the page within a region of virtual
memory.

Figure 9-1 shows a bitmap that represents the allocation of 128 pages
of memory. It consists of five longwords; the bits in the first two long-
words are clear, showing that half the pages have been allocated. The
bits in the next two longwords are set; the bits in the final longword
are always clear to mark the end of the bitmap. The numbers on either
side of the bitmap show the number of the page that the corresponding
bit represents.

Memory Management and Dynamic Allocation 9-3

Figure 9-1: An Allocation Bitmap for 128 Pages of Memory

31

63

85

127

00000000000000000000000000000O0O00O0O|O0

000000000000 0000000000O0O00O0CO0O0O0OO O Of32

tT1T111111111111111111111111111111]64

T1T111111111111111111111111111111]986

000000000000000000000000000000O0O

MLO-003239

The kernel creates an allocation bitmap for each of the following re-
sources:

Physical memory (page frames). Each bit represents one page
frame in the system’s physical memory. This page frame bitmap,
called the PFN bitmap, is created by the VMB bootstrap pro-
gram (or the console program on the MicroVAX) when it sizes and
tests the physical memory on the target computer. This bitmap is
mapped into system space following the system control block.

Communication region. Each bit represents one page of virtual
memory within the system’s communication region. The communi-
cation region bitmap is mapped into system address space adjacent
to the communication region itself.

PO page table slots. Each bit represents one P0 page table slot
(an area reserved for a PO page table). The PO page table bitmap
is mapped into system space adjacent to the PO page table slots
themselves.

P1 page tables slots. Each bit represents one P1 page table slot
(an area reserved for a P1 page table). The P1 page table bitmap
is mapped into system space adjacent to the P1 page table slots
themselves.

PO virtual memory (one for each job created). Each bit represents
one page of virtual memory in P0 address space; the bit number
corresponds to the VPN of the page. A P0 bitmap is mapped into
system space adjacent to its associated page table, within the page
table slot.

9-4 Memory Management and Dynamic Allocation

* P1 virtual memory (one for each process created). Each bit rep-
resents one page of virtual memory in P1 address space; the bit
number corresponds to the VPN of the page. A P1 bitmap is
mapped into system space adjacent to its associated page table,
within the page table slot. .

Each bitmap in the system is associated with a descriptor to record
its location and size. Figure 9—2 shows the structure of a bitmap
descriptor (BMP), and Table 9-1 describes the uses of the BMP fields.

Figure 9-2: Structure of a Bitmap Descriptor

BMP$A_ADDRESS1 BMP$W_LENGTH!1

BMP$SW_LENGTH2 BMP$A_ADDRESS1

BMP$A_ADDRESS2

MLO-003240

Table 9-1: Bitmap Descriptor Fields

Field Meaning

BMP$W_ The length in bytes of the bitmap from the first nonzero

LENGTH1 byte to the end of the bitmap (not including the end-of-
bitmap longword)

BMP$A_ADDRESS1 The system virtual address of the first possible nonzero
byte in the bitmap

BMP$W_ The length in bytes of the entire bitmap (not including

LENGTH2 the end-of-bitmap longword)

BMP$A_ADDRESS2 The system virtual address of the entire bitmap

The length fields in the descriptor, which occupy one word each, are
treated as unsigned values. This means that a bitmap can be up to
65,535 bytes in length and contain 524,280 (65535 * 8) bits — the

Memory Management and Dynamic Allocation 8-5

limit of the number of items the bitmap can be used to allocate. When

applied to the page frame bitmap, for example, the length limit means

that the kernel can address up to 524,280 pages of physical memory, or
256 megabytes.

The BMP$§W_LENGTH1 and BMP$A_ADDRESS] fields in the de-
scriptor support the kernel’s bitmap-manipulation subroutines by
enabling it, under certain circumstances, to scan only the unused por-
tion of the bitmap. Table 9-2 describes the local subroutines in module
ALLOCATE that the kernel uses to manipulate the system’s alloca-
tion bitmaps. These subroutines are called by memory and page table
allocation routines.

Table 9-2: Bitmap Allocation Subroutines
Subroutine Function

ALLOCATE_BITMAP Allocates (that is, clears) a specified number of
contiguous bits, updates the values of BMP$W_
LENGTH1 and BMP$A_ADDRESS], and returns
the bit position of the first bit allocated.

EXAMINE_BITMAP Attempts to allocate a specified number of contigu-
ous bits beginning at a specified bit position. If all
the specified bits are free (set), they are cleared and
the starting bit position is returned; otherwise, the
allocation fails.

FREE_BITMAP Deallocates (that is, sets) a specified number of
bits starting at a specified bit position and updates
the values of BMP$W_LENGTH1 and BMP$A_
ADDRESSI1.

The sample allocation bitmap in Figure 9-1 would have the following
values in its bitmap descriptor:

9-6 Memory Management and Dynamic Allocation

Field Value Meaning

BMP$W_LENGTH2 16 The entire bitmap is 16 bytes long.

BMP$W_LENGTH1 8 The length of the bitmap from the first
nonzero byte to the end is 8 bytes.

BMP$A_ADDRESS2 n Assume that the bitmap begins at
address n.

BMP$A_ADDRESS1 n+8 The first nonzero byte in the bitmap is
8 bytes from the base address of the
bitmap (n).

9.1.2 Page Tables and Page Table Entries

A VAX page table is a contiguous array of longwords — page table
entries (PTEs) — that records the characteristics of pages of virtual
memory. The page table contains one PTE for each associated virtual
page; each PTE specifies the physical page of memory (a page frame)
to which the virtual page corresponds. The entries in the page table
therefore map virtual memory to physical memory. The following
sections describe page tables and PTEs under VAXELN.

9.1.2.1 VAXELN Page Tables

A page table is defined by its base address and its length in PTEs. The
base and length of a page table are used during address translation to
locate the page table in physical or virtual memory and validate the
virtual address being translated.

The VAX architecture defines three types of page tables, S0, PO, and
P1, to map the system, program, and control regions, respectively. The
following sections describe these page tables and how the kernel creates
them.

9.1.2.1.1 S0 Page Table

One system page table (SPT) maps the entire VAXELN system into
system address space (see Figure 3-2). The SPT is defined by the SBR
and SLR base and length internal processor registers. SBR contains
the base physical address of the system page table, which must reside
in contiguous physical memory. SLR records the size, in PTEs, of the
system page table. Each system PTE (SPTE) maps one page of virtual
memory to physical memory.

Memory Management and Dynamic Allocation 9-7

The size of the SPT — and therefore the size of SO address space —
is determined during system initialization when the kernel calculates
the number of page frames the system’s components require. Those
components, including the SPT itself, are then mapped into system
virtual memory, filling the SPT with PTEs.

The SO page table enables jobs to share physical memory, such as areas
and shareable image sections, within a system. Memory can be made
shareable through a process called double mapping. To double map
memory, the kernel copies the SPTEs that map the physical memory
to be shared into the PO page table of the job or jobs that will share
the memory. The new P page table entries allow the Job to use its

POQ address space to refer to the same physical pages as the original
SPTEs.

Once it has been initialized, the SO page table cannot be expanded
because it must reside in contiguous physical memory. Dynamic allo-
cation of SO memory comes not from expanding the SO page table but
from mapping physical memory with unused SPTEs. These unused
entries exist in sections of the SO page table reserved by the kernel
for mapping dynamically allocated PO and P1 page tables and the
communication region.

The communication region comprises the only truly dynamic virtual
memory within the SO address space. After system initialization, most
virtual pages in this range of virtual addresses remain unmapped.
They are allocated dynamically on request from system and user code
using the procedures described in Section 9.3.1. The number of pages
that can be allocated from the communication region is limited by the
value of KER$GW_IO_SIZE.

System pool blocks represent another method of obtaining SO memory,
this time in the form of fixed-length blocks that were mapped into
system space during system initialization. The allocation of blocks from
the system pool is described in Section 9.4.

9.1.2.1.2 PO Page Tables

The virtual memory for each job in the system is mapped to physical
memory in a PO page table (POPT), which is shared by all processes in
a job (see Figure 4-5). The PO page table is defined by the POBR and
POLR base and length processor registers and resides in contiguous
system virtual memory. The first PTE in the PO page table maps the
first page of PO virtual memory. POBR contains the base gystem virtual
address of the page table. POLR records the size, in PTEs, of the P0
page table. This page table can expand dynamically at run time up

9-8 Memory Management and Dynamic Allocation

to the limit set by the PO virtual size value specified on the System
Characteristics Menu. (On the KA620 processor, which uses the rtVAX
subset of the VAX architecture, the PO page table resides in contiguous
physical memory, and POBR contains the physical address of the page
table.)

During system initialization, the kernel reserves a block of system
virtual memory large enough to contain the maximum number of

PO page tables. The reserved area is logically divided into segments
called page table slots. Each slot is large enough to hold a single
page table and its associated bitmap. This number of reserved slots is
determined by the value of the Number of jobs entry on the System
Characteristics menu. Figure 9-3 shows how the reserved area is
divided into PO page table slots. (The same arrangement holds for P1
page table slots, which follow the PO slots in system virtual memory.)

Figure 9-3: Layout of PO Page Table Slots

System Virtual Memory Reserved for PO Page Table Siots

Page
Table
Siots

Page
Table
Slots

<— BMP$A_ADDRESS2 in KER$GR_PO_SLOT_BITMAP
PO Page table Siot Bitmap __—KERS$GA PO SLOT BASE points to base of all PO slots

T ~—JCB$A_PO_BASE in 1st Job's JCB

Memory Reserved for 1st
PO Page Table

PO Virtual Memory Bitmap for 1st POPT

<— BMP$A_ADDRESS2 in JCB$A_PO_BITMAP

\'e

n - 2 Page Table Slots 2 n = Number of Siots Reserved = KERSGW_P0_SLOT_COUNT

JCB$A_PO_BASE in nth Job's JCB

Memory Reserved for nth
PO Page Table

PO Virtual Memory Bitmap for nth POPT

< BMP$A_ADDRESS2 in JCBSA_PO_BITMAP

MLO-003241

When a job is created, a PO page table slot is allocated from the re-
served area and initialized to contain no PTEs. When the kernel maps
the job’s program image into P0 space, virtual memory is allocated to
contain the program, and a PO page table entry (POPTE) is created for
each page of virtual memory.

Memory Management and Dynamic Allocation 9-9

When all the PTEs within the page table are allocated, the table is
expanded by 128 more entries (that is, one page frame is allocated

to hold the new PTEs), and the POLR for each process in the job is
updated to reflect the expansion of the table. This dynamic expansion
of the P0 page table can continue until the table reaches its size limit,
at which point the job’s virtual memory is exhausted. (On the KA620
processor, where page tables must be in contiguous physical memory,
the PO page table is expanded to its maximum size at its creation
because the page frames subsequently allocated for the table might not
be contiguous.)

During address translation, the virtual page number (VPN) derived
from bits <29:9> of the PO virtual address is used as an index into the
PO page table. The VPN is multiplied by 4 and added to the value of
POBR to yield the system virtual address of the PTE for the virtual
page being referenced. The information in the PTE is then used to
locate the page frame mapped by the virtual page.

A PO page table is created by the kernel during job creation to map the
job’s PO virtual memory. In the KER§CREATE_JOB procedure, a PO
page table is created as follows:

1. The kernel calls the internal subroutine KERSALLOCATE_P0_
SLOT (in module ALLOCATE). This routine performs the following
operations:

a. The local subroutine ALLOCATE_BITMAP is called to clear a
bit in the PO page table bitmap, located at KER$GR_PO_SLOT _
BITMAP. If no set bits remain in the bitmap, no more jobs can
be created, and KER§CREATE_JOB will fail.

b. The base system virtual address of the PO page table is de-
termined by multiplying the number of the bit cleared in the
POQ slot bitmap by the size in pages of a PO page table slot
(KER$GW_PO_SLOT_LENGTH) and adding the result to the
value of KER$GA_PO_SLOT _BASE.

c. The internal subroutine KERSALLOCATE_FRAME is called to
allocate physical memory for the PO memory allocation bitmap.
The subroutine clears enough bits in the PFN bitmap to hold
the bitmap. Those bit numbers are used to map the bitmap in
the SO page table.

d. The entire PO bitmap is cleared. Clearing the bitmap here
allows PO memory to expand in increments of 128 pages at a
time. (On the KA620 processor, all page frames for the page
table are allocated at once to ensure their physical contiguity.)

9-10 Memory Management and Dynamic Aliocation

e. The subroutine returns the virtual address of the PO page table
and the size and address of the P0 bitmap.

2. The base address of the PO page table is inserted into the PTX$A_

POBR field of the master process’s hardware process context block
and the JCB$A_PO_BASE field of the job control block.

The BMP$A_ADDRESS1 and BMP$A_ADDRESS?2 fields in the
job’s PO bitmap descriptor located at JCB$A_PO_BITMAP are ini-
tialized. The length fields in the descriptor are not set — their
values remain 0. This zero-length bitmap will cause the allocation
of the first 128 pages of virtual memory for the job when the ker-
nel first attempts to allocate PO memory to map the job’s image
sections. See Section 9.3.2.1.

Job creation is discussed in detail in Chapter 4. As a job is deleted, its
PO page table is returned to the pool of available page table slots when
the kernel, in KER$DELETE, calls KER$FREE_PO_SLOT (in module
ALLOCATE). This internal subroutine operates as follows:

1.

Using the system virtual address of the PO page table in JCB$A_
PO_BASE, the following values are determined:

* The SPTE in the system page table that maps the base of the
PO page table

* The position of the PO page table in the array of PO page table
slots beginning at KER$GA_P0_SLOT_BASE

The PFN of the first physical page of the page table is extracted

from the SPTE.

The SPTE is cleared to unmap the page table page.

Using the PFN of the page, the page frame is returned to the

system.

The previous three steps are repeated until all the SPTEs devoted

to the page table are cleared.

The address translation buffers on all active processors are invali-
dated.

The position of the page table in the array of page table slots is
passed to the local subroutine FREE_BITMAP to reset the bit
allocated for the page table.

Memory Management and Dynamic Allocation 9-11

9.1.2.1.3 P1 Page Tables

The virtual memory for each process in the system is mapped to phys-
ical memory in a P1 page table (P1PT). Each process has its own P1
page table to map its user and kernel stacks (see Figure 4-6). The P1
page table is defined by the P1BR and P1LR base and length processor
registers and resides in contiguous system virtual memory. The first
PTE in the P1 page table maps the first page of P1 virtual memory,
which grows from high to low addresses.

Like P1 space itself, the P1 page table grows toward smaller addresses.
To simplify address translation, the base address of the page table,
stored in P1BR, is the virtual address of the P1 page table entry
(P1PTE) that would map virtual address 40000000;¢, the base of P1
space. This allows a P1 virtual page number to be used as an index
into the P1 page table. (In other words, the first P1 virtual page allo-
cated is the last page at the high end of P1 address space, resulting in
the maximum index value into the P1 page table. This index value will
correspond to the “first” P1PTE in the page table, that is, the PTE at
the high end of the page table.) Accordingly, PILR contains the number
of P1PTEs that do not exist. (The value of P1LR is calculated by sub-
tracting the number of existing P1 pages from the maximum number of
pages that can be mapped into P1 space, 221).

The P1 page table can expand dynamically at run time up to the
limit set by the P1 virtual size value specified on the System
Characteristics Menu. (On the KA620 processor, the P1 page table
resides in contiguous physical memory, and P1BR contains the physical
address of the PTE that would map virtual address 40000000;¢.)

During system initialization, the kernel reserves a block of system
virtual memory large enough to contain the maximum number of P1
page table slots. This number is determined by adding the value of
the Number of jobs entry (that is, the number of master processes)
on the System Characteristics menu to the value of the Number of
subprocesses entry. When a process is created by KER§CREATE _
PROCESS, a P1 page table slot is allocated from the reserved area
and initialized to contain no PTEs. When the kernel then maps the
process’s local memory into P1 space, virtual memory is allocated, and
a P1PTE is created to map each page.

When all the PTEs within the page table are allocated, the table is
expanded by 128 more entries (that is, one page frame is allocated to
hold the new PTEs). P1LR for the process is updated to reflect each
expansion of the table. This dynamic expansion of the P1 page table
can continue until the table reaches its size limit. (On the KA620

9-12 Memory Management and Dynamic Allocation

processor, the P1 page table is expanded to its maximum size at its
creation because the allocation of subsequent page frames for the table
might not be contiguous.)

During address translation, the virtual page number derived from bits
<29:9> of the P1 virtual address is used as an index into the P1 page
table. The VPN is multiplied by 4 and added to the value of P1BR to
yield the address of the PTE for the virtual page being referenced. The
information in the PTE is then used to locate the page frame mapped
by the virtual page.

A P1 page table is.created by the kernel during process creation to map
the process’s P1 virtual memory. In the KER§CREATE_JOB (for the
job’s master process) and KER$CREATE_PROCESS (for subprocesses)
procedures, a P1 page table is created as follows:

1. The kernel calls the internal subroutine KERSALLOCATE_P1_
SLOT (in module ALLOCATE). This routine performs the following
operations to create a P1 page table for the process:

a. The local subroutine ALLOCATE_BITMAP is called to clear a
bit in the P1 page table slot bitmap, located at KER$GR_P1_
SLOT_BITMAP. If no set bits remain in the bitmap, no more
processes can be created.

b. The base system virtual address of the P1 page table is de-
termined by multiplying the number of the bit cleared in the
P1 slot bitmap by the size in pages of a P1 page table slot
(KER$GW_P1_SLOT_LENGTH) and adding the result to the
value of KER$GA_P1_SLOT BASE.

c. The internal subroutine KER$SALLOCATE_FRAME is called to
allocate physical memory for the P1 memory allocation bitmap.
The subroutine clears enough bits in the PFN bitmap to hold
the bitmap. Those bit numbers are used to map the bitmap in
the SO page table.

d. The entire P1 bitmap is cleared. Clearing the bitmap here
allows P1 memory to expand in increments of 128 pages at a
time. (On the KA620 processor, all page frames for the page
table are allocated at once to guarantee that they be physically
contiguous.)

e. The subroutine returns the virtual address of the P1 page table
and the size and address of the P1 bitmap.

Memory Management and Dynamic Allocation 9-13

2. The system virtual address of the P1 page table is inserted into

PCB$A_P1_BASE field of the process control block. That address is
then converted to reflect the base address of the PIPTE that would
map virtual address 40000000,¢ and is inserted into the PTX$A_
P1BR field of the process’s hardware context block. This is the base
address of the page table used in address translation.

The BMP$A_ADDRESS1 and BMP$A_ADDRESS?2 fields in the
process’s P1 bitmap descriptor located at PCB$A_P1_BITMAP are
initialized. The length fields in the descriptor are not set — their
values remain 0. This zero-length bitmap will cause the allocation
of the first 128 pages of virtual memory for the process when the
kernel first attempts to allocate P1 for the process stacks. See
Section 9.3.2.1.

Process creation is discussed in detail in Chapter 4, Job and Process
Creation and Deletion. As a process is deleted, its P1 page table is
returned to the pool of available page table slots when the kernel, in
KER$DELETE, calls KER$FREE_P1_SLOT (in module ALLOCATE).
This internal subroutine operates as follows:

1.

ot

Using the system virtual address of the P1 page table in PCB$A_
P1_BASE, the following values are determined:

¢ The SPTE in the system page table that maps the base of the
P1 page table

* The position of the of P1 page table in the array of P1 page
table slots beginning at KER$GA_P1_SLOT_BASE

The PFN of the first physical page of the page table is extracted

from the SPTE.

The SPTE is cleared to unmap the page table page.

Using the PFN of the page, the page frame is returned to the

system.

The previous three steps are repeated until all the SPTEs devoted
to the page table are cleared.

The address translation buffers on all active processors are invali-
dated.

The position of the page table in the array of page table slots is
passed to the local subroutine FREE_BITMAP to reset the bit
allocated for the page table.

9-14 Memory Management and Dynamic Allocation

9.1.2.2 VAXELN Page Table Entries

The page table entries in the VAXELN page tables are used by the
VAX memory management subsystem to translate a virtual address

to its physical counterpart. Allocating virtual memory is largely a
matter of allocating page table entries. Those PTEs can then be used to
map physical memory into system, job, or process address space. PTE
allocation is described in Section 9.3.

Figure 9—4 shows the bit fields defined within the PTE longword. These
fields describe the protection, ownership, type, and corresponding page

frame of a page of virtual memory. Table 9-3 describes the meanings
and uses of the PTE fields.

Figure 9—4: Structure of a VAXELN Page Table Entry

31 30 27 26 2524 2322 2120 0

V | Protection {Unused] Owner | Type Page Frame Number (PFN)

MLO-003242

Table 9-3: VAXELN PTE Fields

Name

Extent Meaning

Valid (V)

<31> Under the VAX architecture, indicates whether the referenced virtual

page is resident in physical memory. Because VAXELN does not page
memory to disk, this bit is always set to ensure that the VAX microcode
does not raise a translation-not-valid fault during address translation.

Protection <30:27> Indicates the access modes at which a process can reference the virtual

page. During address translation, this field is evaluated and compared
to the access mode of the referencer; if that process’s access mode is
insufficient for the attempted reference, an access-control violation
fault occurs. Table 9—4 shows the VAXELN protection codes that can
appear in this field.

Memory Management and Dynamic Allocation 8-15

Table 93 (Cont.): VAXELN PTE Fields

Name

Extent Meaning

Owner

Type

PFN

<24:23> Indicates the owner of the virtual page, either the kernel (PTE$C_

KOWN) or a user program (PTE$C_UOWN). PO or P1 virtual pages
allocated by the kernel or by kernel-mode jobs are marked with kernel
ownership. User-mode jobs can only delete pages marked with PTE$C_
UOWN ownership. Pages allocated in the communication region are
always marked PTE$C_KOWN, even if they are allocated by a user-
mode job calling KERSALLOCATE_SYSTEM_REGION through the
KER$ENTER_KERNEL_CONTEXT procedure.

<22:21> Indicates the virtual page’s type. Table 9-5 shows the VAXELN type

codes.

<20:0> The upper 21 bits of the physical address of the base of the mapped

page frame.

Table 9—4 shows the protection codes that can appear in VAXELN
PTEs. Pages allocated in the context of a user-mode process are nor-
mally marked with PTE$C_UW protection. Pages allocated by the
kernel or by a kernel-mode process are marked with PTE$C_URKW
protection. The kernel or a kernel-mode process can read or write
any page except one that is marked PTE$C_KR (kernel read-only)
or PTE$C_NA (no access). Protections other than PTE$C_UW and
PTE$C_URKW are usually set only by the internal kernel procedure
KER$SET_PROTECTION.

Table 9-4: PTE Memory-Access Protection Codes

Protection Symbol Binary Value
No access allowed PTE$C_NA 0000
Kernel write (and read) PTE$C_KW 0010
Kernel read (no write) PTE$C_KR 0011
User write (and read) PTE$C_UW 0100
User read, kernel write PTE$C_URKW 1110
User read (no write) PTE$C_UR 1111

Table 9-5 shows the PTE type codes and their uses. These codes
identify the nature of the mapped page. The type field is set when
memory is allocated and is tested only when memory is being freed,

9-16 Memory Management and Dynamic Allocation

either by calls to KERSFREE_MEMORY and KER$FREE_SYSTEM_
REGION or during job and object deletion.

Table 9-5: PTE Type Codes

Binary

Type Symbol Value Meaning

System PTE$K _SYSTEM 00 The virtual page is mapped in the SPT, or the
page is mapped to a specific physical address by a
kernel-mode job (usually a device driver mapping
I/O space). All virtual pages mapped in the SO page
table are of type PTE$K_SYSTEM.

Code PTE$K_USER_ 01 The virtual page is user code and is double mapped

CODE to a page frame that can be shared by multiple

jobs.

Message PTE$K MESSAGE 10 The virtual page is a user page mapped to a page

frame containing a message or area data buffer;
or the page is a user page mapped to a specific
physical address in the communication region.

Data PTE$K_RW_DATA 11 The virtual page is a user page mapped to a page
frame containing a job’s private read/write data.
PTEs of this type can appear in both the PO and
P1 page tables. P1 pages, which do not map any
portion of the system image, can contain only
read/write pages for user-mode jobs.

When the virtual page is being deleted, the kernel checks the type field
in the PTE. The action taken to delete the page depends on its type:

e Virtual pages of type PTE$K_USER_CODE are double mapped
(that is, mapped in both the SPT and the POPT) from physical
pages containing program code that can be executed by other jobs
in the system. When a page of this type is deleted, only the POPTE
itself is freed — the page frame containing the code cannot be freed
because it may be mapped into PO memory of other jobs.

e Virtual pages of type PTE$K_RW_DATA are mapped to page frames
for the exclusive use of a job. When such a page is deleted, both the
POPTE and the page frame can be freed, because the page frame
contains a private copy of the job’s read/write data.

e Virtual pages of type PTE$K_SYSTEM are treated in the same way
as user code pages; that is, only the PTE associated with the page
is freed — the associated page frame is not freed for reuse.

Memory Management and Dynamic Allocation 8-17

* Virtual pages of type PTE}K_MESSAGE can be mapped into mul-
tiple jobs (first in a sending job, then in a receiving job). Therefore,
they can be freed only by the KER$DELETE procedure when their
associated message or area is deleted (which can occur during job
deletion).

9.1.3 System, Job, and Process Structures

The kernel stores data required for memory management within the
system data structures most closely associated with the region of mem-
ory supported by the data. For example, since P0 virtual memory is
managed at the job level, the kernel stores data associated with a
job’s PO memory in the job control block (JCB). Likewise, data associ-
ated with P1 memory is stored in the process control block (PCB) and
process hardware context block (PTX).

The following sections describe locations and uses of the data structures
the kernel maintains to support memory management.

9.1.3.1 System Memory Management Structures

The kernel stores data that is applicable across an entire VAXELN
system within the global data block, defined in module SYSTEMDAT
and described in Section 2.3.2.

Table 9—6 shows the data items in the kernel data block that support
memory management at the system level.

Table 9-6: Memory Management Data Stored In the Kernel Data
Block

Data Item Meaning

KER$GA_SPT PHYSICAL The physical address of the system page
table. This value is used to locate the
SPT early in system initialization, before
memory management is enabled. The
value corresponds to the value of SBR.

KER$GA_SPT BASE The system virtual address of the system
page table. This value is used to locate the
SPT at run time.

8-18 Memory Management and Dynamic Allocation

Table 9-6 (Cont.): Memory Management Data Stored in the Kernel
Data Block

Data Item Meaning

KER$GL_SPT_LENGTH The length in SPTEs of the system page ta-
ble. This value corresponds to the number
of physical pages in the VAXELN system
and is used to set the value of SLR.

KER$GR_PAGE_BITMAP The descriptor for the page frame allo-
cation bitmap. This descriptor is used to
locate the page frame bitmap during the
allocation of physical memory.

KER$GR_REGION_BITMAP The descriptor for the communication re-
gion allocation bitmap. This descriptor
is used to locate the region bitmap dur-
ing the allocation of memory from the
communication region.

KER$GA_REGION_BASE The system virtual address of the base of
the communication region. This value is
used during memory allocation to locate
the SPTE that maps the first page of the
communication region.

KER$GR_P0_SLOT_BITMAP The descriptor for the PO page table slot
allocation bitmap. This descriptor is used
to locate the PO page table bitmap during
the creation of a PO page table.

KER$GW_P0_SLOT_LENGTH The number of pages reserved for a PO
page table slot. This value includes the
size of the PO page table itself and the
size of the PO allocation bitmap that also
resides in the slot.

KER$GW_PO_SLOT SIZE The size in pages of a PO page table. This
value is used to allocate page frames to
hold a PO page table.

KER$GA_PO_SLOT_BASE The system virtual address of the base

of the PO page table slots. This value
corresponds to the number of virtual pages
a job can create.

Memory Management and Dynamic Allocation 9-19

Table 9-6 (Cont.): Memory Management Data Stored in the Kernel

Data Block

Data Item

Meaning

KER$GR_P1_SLOT_BITMAP

KER$GW_P1_SLOT_LENGTH

KER$GW_P1_SLOT_SIZE

KER$GA_P1_SLOT BASE

The descriptor for the P1 page table slot
allocation bitmap. This descriptor is used
to locate the P1 page table bitmap during
the creation of a P1 page table.

The number of pages reserved for a P1
page table slot. This value includes the
size of the P1 page table itself and the
size of the P1 allocation bitmap that also
resides in the slot.

The size in pages of a P1 page table. This
value is used to allocate page frames to
hold a P1 page table.

The system virtual address of the base

of the P1 page table slots. This value
corresponds to the number of virtual pages
a job can create.

9.1.3.2 Job Memory Management Structures

The kernel stores data that is applicable to jobwide memory manage-
ment in the JCB. The kernel uses this data when memory is allocated
or freed for the job. Table 9-7 shows the data items in the JCB that
support memory management at the job level.

Table 8-7: Job Memory Management Data Stored in the JCB

Data Item

Meaning

JCB$A_PO_BASE

JCB$L_PO_LIMIT

9-20 Memory Management and Dynamic Allocation

The system virtual address of the PO page
table. This value is used to locate the PO
page table during page table expansion.
The value corresponds to the value of
POBR.

The number of PTEs in the PO page table.
This value is updated during the expansion
of the PO page table and corresponds to the
value of the POLR.

Table 9-7 (Cont.): Job Memory Management Data Stored in the JCB

Data Item

Meaning

JCB$A_PO_BITMAP

JCB$L_RW_DATA_PTE

JCB$L_MESSAGE_PTE

JCB$B_MODE

JCB$A_PROCESS_FLINK

The descriptor for the PO virtual page
allocation bitmap. This descriptor is used
to locate and update the PO bitmap during
the allocation of PO virtual memory.

A prototype page table entry for the cre-
ation of PTEs for the job’s read/write data.
The valid, protection (PTE$C_UW), owner
(the program mode), and type (PTE$K_
RW_DATA) fields are present in the proto-
type PTE. During PO memory allocation,
the allocated page frame number is in-
serted into the PFN field to create the
actual PTE for the page.

A prototype page table entry for the cre-
ation of PTEs for the job’s message and
area data buffers. The valid, protection
(PTE$C_UW), owner (the program mode),
and type (PTE$K_MESSAGE) fields are
present in the prototype PTE. During the
allocation of message and area buffers, the
allocated page frame number is inserted
into the PFN field to create the actual PTE
for the page.

The base access mode of the program as set
in the job’s program descriptor. This value
becomes the value of the ownership field in
PTEs allocated for the job.

The address of the first PCB in the list of
the job’s processes. During the expansion
of the PO page table, this address is used to
locate the process hardware context block
(PTX) of each process in the job and update
the value of its PO length register.

9.1.3.3 Process Memory Management Structures

The kernel stores data that is applicable to process memory manage-
ment in a process’s control block (PCB) and its hardware context block
(PTX). The PCB records the software context of a process; the PTX
stores the hardware context of a process. The kernel uses the infor-
mation in the PCB when stack memory is allocated or freed for the

Memory Management and Dynamic Allocation 9-21

process. Whenever PO or P1 space is expanded for a process, the kernel
updates the appropriate values in both the PCB and PTX. When the
process is scheduled to run, the information in its PTX structure is
loaded into the processor by the LDPCTX instruction. The memory
management data in the PTX then defines the virtual memory for the

process.

Tables 98 and 9-9 show the data items in the PCB and PTX, respec-
tively, that support memory management at the process level.

Table 9-8: Process Memory Management Data Stored in the PCB

Data Item

Meaning

PCB$A_P1_BASE

PCB$A_P1_BITMAP

PCB$L_P1_LIMIT

The system virtual address of the P1 page
table. This is the address of the page table
slot allocated during process creation. The
page table grows toward this address from
the high end. This value is not the same
as PTX$A_P1BR, which reflects the base
address of the nonexistent portion of the
P1 page table. See Section 9.1.2.1.3.

The descriptor for the P1 virtual page
allocation bitmap. This descriptor is used
to locate and update the P1 bitmap during
the allocation of P1 virtual memory.

The number of nonexistent PTEs in the P1
page table. This value is updated during
the expansion of the P1 page table and
corresponds to the value of the P1LR.

Table 9-9: Process Memory Management Data Stored In the PTX

Data Item

Meaning

PTX$A_POBR

PTX$L_PO_LIMIT

8-22 Memory Management and Dynamic Allocation

The contents of the PO base register for
this process. This value is identical for all
processes in a job and is loaded into the
POBR when the process runs.

The contents of the PO length register for
this process. This value is identical for all
processes in a job and is loaded into the
POLR when the process runs.

Table 9-9 (Cont.): Process Memory Management Data Stored In the
PTX

Data Item Meaning

PTX$A_P1BR The contents of the P1 base register for
this process. This value is loaded into the
P1BR when the process runs.

PTX$L_P1_LIMIT The contents of the P1 length register for
this process. This value is loaded into the
P1LR when the process runs.

9.2 Allocating Physical Memory

The VAXELN Kernel supports up to 256 megabytes (524,280 pages) of
physical memory. Each page frame of physical memory is represented
by one of the bits in the PFN bitmap. Therefore, this 256-megabyte
limit is set by the 16-bit size of the length field in the PFN bitmap
descriptor. If the Memory limit system characteristic has been set to
a value less than the number of bits in the PFN bitmap, the kernel,
during system initialization, truncates the bitmap at the specified limit,
making page frames beyond the limit unknown to the kernel.

Under VAXELN, the allocation of physical memory is a straightforward
process of bitmap manipulation performed by the KERSALLOCATE_
FRAME subroutine (in module ALLOCATE). Physical memory is
allocated by a number of kernel procedures and routines, such

as KER$CREATE_JOB (to map read/write image sections) and
KER$ALLOCATE_MEMORY (to hold dynamically allocated data),
and never directly by the user. Before the kernel routine can allocate
physical memory, it must first obtain a page table entry to receive the
PFN of the physical page allocated. For example, to allocate PO mem-
ory, the KERSALLOCATE_MEMORY procedure reserves a range of
virtual memory by allocating PTEs with a call to KERSALLOCATE _
PO_PTE (described in Section 9.3). These PTEs will hold the PFNs of
the page frames allocated from physical memory.

Once PTEs are allocated, KERSALLOCATE_FRAME is called to obtain
physical memory. The number of page frames required is passed to the
routine. The routine executes as follows:

1. The address of the PFN bitmap descriptor, located at KER$GR_
PAGE_BITMAP, and the number of page frames to be allocated are
passed to the local subroutine ALLOCATE_BITMAP. That routine

Memory Management and Dynamic Allocation 8-23

locates the required number of contiguous available bits in the PFN
bitmap, clears them, updates the bitmap descriptor, and returns
the starting bit number (PFN).

2. The starting bit number from ALLOCATE_BITMAP is returned to
the calling routine.

Given the starting bit number — which equates to the page frame
number — the routine allocating the physical memory inserts the
allocated PFNs into the reserved PTEs.

Freeing physical memory simply reverses the allocation process. The
routine freeing the physical memory locates the PTE that contains
the PFN of the page frame — or the first in a series of page frames
— to be freed. This PFN and the number of PFNs are then passed
as arguments to the internal subroutine KER$FREE_FRAME, which
executes as follows:

1. The address of the PFN bitmap descriptor, the starting PFN, and
the number of PFNs to be freed are passed to the local subroutine
FREE_BITMAP. That routine locates the specified bit or bits in
the PFN bitmap, resets them, updates the bitmap descriptor, and
returns.

2. The routine returns to the caller.

The calling routine then clears the associated PTEs, and the physical
memory has been freed.

9.3 Allocating Virtual Memory

The allocation of system (S0) and user (PO and P1) memory is sup-
ported by several low-level kernel routines, which in turn are called
by several high-level kernel procedures to provide memory allocation
services for user programs. The following sections describe those ker-
nel routines — KER$ALLOCATE_REGION, KERSALLOCATE_PO0_
PTE, and KER$ALLOCATE_P1_PTE — and their high-level inter-
faces — KER$ALLOCATE_SYSTEM_REGION and KER$ALLOCATE_
MEMORY.

9-24 Memory Management and Dynamic Allocation

9.3.1 Allocating System Virtual Memory

When the kernel creates the system page table, it reserves the number
of page frames necessary to hold the SPTEs to map all the memory
required by the VAXELN system. A range of these SPTEs, at the end
of the page table, is reserved to map a multipurpose range of virtual
address space called the communication region (see Figure 3-2). (This
range of addresses is referred to in the VAXELN user documentation
as the “system region,” a name not used here because it conflicts with
the architectural name of SO address space.) Because the SO page table
cannot be dynamically expanded, the communication region provides
the only truly dynamic virtual memory within the SO address space.

The communication region is used by a number of VAXELN facilities
to provide dynamic memory within system address space. Among the
uses of the communication region are the following:

* To map communication buffers for transmitting data between an
interrupt service routine (ISR) and a device driver job. System
memory is used for this purpose because an ISR executes in system
context on the interrupt stack and cannot access memory within
the context of the driver job. This memory is allocated by the
KER$CREATE_DEVICE procedure, which also allocates page-long
interrupt dispatch blocks from this region.

* To map job and process control blocks. System memory is used
for these structure because their sizes exceed the 128-byte size of
a system pool block. The page allocated to map a process control
block alos contains the process’s hardware context block. A job’s
object pointer table is also allocated from this region.

¢ To map dynamically loaded programs. System memory is used
for this purpose because the image sections of the loaded program
must be mapped from system addresses by KER$CREATE_JOB.
This memory is allocated by the ELN$LOAD_PROGRAM utility
with a call to KERSALLOCATE_SYSTEM_REGION.

¢ To map the physical addresses of I/O adapter and device con-
trol/status registers (CSRs). System memory is used for this
purpose because this address space must be accessible outside
job context.

¢ To map the memory allocated for a virtual disk drive by the
VMDRIVER. System memory is used for this purpose so that the
virtual disk is not confined to PO memory of the VMDRIVER, which
limits the size of the disk to fewer than 16 megabytes.

Memory Management and Dynamic Allocation 9-25

* To map memory allocated by user programs. System memory is
used for this purpose so that the memory allocated does not count
against the virtual memory limit of the job or to make the memory
potentially accessible outside job context.

The number of SPTEs reserved for the communication region is deter-
mined by the global parameter value KER$GW_IO_SIZE. The original
value of this parameter, as transmitted by the System Builder to the
kernel, is determined by adding the values of the System region size
and Dynamic program space entries on the System Characteristics
Menu. This value is then increased to accommodate the maximum
number of jobs and processes the system can contain. During initial-
ization, the kernel further augments this value by the number of pages
required to map the system’s bus space and device CSRs. This final
value determines the number of SPTEs and the number of bits in the
allocation bitmap devoted to the communication region.

Virtual memory from the communication region is allocated by the
internal subroutine KERSALLOCATE_REGION. The kernel calls this
routine directly (for example, in KER$CREATE_DEVICE) and from
the KERSALLOCATE_SYSTEM_REGION kernel procedure, which
provides the public interface for the allocation of system memory. The
following sections describe these procedures and their complemen
routines, KER$FREE_REGION and KER$FREE_SYSTEM_REGION.

9.3.1.1 KER$ALLOCATE_REGION and KER$FREE_REGION Subroutines

The subroutine KER$ALLOCATE_REGION (in module ALLOCATE)
provides the kernel’s internal method for allocating virtual memory
from the communication region. The SO memory allocated by this
routine is both virtually and physically contiguous. Two internal entry
points for the routine exist:

* KERSALLOCATE_REGION sets memory protection to PTE$C_
URKW. This protection prevents user-mode jobs from modifying the
memory.

* KER$SALLOCATE_REGION_USER sets memory protection to
PTE$C_UW. This protection allows user-mode jobs to modify the
memory.

8-26 Memory Management and Dynamic Allocation

Either entry point expects two input values: the number of pages to be
allocated and the physical address to which the allocated SO addresses
will be mapped. If 0 is supplied as the physical address, the first
available contiguous set of page frames i sallocated (marked as used in
the PFN bitmap). If a physical address is supplied, no page frames are
allocated. The routine assumes that the caller has control over the use
of those page frame and inserts the requested page frame numbers into
the system page table. Both routines return a success/failure status
value and the system virtual address of the memory allocated from the
communication region.

KER$ALLOCATE_REGION executes as follows:

1. A prototype SPTE is constructed. If the entry point to the routine
is through KER$ALLOCATE_REGION, the protection field in the
PTE is set to user-read/kernel-write (PTE$C_URKW); otherwise,
the protection is set to PTE$C_UW (user-write). In both cases, the
owner field is set to kernel ownership (PTE$C_KOWN). After the
creation of the prototype SPTE, execution continues in common
code.

2. The address of the communication region bitmap descriptor, located
at KER$GR_REGION_BITMAP, and the number of virtual pages
to be allocated are passed to the local subroutine ALLOCATE_
BITMAP. That routine locates the required number of contiguous
set bits in the region bitmap, clears them, updates the bitmap
descriptor, and returns the starting bit number. This bit number
represents the virtual page within the communication region of the
base of the memory allocated. It determines which SPTE will map
the allocated memory.

3. If no physical address was specified, the number of pages required
is passed to the internal subroutine KER$ALLOCATE_FRAME to
allocate that number of contiguous page frames. The subroutine
returns the starting bit number (that is, the PFN) of the page
frames allocated. This bit number is used to set the PFNs in the
SPTEs that map the page frames.

If a physical address was specified, no page frames are allocated.
Instead, the starting PFN for the SPTEs is extracted from the
specified physical address.

4. The VPN for the communication region is extracted from the value
of KER$GA_REGION_BASE.

5. That VPN is added to the bit number set in the region bitmap by
ALLOCATE_BITMAP.

Memory Management and Dynamic Allocation 9-27

This new value — the VPN of the allocated memory — is used
as an index into KER$GA_SPT_BASE to yield the address of the
SPTE that maps the base of the allocated memory.

The type field in the prototype SPTE is set. If the allocation is to
a specified physical address, the type is set to PTE$K_MESSAGE.
When this virtual page is freed, this type tells the kernel not to call
KER$FREE_FRAME, because no bit was actually cleared in the
PFN bitmap.

If the allocation was not to a physical address, the type field in the
prototype is set to PTE$K_SYSTEM, signifying that the page is
mapped in the system page table.

Using the address of the first SPTE, the prototype SPTE and the
PFN of the virtual page are inserted into the SPTE to map the
virtual page to the page frame. If multiple pages were allocated,
the PFN is increased by one, and the process is repeated until all
the necessary SPTEs are filled.

The base system virtual address of the allocated memory is re-
turned to the caller. This value is determined by adding the bit
number returned from the region bitmap to the VPN in KER$GA _
REGION_BASE.

Memory allocated by the KERSALLOCATE_REGION subroutine can
be returned to the system with the internal subroutine KER$SFREE_
REGION. This routine expects two input values: the starting virtual
address of the region to be freed and the number of pages to be freed.
KER$FREE_REGION executes as follows:

1.

The base address of the communication region — KER$GA_
REGION_BASE — is subtracted from the starting virtual address
of the memory to be freed.

The VPN is extracted from the value just obtained. This represents
the bit position of the page within the region bitmap.

The address of the region bitmap descriptor, the starting bit num-
ber, and the number of pages to be freed are passed to the local
subroutine FREE_BITMAP. That routine locates the specified bit
or bits in the region bitmap, resets them, updates the bitmap
descriptor, and returns.

The VPN for the communication region is extracted from the value
of KER$GA_REGION_BASE.

The base VPN of the communication region is added to the mem-
ory’s bit number in the region bitmap.

9-28 Memory Management and Dynamic Allocation

6. This new value — the VPN of the allocated memory — is used as
an index to KER$GA_SPT BASE to yield the address of the SPTE
that maps the base of the memory to be deallocated.

7. The protection code is extracted from the first SPTE and saved.

8. Using the address of the first SPTE, the required number of SPTEs
is cleared to unmap the virtual memory.

9. The address translation buffers on all active processors are invali-
dated.

10. If the extracted protection code is PTEK_SYSTEM, KERFREE_
FRAME is called to release the page frames occupied by the deallo-
cated memory. If the code is PTE$K_MESSAGE — meaning that no
physical memory was allocated when KER$ALLOCATE_REGION
was called — no effort is made to deallocate the page frames.

11. The routine returns to its caller.

9.3.1.2 KERSALLOCATE_SYSTEM_REGION and KER$FREE_SYSTEM_REGION
Kernel Procedures

The KERSALLOCATE_SYSTEM_REGION procedure (in module
SMEMORY) provides the public, external interface for allocating sys-
tem virtual memory. The SO memory allocated by this procedure is
both virtually and physically contiguous. The procedure can be called
only by jobs running in kernel mode. The calling job, however, need not
be a kernel mode job; that is, KERSALLOCATE_SYSTEM_REGION
can be called through the KERSENTER_KERNEL_CONTEXT proce-
dure to elevate a user-mode job’s access mode to perform the allocation.
System pages allocated to a kernel-mode job are set with PTE$C_
URKW protection; those allocated to a user-mode job receive PTE$C_
UW protection.

Arguments to KERSALLOCATE_SYSTEM_REGION specify the num-
ber of bytes to be allocated and an optional physical address to which
the system addresses will be mapped. The procedure returns a status
value and the virtual address of the memory allocated from the system
region. The procedure executes as follows:

1. The current access mode of the caller is tested. If it is not kernel
mode, KER$_BAD_MODE status is returned.

2. The number of bytes to be allocated is converted to the number of
SO pages required (and rounded up to the next page boundary if
necessary).

Memory Management and Dynamic Allocation 9-29

3. The base access mode of the caller (in JCB$B_MODE) is tested.
If the mode is kernel, the physical address and number of pages
are passed to the internal subroutine KER$ALLOCATE_REGION.
If the mode is user, control passes to an alternate entry point,
KER$ALLOCATE_REGION_USER. The routine returns a suc-
cess/failure value and the virtual address of the base of the SO
memory allocated.

4. If the allocation from the communication region succeeded,
KER$ALLOCATE_SYSTEM_REGION returns the virtual address
of the allocated memory to its caller. If the allocation failed, KER$_
NO_MEMORY status is returned.

If a job that called KERSALLOCATE_SYSTEM_REGION fails to call
KERS$FREE_SYSTEM_REGION to return its system memory before
exiting, that memory is permanently lost to the system. Once a job
has exited, its pointer to the allocated system memory is lost, and the
kernel has no way of identifying communication region memory no
longer under the control of a job.

Arguments to the KER$FREE_SYSTEM_REGION specify the number
of bytes to be deallocated and the base virtual address of the memory to
be freed. The procedure optionally returns a status value. The virtual
address passed to the procedure should be the one returned by the
original call to KERSALLOCATE_SYSTEM_REGION. KER$FREE_
SYSTEM_REGION executes as follows:

1. The current access mode of the caller is tested. If it is not kernel
mode, KER$_BAD_MODE status is returned.

2. The virtual address argument is tested. If it is not an SO address,
KER$_BAD_VALUE status is returned.

3. The number of bytes to be deallocated is converted to the number of
S0 pages (and rounded up to the next page boundary if necessary).

4. The base address of the memory and the number of pages to be
freed are passed to the KERSFREE_REGION subroutine to perform
the actual deallocation.

5. Control is returned to the caller.

9-30 Memory Management and Dynamic Allocation

9.3.2 Allocating User Virtual Memory

User virtual memory — P0 and P1 memory — is allocated dynamically
by the kernel to accommodate the memory demands of a job and its
subprocesses. PO space is used to map program image sections (includ-
ing code and global data), the job context page, and dynamic memory
such as heap data and message buffers (see Figure 4-5). P1 memory is
allocated to hold a process’s private memory: a single debugger context
page and its stack or stacks (see Figure 4—6).

PO memory is allocated by a number of kernel and run-time library

services, such as the following:

¢ KER$CREATE_JOB to map a program image

o KER$CREATE_MESSAGE to map a message buffer

e KER$CREATE_AREA to map an area buffer

® The program loader to map dynamically loaded programs

® The heap routines (NEW, calloc to allocate memory for a job’s
dynamic heap)

Since P1 memory has a more specialized application, it is allocated by
a smaller number of kernel and run-time library services:

e KER$CREATE_JOB to allocate a master process’s stacks

e KER$CREATE_PROCESS to allocate a subprocess’s stacks

* The internal procedure KER$EXPAND_STACK (in module

EXCEPTION) to expand the user stack dynamically when a stack
reference raises an access violation

* The stack utility, ELNSALLOCATE_STACK, to expand the user or
kernel stack under program control

To allocate user memory, the following steps are required:

1. The required number of PO or P1 page table entries must be allo-
cated from the appropriate page table.

2. The fields in the allocated PTEs must be set to contain the ap-
propriate protection, owner, type, and PFN fields. If the memory
is allocated at a specified physical address, that PFN is used;
otherwise, KERSALLOCATE_FRAME is called to obtain a PFN.

3. The job and process memory structures affected by the allocation
are updated.

Memory Management and Dynamic Allocation 8-31

The first of these steps is performed by the internal kernel subroutines
KER$ALLOCATE_PO_PTE and KER$ALLOCATE_P1_PTE, and are
described in Section 9.3.2.1. The other steps must be performed by
the caller of the PTE allocation routine, for example, KER§CREATE_
JOB or KER$CREATE_MESSAGE. Under program control, these steps
are performed on behalf of the job by KERSALLOCATE_MEMORY,
the public procedure for the dynamic allocation of PO and P1 memory.
KER$ALLOCATE_MEMORY is described in Section 9.3.2.2. This sec-
tion also briefly contrasts KERSALLOCATE_MEMORY with the heap-
management routine PAS§NEW2, which itself calls KERSALLOCATE_
MEMORY to support language-specific allocation of dynamic memory.

9.3.2.1 Allocating and Deallocating User Page Table Entries

The allocation of PO or P1 virtual memory begins with the allocation of
page table entries from the appropriate page table. One PTE must be
allocated to map each page of virtual memory to a page frame. The in-
ternal subroutines KER$SALLOCATE_PO_PTE and KER$ALLOCATE_
P1_PTE allocate PO and P1 PTEs, respectively. Deallocation of P0 or
P1 virtual address space concludes with the clearing of the appropriate
PTEs that mapped the deallocated memory. The internal subroutines
KERS$FREE_PO_PTE and KER$FREE_P1_PTE deallocate PO and P1
PTEs, respectively.

These subroutines manage the allocation of PO and P1 memory using
the PO and P1 allocation bitmaps and their associated descriptors,
resident in the JCB for PO memory and the PCB for P1 memory. Each
bit in these bitmaps represents a page of virtual memory, and the
position of the bit within the bitmap represents the VPN of the page
within the address space. The VPN in turn represents the PO or P1
PTE allocated. (These values are adjusted to reflect the fact that P1
memory and page tables grow toward lower addresses.)

On all processors except the KA620, user address space is expanded
dynamically in increments of 128 pages up to the limit set for the ad-
dress space in the System Builder. This 128-page expansion represents
the addition of one page frame (holding 128 PTEs) to the PO or P1 page
table. As each page is added to the page table, that page is mapped in
the system page table. On non-KA620 systems, these page tables are
virtually contiguous; on the KA620 systems, they are also physically
contiguous, because the PO and P1 page tables are created in their
entirety the first time the address space is expanded during job and
process creation.

9-32 Memory Management and Dynamic Allocation

When the PO or P1 bitmap is created, it has no bits set, and the length
of the bitmap is recorded in the bitmap descriptor as 0. The first time
either of the PTE-allocation routines is called, the discovery of the zero-
length bitmap leads to the immediate expansion of the page table by
128 PTEs — the setting of the first 128 bits in the bitmap. The routine
then attempts to allocate the desired memory from that first 128 bits in
the bitmap, the active portion of the bitmap.

Subsequently, the page table and bitmap are expanded whenever

an allocation request cannot be satisfied within the active portion of
the bitmap. When the bitmap has been expanded to its full length,
the limit of PO or P1 virtual memory for the job or process has been
reached, and subsequent attempts to expand the page table and bitmap
will fail. (This description of the expansion of the page table and
bitmap does not apply to the KA620 processor; these elements are
expanded to their maximum allowed length at the first allocation of
user virtual memory by the KER$CREATE_JOB procedure.)

The operation of KER$ALLOCATE_PO_PTE and KER$SALLOCATE_
P1_PTE are nearly identical, differing only to accommodate the fact
that the P1 page table expands toward lower addresses. This means
that the number of the bit allocated in the P1 memory bitmap must
be altered to represent correctly the corresponding PTE in the P1 page
table. The PTE allocation routines expect four input values:

e The number of PTEs to be allocated

¢ The address of the current JCB (PO allocation) or PCB (P1 alloca-
tion)

¢ An explicit-allocation flag indicating whether the PTEs should be
allocated for a specified virtual address

e If the explicit-allocation flag is set, the starting virtual address for
which the PTEs should be allocated

The routines operate in two phases. The first phase is the simple al-
location of bits from the active portion of the PO or P1 bitmap. This
phase returns the starting bit number (VPN) allocated and a suc-
cess/failure value. (The discussion of KERSALLOCATE_MEMORY in
Section 9.3.2.2 shows how these return values are used to map the
address space.) Within this simple allocation path, the execution path
depends on whether the allocation is for an explicit set of PTEs (a
specified virtual address) or simply for the first available set of PTEs.

Memory Management and Dynamic Allocation 9-33

The expansion of the page and bitmap is the second phase of execution.
This path through the routine is followed only when simple allocation
within the active portion of the bitmap fails. If the expansion succeeds,
the routine returns to the first phase for a second attempt at simple
allocation.

The simple allocation phase of KER$ALLOCATE_PO_PTE and
KER$ALLOCATE_P1_PTE executes as follows:

1. The explicit allocation flag is tested.

2. If explicit allocation is not required, the following execution path is
taken:

a. The address of the appropriate allocation bitmap descriptor,
located at JCB$A_P0_BITMAP or PCB$A_P1_BITMAP, and
the number of PTEs to be allocated are passed as arguments
to the local subroutine ALLOCATE_BITMAP. That subroutine
attempts to allocate the specified number contiguous bit at the
first available location within the active portion of the bitmap.

b. If the bitmap allocation succeeds, success status and the start-
ing bit number (the VPN) are returned to the caller. If the
allocation is for P1PTEs, the bit number is adjusted to indicate
the correct P1PTE.

c. If the bitmap allocation fails, control branches to the code path
to expand the bitmap and page table. Control then returns to
the start of the first phase, and allocation is attempted with the
expanded bitmap.

If explicit allocation is required, the following path is taken:

a. The VPN is extracted from the virtual address argument. This
value represents the explicit starting bit number to be allocated
in the bitmap. If the allocation is for PLPTEs, the bit number
is adjusted for P1 space.

b. The byte position within the bitmap containing the target bit is
calculated.

c. The byte position is compared to the value of BMP$W_
LENGTH2 in the bitmap descriptor.

d. If the byte position is beyond the active portion of the bitmap
(that is, the byte position is greater than or equal to BMP$W_
LENGTH2), control branches to the code path to expand the
bitmap and page table. Control then returns to the start of
the first phase, and allocation is attempted with the expanded
bitmap.

9-34 Memory Management and Dynamic Allocation

g.

The address of the appropriate bitmap descriptor, located

at JCB$A_PO_BITMAP or PCB$A_P1_BITMAF, the explicit
starting bit number, and the number of PTEs to be allocated
are passed as arguments to the local subroutine EXAMINE_
BITMAP. That subroutine attempts to allocate the specified
number of contiguous bits starting at the specified location
within the active portion of the bitmap.

If the bitmap allocation succeeds, success status and the start-
ing bit number (the VPN) are returned to the caller. If the
allocation is for P1PTEs, the bit number is adjusted to indicate
the correct P1PTE.

If the bitmap allocation fails, the requested PTEs cannot be
allocated; therefore, failure status is returned to the caller.

The expansion of the PO and P1 page tables, the second phase of the
allocate routines, occurs as follows:

1. The maximum possible size in bytes for the allocation bitmap is
calculated by multiplying KER$GW_P0_SLOT_SIZE or KER$GW_
P1_SLOT_SIZE (the number of longwords in the PO or P1 page
table) by 16, the number of bitmap bytes necessary to support one
page of PTEs.

2. If that value equals the value of BMP$W_LENGTH?2 in the bitmap
descriptor, further expansion of the page table is impossible — the
virtual address space has reached its maximum size as defined by
the user in the System Builder. Failure status is returned to the

caller.

The internal subroutine KERSALLOCATE_FRAME is called to
allocate physical memory for the new page table page. On non-
KA620 processors, one page frame is requested. On the KA620

processor, all the page frames that the page table may require are

allocated at once. The values of KER$GW_PO_SLOT_SIZE and

KER$GW_P1_SLOT_SIZE represent the number of page frames
required.

4. The values of BMP$W_LENGTH1 and BMP$W_LENGTH2 in the
bitmap descriptor are updated to reflect the expansion of the active
portion of the bitmap.

5. The bits in the expanded portion of the bitmap are set to indicate
that the corresponding PTEs are now available for allocation. On
the KA620 processor, all the bits in the bitmap are set at once.

Memory Management and Dynamic Allocation 9-35

6. The new page (or pages for the KA620 processor) is mapped in the
portion of the system page table reserved for mapping this page
table. The PFN returned by KERSALLOCATE_FRAME is used to
map the page table page or pages.

7. The new page or pages of the page table are zeroed to create null

PTEs for the still unmapped memory created by the expansion of
the page table.

8. For the allocation of POPTEs, the new PO limit — resulting from
the expansion of the page table — is inserted into the PTX$L_PO_
LIMIT field in the hardware context block of each process in the
job. For the allocation of P1PTEs, the new P1 limit is inserted
into the PTX$L_P1_LIMIT field of the current process’s hard-
ware context block. The caller of KER$SALLOCATE_PO_PTE or
KER$ALLOCATE_P1_PTE is responsible for updating the POLR
or P1LR register for the job or process for which it is allocating
memory.

9. Control is transferred back to the first phase of execution so that
PTEs can be allocated from the newly expanded page table.

Kernel procedures that deallocate user memory, such as KER$FREE_
MEMORY, free the affected PTEs at the conclusion of a larger process
that includes such operations as verifying the ownership of the PTEs

and freeing their associated page frames.

Freeing the PTEs themselves is a straightforward process: the PTEs
that mapped the deallocated memory are cleared and the corresponding
bits in the allocation bitmap are reset. KER$FREE_PO_PTE and
KER$FREE_P1_PTE expect three input values:

® The virtual address of the first PTE to be deallocated

¢ The number of PTEs to be deallocated

¢ The address of the current JCB (PO deallocation) or PCB (P1 deal-
location)

Given these values, the routines execute as follows:

1. The virtual address of the virtual page associated with the first
PTE to be deallocated is calculated.

2. That virtual address is moved to the TBIS (translate buffer invali-
date, single) privileged register to invalidate the translation buffer
entry for that page.

3. Using the virtual address argument, the associate PTE is cleared.
4. The virtual address of the next PTE is calculated.

9-36 Memory Management and Dynamic Allocation

5. The virtual address of the next page whose PTE is being deallo-
cated is calculated.

6. Control branches back four steps until all the PTEs have been
cleared.

7. The address of the bitmap descriptor, the starting bit number, and
the number of PTEs to be freed are passed to the local subroutine
FREE_BITMAP. That routine locates the specified bit or bits in the
bitmap, resets them, updates the bitmap descriptor, and returns.

8. Control returns to the caller.

9.3.2.2 Allocating User Memory Under Program Control:
KER$ALLOCATE_MEMORY

A number of kernel procedures allocate user virtual memory on behalf
of a job or process, and each must use KERSALLOCATE_PO_PTE or
KER$ALLOCATE_P1_PTE to obtain the PTEs to map the user memory
being allocated. Procedures such as KERSCREATE_JOB allocate user
memory while mapping a program image into job memory. Jobs can
allocate PO directly by calling the kernel procedure KER$ALLOCATE_
MEMORY or by using the heap routines NEW in Pascal, and calloe,
malloc, or realloc in C.

The public kernel procedures KER$ALLOCATE_MEMORY and
KER$FREE_MEMORY (in module VMEMORY) provide the direct
means for user programs to allocate and deallocate PO and P1 virtual
memory. The direct allocation of P1 memory by a user program is un-
common but is supported to allow run-time library procedures, such
as ELNSALLOCATE_STACK, to call KERSALLOCATE_MEMORY to
expand the process stack in P1 space.

The heap routine PASSNEW2 calls KERSALLOCATE_MEMORY to
allocate PO memory to hold heap data in response to Pascal and C calls
to NEW and calloc. The heap routines provide a convenient means
for temporarily allocating small segments of PO memory; they maintain
a list of all blocks of memory allocated from the heap. When called
upon for a block of memory, PASSNEW2 attempts to satisfy the request
from memory on the list of free memory. If none of those blocks is
large enough, KERSALLOCATE_MEMORY is called to obtain a block
of adequate size.

Memory Management and Dynamic Aliocation 8-37

When PAS$DISPOSE? is called to deallocate a block of heap memory,
the routine simply returns the block to the heap’s free list — it does not
call KERSFREE_MEMORY to free the page frames and P0 memory.
The memory remains allocated in the job’s address space and can

be reused by subsequent calls to PASSNEW2. KER$ALLOCATE_
MEMORY, therefore, provides the preferred method for allocating large
blocks — a page or greater — of dynamic memory. When this memory
is deallocated with KER$FREE_MEMORY, the resources consumed by
the memory — page frames and PTEs — are returned for later use.

KER$ALLOCATE_MEMORY supports a number of options for the
allocation of user virtual memory:

* Memory can be allocated at the first available location in PO space.

* Memory can be allocated at a specific virtual address in PO or P1
space. P1 memory can be allocated only at a specified address.

* The memory can be allocated at a specific physical address. This
option enables jobs to map hardware devices that must reside at
specific physical addresses into job memory. The allocation can be
made only by jobs running in kernel mode, although they can reach
that access mode by calling KERSALLOCATE_MEMORY through
KER$ENTER_KERNEL_CONTEXT.

* Combining the second and third options, the memory can be allo-
cated at specific virtual and physical address.

The job mode of the caller is used to set the protection on the virtual
pages allocated. Pages allocated to a kernel-mode job are set with
PTE$C_URKW protection; those allocated to a user-mode job receive
PTE$C_UW protection.

Arguments to KERBALLOCATE_MEMORY specify the number of

bytes to be allocated and optional physical and virtual addresses for
the allocation. The procedure returns a status value and the virtual
address of the memory allocated. The procedure executes as follows:

1. The number of bytes to be allocated is converted to the number
of pages required (and rounded up to the next page boundary if
necessary).

2. The virtual address argument is tested. If it is an SO address,
KER$_BAD_VALUE is returned.

3. If the virtual address argument is nonzero, an explicit alloca-
tion has been requested. A flag is set to indicate this to the PTE
allocation routine.

9-38 Memory Management and Dynamic Allocation

10.

11,

If an explicit virtual allocation is required, the size argument is
used to calculate the ending address of the area to be allocated.
If the address falls into a different address space than the base
address, KER$_BAD_VALUE is returned.

The physical address argument is tested. If an address is specified,
the base access mode of the caller (in JCB$B_MODE) must be
kernel. If not, KER$_BAD_MODE is returned.

The number of PTEs required is passed to the KERSALLOCATE_
PO_PTE or KER$SALLOCATE_P1_PTE subroutine. If the explicit
allocation flag was set earlier, the virtual address argument is
passed as well. For P1 memory, the allocation is always to an
explicit virtual address.

If the subroutine failed to allocate the required number of con-
tiguous PTEs, KER$_NO_VIRTUAL status is returned to the
caller.

The length of the page table, which may have been updated during
the allocation of PTEs, is copied from JCB$L_PO_LIMIT into the
POLR register or from PCB$L_P1_LIMIT into the P1LR register.

If explicit physical allocation is required, no page frames are allo-
cated. Instead, the base PFN is extracted from the physical address
argument. The result is the allocation of physically contiguous
memory. Control transfers ahead three steps to create a PTE.

The internal subroutine KERSALLOCATE_FRAME is called to
allocate one page frame. Allocating the frames one at a time means
that the allocated memory will not be physically contiguous, making
efficient use of virtual memory. The memory will be virtually
contiguous.

If the page frame allocation fails, the allocation cannot continue.
All frames and PTEs allocated to this point are freed, and the
translation buffer is invalidated. KER$_NO_MEMORY is returned
to the caller.

. If explicit physical allocation is not required, the PFN returned by

KER$ALLOCATE_FRAME and the prototype PTE in JCB$L_RW_
DATA_PTE are used to set the PTE for the allocated page. The
allocated page is zeroed.

If explicit physical allocation is required, the specified PFN is
inserted into the allocated PTE and the PTE type is set to PTE$K_
SYSTEM. If the job mode is user, protection is set to PTE$C_

UW and ownership to PTE$C_UOWN. If the job mode is kernel,
protection is set to PTE$C_URKW and ownership to PTE$C_

Memory Management and Dynamic Allocation 9-39

KOWN. The protection of P1 pages is set to PTE§C_URKW and the
ownership to PTE$C_KOWN.

13. If more pages remain to be allocated, the process of obtaining a
PFN and setting the PTE is repeated until all pages are allocated.

14. Using the bit number (VPN) returned by KER$ALLOCATE_PO_
PTE or KER$ALLOCATE_P1_PTE, the starting virtual address of
the allocated memory is calculated and returned to the caller.

PO and P1 memory can be deallocated under program control with the
public kernel procedure KER$FREE_MEMORY. The procedure frees
user memory allocated with KERSALLOCATE_MEMORY and through
other means such as job and process creation. KER$FREE_MEMORY
does not free memory allocated in PO space by the KER$CREATE_
MESSAGE and KER$CREATE_AREA procedures. Such memory must
be deallocated explicitly with the KER$DELETE procedure. A user-
mode job can free only pages marked with PTE$C_UOWN ownership,
even if the job is running temporarily in kernel mode.

Arguments to KER$FREE_MEMORY specify the number of bytes to be
freed and the virtual addresses at which the deallocation should begin.
The procedure returns a status value and executes as follows:

1. The previous mode field is extracted from the current PSL. This
value indicates the access mode that the caller held before calling
KER$FREE_MEMORY. If the procedure has been called through
KERSENTER_KERNEL_CONTEXT, the mode will be kernel.

2. The number of bytes to be deallocated is converted to the number
of pages required (and rounded up to the next page boundary if
necessary).

3. The virtual address argument is tested. If it is an SO address,
KER$_BAD_VALUE is returned.

4. If the virtual address is not page-aligned, it is truncated to the
previous page boundary.

5. The virtual address and the size argument are used to calculate the
ending address of the area to be deallocated. If the address falls
into a different address space than the base address, KER$_BAD_
VALUE is returned.

6. The starting virtual page number is extracted from the virtual
address.

8-40 Memory Management and Dynamic Allocation

7.

10.

11.

12.

13.

The VPN is used as an index into the page table to determine the
address of the PTE that maps the first page of the memory to be
freed. For PO memory, the value of JCB$A_PO_BASE is used to
locate the page table; for P1 memory, PCB$A_P1_BASE, adjusted
for P1 space, is used.

The VPN is compared to the length of the page table. If the VPN
does not fall within the table, no page remains to be freed, and
control returns to the caller.

The PTE is tested. If it is null, the next VPN is calculated, and
control branches back two steps to process the next PTE.

The type field is extracted from the PTE. The steps taken to free
the virtual page that the PTE maps depend on the type.

If the type is PTE$K_RW_DATA, then the page frame that the
virtual page maps must be freed. Therefore, the following steps are
taken:

a. The ownership field in the PTE is tested. If the previous mode
of the caller is less privileged than the ownership set in the
PTE, the page is not freed. The next VPN is calculated, and
control branches back to process the next PTE.

b. The PFN is extracted from the PTE and is passed to the sub-
routine KER$ALLOCATE_FRAME to free the page frame.

¢. Execution then continues with the next step — the first step for
PTEs with PTE$K_SYSTEM as their type — to clear the PTE
itself.

If the type is PTE$K_SYSTEM or PTE$K_USER_CODE (valid only

in PO space), then the page frame the virtual page maps need not

be freed. Therefore, the following steps are taken (these steps also
apply to PTEs of type PTE$K_RW_DATA):

a. The PTE is cleared to unmap the virtual page.

b. The address of the cleared PTE is passed to the KERSFREE_
PO_PTE or KER$FREE_P1_PTE to reset the appropriate bits in
the PO or P1 allocation bitmap.

c. [Execution then continues with the next step to calculate the
next VPN,

If the type is PTE$K_MESSAGE (valid only in PO space), no

memory is freed. Pages of this type can be freed only with the

KER$DELETE procedure. Therefore, the next VPN is calculated,
and control branches back to process the next PTE.

Memory Management and Dynamic Allocation 9-—41

14. If an unexpected PTE type is encountered, the kernel bugchecks.
For example, if a PTE of type PTE$K_MESSAGE were to appear in
the P1 page table, a bugcheck would result.

9.4 Allocating System Pool

The system pool, consisting of a user-specified number of fixed-length
blocks of SO memory, supports the creation of kernel objects and other
structures that support real-time operations such as device handling
and synchronization. The kernel uses pool blocks for the following

purposes:

® Kernel objects. Area, device, event, message, name, process, and
semaphore data structures reside in pool blocks. See Chapter 10.

* Object pointer tables. These pool blocks contain pointers to a job’s
kernel objects. See Chapter 10.

¢ Job parameter blocks. These pool blocks temporarily contain
the arguments passed to a job from the System Builder or the
KER$CREATE_JOB procedure.

¢ Interrupt dispatch block. This block contains a procedure that calls
an interrupt service routine to handle a hardware interrupt.

® Wait control blocks. These blocks describe the conditions of a
process’s entrance to and exit from a wait state. One pool block can
hold three wait control blocks.

The system pool contains a user-specified number of fixed-length pool
blocks. Physical memory for fixed-length system pool blocks is allocated
during system initialization and mapped into a range of system virtual
addresses reserved by the kernel. The creation of the system pool

is described in Section 9.4.1. System pool blocks cannot be directly
allocated under program control. Rather, the kernel allocates and frees
pool blocks on behalf of user programs using the KER$ALLOCATE_
POOL and KER$FREE_POOL procedures described in Section 9.4.2.

9-42 Memory Management and Dynamic Allocation

9.4.1 Initializing System Pool

The system pool is created in SO address space during the system
initialization sequence with memory mapping enabled. The entire
sequence is described in Chapter 3. The number of system pages
devoted to the pool is determined by the global value KER$GW_POOL_
SIZE. The size of a pool block is set by the assembly-time symbol
OBJ$K_LENGTH. The current value is 128 bytes, meaning that each
page of system pool contains four pool blocks.

The creation of the system pool, in module INITIAL, occurs as follows:

1. The number of pages to be mapped for the pool is obtained from
KER$GW_POOL_SIZE.

2. The current system virtual address is copied to the global value
KER$GA_POOL_BASE to mark the base address of the pool.

3. Control branches to the local subroutine GET_FRAME to obtain a
page of physical memory and map it in the system page table.

4. The number of pool blocks within each page is calculated by divid-
ing the size of a page (512 bytes) by OBJ$K_LENGTH (128 bytes)
yielding four blocks for each page.

5. The virtual addresses of each pool block within the page frame are

passed one at a time to the internal subroutine KER$FREE_POOL
(see Section 9.4.2) to enter them onto the list of free pool blocks.

6. Steps 3 through 5 are repeated until all the pages in the pool are
divided into pool blocks and inserted into the free list.

9.4.2 Allocating and Deallocating Pool Blocks

The allocation of pool blocks requires the cooperation of the allocat-
ing routine and the KERSALLOCATE_POOL subroutine (in module
ALLOCATE). The allocation routine only reserves a specified number
of pool blocks for its caller; it is up to the caller to remove the reserved
blocks from the list of free blocks. A kernel procedure, then, obtains a
pool block in two stages:

1. It reserves the number of pool blocks it requires by passing that
number to the internal subroutine KER$ALLOCATE_POOL (using
the ALLOCATE POOL kernel macro).

Memory Management and Dynamic Allocation 9-43

2. It removes the reserved pool blocks as they are needed with the
REMOVE kernel macro. REMOVE generates a REMQHI instruc-
tion to obtain the address of the pool block and remove it from
the free list. The address is then used to manipulate the block as
required.

This allocation sequence is illustrated in the discussion of creating
kernel objects in Chapter 10.

KER$ALLOCATE_POOL manipulates the global value KER$GL_
POOL_FREE. When the pool is created, this value contains the negated
number of blocks in the pool. When a block is allocated, KER$GL_
POOL_FREE is increased by one. (When the value reaches zero, the
pool is empty. If the increment of KER$GL_POOL_FREE exceeds 0,

a failure flag is returned to the caller. The caller will in turn return
KER$_NO_POOL status to its caller.) KERSALLOCATE_POOL then
returns the address of the global quadword value KER$GQ_POOL_
HEAD to the caller. The REMQHI instruction generated by the caller’s
subsequent invocation of the REMOVE macro uses this value to locate
and remove each pool block from the queue of free blocks.

Pool blocks are returned to the pool by passing the address of the block
to the internal subroutine KER$FREE_POOL, invoked from kernel
procedures with the FREE POOL macro. That subroutine subtracts
one from the value of KER$GL_POOL_FREE to reflect the addition of
one block to the pool. It then executes the INSQTI instruction — with
the address of the block and KER$GQ_POOL_HEAD as its operand
specifier — to insert the block back into the queue of free blocks, and
returns to its caller. The freeing of a pool block during object deletion
is described in Chapter 10.

844 Memory Management and Dynamic Allocation

Chapter 10

Kernel Objects and Their
Management

A VAXELN kernel object is a data structure in system address space
that defines the state of a user-controlled system activity or resource.
Kernel objects give VAXELN jobs the means to create subprocesses,
synchronize execution, exchange messages, share memory, and control
hardware devices.

The VAXELN Kernel creates most kernel objects for a job using the
system dynamic pool. The process is initiated by an object-creation
procedure call, such as KERSCREATE_PROCESS. The call returns
an identifier value to the caller to represent the created object in all
subsequent operations on the object. Depending on its type, a kernel
object has an identifier that is unique within a job or unique within an
entire VAXELN system.

Job-specific objects, whose identifiers are unique within a job, include
the following objects:

® Area

® Device

e Event

® Message
e Name

¢ Process

e Semaphore

Kernel Objects and Their Management 101

The only systemwide object is the port. Ports require unique identifi-
cation throughout a system and therefore cannot be unique to any one
job.

This chapter describes how kernel objects are created, manipulated,
and managed. No detailed description of their structures and uses
appears here — those discussions arise throughout this book and in the
VAXELN user documentation. For the remainder of this chapter, the
term kernel objects refers to the job-specific objects, and the term port
object refers to the port object.

10.1 Creating, Managing, and Deleting Kernel Objects

At any given moment in its execution, a VAXELN job can contain up
to 4096 kernel objects. Each object has a unique 32-bit identifier that
the kernel uses to locate the address of the object in a two-tiered set of
address tables. This two-level system of address tables helps the kernel
protect and manage objects by hiding the actual system addresses of
the objects from user jobs, preventing uncontrolled access. The system
also allows for rapid validation of object operations and the orderly
dynamic creation and deletion of objects.

When a job creates an object, the kernel takes the following steps on
the caller’s behalf:

1. It obtains a pool block from the system pool to contain the re-
quested object. Process objects, however, occupy a 512-byte page of
system memory from the communication region.

2. It formulates a unique identifier that represents an unused entry
in a table of pointers to the job’s kernel objects.

It fills in the object fields as appropriate for the requested object.

4. It inserts the address of the allocated object into the table entry
represented by the new object identifier.

5. It returns the identifier to the calling job in a longword variable
supplied by the caller.

ot

When the job that created the object subsequently passes the object
identifier variable in a kernel procedure call, the kernel uses the iden-
tifier value to look up the address of the associated kernel object in the
job’s table of pointers. Using this address, the kernel can then perform
the requested operation on the object. When the job deletes the object,
the kernel takes the following steps:

10-2 Kernel Objects and Their Management

1.

2.

3.

It uses the identifier value to locate the table entry containing the
address of the object to be deleted.

It performs the necessary actions on the object to allow it to be
removed from the job.

It returns the pool block occupied by the object to the system pool.
For process objects, the page of system memory is returned to the
communication region.

It removes the object address from the table entry and replaces it
with a prototype object identifier.

The sections that follow describe the data structures involved in object
processing and discuss creating and deleting kernel objects in more
detail.

10.1.1 Structures and Data for Managing Kernel Objects

The kernel maintains a number of data structures and data items that
support the creation, use, and deletion of kernel objects:

The values for the jobwide data items JCB$A_OBJECT_TABLE and
JCB$W_OBJECT _FREE. These values, stored in the job control
block (JCB), are used to locate the object base table and to locate
available object pointer table entries, respectively.

The object base table, which contains the addresses of the object
pointer tables. This table forms the first tier in the two-tiered
arrangement of address tables and can hold the addresses of up to
128 object pointer tables.

The object pointer tables, which contain the addresses of up to
32 kernel objects. These tables — up to 128 of them — form the
second tier of address tables.

The object identifier, a value that, when translated, locates an entry
in an object pointer table that contains the address of an object.

The kernel objects themselves, which contain the information that
defines the type and state of an object.

The following sections describe these data items and structures and
how the kernel uses them. They are described roughly in the order
that they are created by the kernel when a VAXELN job is created.

Kernel Objects and Their Management 10-3

10.1.1.1

Jobwide Data ltems

The longword value JCB$A_OBJECT_TABLE contains the address of
the system page that contains the object base table, which in turn holds
pointers to existing object pointer tables. This value exists for the life
of a job and is used as a base address in VAX indexed instructions to
look up the address of a particular object pointer table.

The 16-bit value JCB$W_OBJECT_FREE contains, in encoded form,
the location of the next available entry in the object pointer tables.
This pointer-like value is used and updated during each kernel object
creation and deletion.

When a object is being created, the pointer table entry that its address
will occupy is determined by the value OF JCB$W_OBJECT_FREE.
When the object’s address is entered into the pointer table, the pro-
totype identifier value formerly stored in that entry becomes the new
value of JCB$W_OBJECT_FREE. Because each prototype identifier
points indirectly to the next entry in the pointer table, the new value
JCB$W_OBJECT_FREE points to the table entry after the one now
occupied by the new object’s address. The next object created will
therefore occupy the next table entry, which again is pointed to by
JCB$W_OBJECT_FREE.

The functions of both jobwide values in object operations are described
further throughout the remainder of this chapter.

10.1.1.2 Base Table

The base table contains the addresses of dynamically created object
pointer tables. The base table occupies one 512-byte page in the system
communication region, and, therefore, can contain up to 128 (512/4)
longword pointers to object pointer tables. A single base table is created
by the KER$CREATE_JOB procedure. The address of the base table is
stored in the JCB$A_OBJECT_TABLE field in the job’s JCB. The table
exists until the job is deleted.

The KER$CREATE_JOB procedure creates and initializes the base
table just before it creates the master process for the job; the master
process is the first object created in any job. After job creation, the
job’s base table appears as shown in Figure 10-1. In the figure, the
bracketed decimal numbers represent the zero-based index used to
access the longword entries in the table.

104 Kernel Objects and Their Management

Figure 10-1: Base Table

31 0
0 ::JCB$A_OBJECT_TABLE [0) (Base)
0 :[1]
0 :[2)
b A 4
0 :[125]
0 :[126)
Address of 1st Object Pointer Table :[127]
MLO-003243

The kernel fills the table starting from its end. As the figure shows,
all longwords but the last are initialized to zero. The last longword
contains the address of the first dynamically allocated object pointer
table, capable of holding the job’s first 32 objects. When this original
object pointer table is full, the kernel allocates another pointer table
and places its address in the next-to-last longword in the base table,
immediately preceding the address of the first pointer table.

The pointer-table addresses in the base table are accessed through
VAX indexed instructions (in displacement-deferred indexed addressing
mode), using the base field in the object identifier as the index into the
base table to indicate which pointer table contains the object. (Object
identifiers are described in Section 10.1.1.4). For example, if register
R7 contains the address of the JCB, and RO holds the base field from
the object identifier, then after the following instruction, R1 will contain
the address of the object pointer table that contains the object:

MOVL @JCB$A_OBJECT_TABLE (R7) [R0],R1

Once it has obtained the address of the object pointer table from the
base table, the kernel can then look up the address of the actual kernel
object in that pointer table.

Kernel Objects and Their Management 10-5

10.1.1.3 Object Pointer Tables

An object pointer table contains the addresses of dynamically created
kernel objects. A pointer table occupies one 128-byte pool block and
therefore can contain the addresses of up to 32 (128/4) kernel objects.
Because the base table can point to 128 pointer tables, and each pointer
table can point to 32 objects, a job can therefore contain up to 4096
objects (128*32).

A job has at least one object pointer table created by KER$CREATE_
JOB. When one table fills with object addresses, the kernel allocates
another (with the KERSALLOCATE_OBJECT procedure in module
ALLOCATE) and places its address in the base table. Once a pointer
table has been allocated, it exists until the job is deleted, even though
the objects the table points to may no longer exist. When a newly
allocated table is initialized, as shown in Figure 10-2, prototype object
identifiers act as placeholders for the table entries.

Figure 10-2: First Object Pointer Table, after Initialization

31

[-]

FE2 ﬁ
FE3 ;I
FE4 ;]
1 __I
FFF ;j
1000 - l
- <

MLO-003244

10-6 Kernel Objects and Their Management

These prototype identifiers, however, are more than placeholders.

The values assigned to them play a crucial role in the creation of
kernel objects. Each prototype identifier represents the base and index
values that point to the next available object pointer table entry (the
base value represents an entry in the base table, and the index value
represents an entry in the object table pointed to). The arrows in
Figure 10-2 emphasize how each prototype identifier, when decoded to
its base and index components, points to the table entry that follows
it. Section 10.1.1.4 describes in greater detail the role of the base and
index values in the creation of object identifiers.

During object creation (described in Section 10.1.2), the value of the
prototype identifier becomes the new value of JCB$W_OBJECT_FREE,
so that it points to the next available pointer table entry. The previous
value of JCB$W_OBJECT_FREE becomes the identifier for the newly
created object.

The final longword in the pointer table is initialized to 0 to mark the
end of the table.

As kernel objects are created, the kernel inserts their addresses into
the pointer table, starting at the top. Figure 10—3 shows the first
object pointer table after five objects have been created. The bracketed
numbers represent the zero-based index used to access the longword
entries in the table. When an object’s address is inserted into the table,
it displaces the prototype identifier, which becomes the new value for
JCB$W_OBJECT_FREE. When the final entry in the table is filled, the
value of JCB$W_OBJECT_FREE becomes 0, which will indicate, at the
next object creation, that the table is full.

At the next object creation, a new pointer table is created and ini-
tialized. If the new pointer table is the second one allocated, its first
prototype identifier will have the value FC2 to reflect the position of
the new pointer table’s address in the base table. That is, the value
FC2 decodes to represent a base table index of 126, meaning that the
pointer table address appears in the next-to-last longword in the base
table.

The object addresses in the pointer table are accessed through VAX
indexed instructions (in register-deferred indexed addressing mode)
using the index field in the object identifier as the index into the
pointer table. For example, if register RO contains the address of
the object pointer table and R1 holds the index field from the object

Kernel Objects and Their Management 10-7

Figure 10-3: First Object Pointer Table after the Creation of Five

Objects
31 0
Address of 1st Object :[0] (index)
Address of 2nd Object 1]
Address of 3rd Object 2]
Address of 4th Object :[3]
Address of 5th Object :[4]
FE7 [5]
FE8 :[6]
A
FFF :[29]
1000 :[30]
4] :[31]

MLO-003245

identifier, after the following instruction, R2 will contain the address of
the identified object:

MOVL RO[R1],R2

Once it has obtained the address of the object from the pointer table,
the kernel manipulates the object as required.

10.1.1.4 Object identifiers

When a job creates an object, it receives an identifier value in return
to support further operations on the new object. All KER§CREATE
procedures (such as KER$CREATE_EVENT) require their callers to
supply a writeable longword variable to receive the identifier for the
created object. This identifier should not be confused with the object
itself, which resides in system space, or with the address of the object,
which resides in an object pointer table. In fact, object identifiers
usually have values that fall into the VAX S1 virtual address range;

10-8 Kernel Objects and Their Management

therefore, using them in address expressions will result in run-time
access violations.

Figure 104 shows the structure of an object identifier, and Table 10-1
describes the significance of the bit fields within the 32-bit identifier.

Figure 10—4: Structure of an Object Identifier

31 30 29 1615 12 11 5 4 0

] T Sequence MBZ Base Index

T— Type (always 1)

System (always 1) MLO-003246

Table 10-1: Bit Fields Within the Object identifier

Bit field Size Meaning
Index 5 The longword offset into the object pointer table

to the address of the identified object. The
maximum value this field can hold is 81, the
highest valid index into the object pointer table.

Base 7 The longword offset into the base table to the ad-
dress of the object pointer table. The maximum
value this field can hold is 127, the highest valid
index into the object base table.

Sequence 14 The generation number of the object in its object
pointer table entry; used to detect mismatches
between an identifier and an object.

Kernel Objects and Their Management 10-9

Table 101 (Cont.): BIt Fields Within the Object identifier

Meaning

Bit field Size
Type 1
System 1

When set, indicates that the identified object is a
job-specific object, that is, not a port object. (This
bit and the system bit are required to distinguish
an object identifier from a the address of a

port identifier. If the port identifier has an SO
address, the bit corresponding to the system bit
will be set, making it impossible to distinguish
the address of a port identifier from an object
identifier using the system bit alone.)

When set, forces the identifier to have a value
that appears to be a system address; specifically,
the setting of this bit and the type bit causes the
identifier to appear as an S1 address

(C0000000,¢ and higher).

The fields in the identifier are represented within kernel code by sym-
bolic values. Table 10-2 shows the names, values, and significance of
the symbolic values the kernel uses when manipulating object identi-

fiers.

Table 10-2: Assembly-Time Symbols Representing Object Identifier

Bit Fields

Symbol Value Meaning

JID$S_BASE 7 The size of the base bit field

JID$V_BASE 5 The starting bit number of the
base bit field

JID$S_INDEX 5 The size of the index bit field

JID$V_INDEX 0 The starting bit number of the
index bit field

JID$S_SEQUENCE 14 Thes size of the sequence bit
field

JID$V_SEQUENCE 15 The starting bit number of the
sequence bit field

JID$V_SYSTEM 31 The starting bit number of the
system bit field

10-10 Kernel Objects and Their Management

Table 10-2 (Cont.): Assembly-Time Symbols Representing Object

Identifier Bit Fields
Symbol Value Meaning
JID$V_TYPE 30 The starting bit number of the
type bit field

To form the identifier for the object it is creating, the kernel takes the
following steps:

1. It inserts the longword index within the base table of the address
of the current pointer table into the base field of the identifier.
In other words, if the address of the current object pointer table
appears in, say, the 128th entry in the base table, the base value
becomes 127 (with a zero-based index).

2. It inserts the longword index within the object pointer table of the
next available table entry into the index field of the identifier. In
other words, if the address of the created object will appear in, say,
the third longword in the pointer table, the index value becomes 2
(with a zero-based index).

3. It inserts the incremented sequence number for the object into the
sequence field of the identifier.

Based on a base value of 127, an index value of 2, a sequence value of 0,
and a value of 1 for both the system and type bits, an object identifier
would be formed as shown in Figure 10-5, with a resulting value of
COO00FE2. Later, when the resulting identifier is used in a kernel call,
the kernel translates the value by extracting the index and base fields
to locate the actual address of the identified object. This process is
described in Section 10.1.3.

Through subsequent uses of the same object pointer table entry, the
value of the sequence field will increase. This increase is reflected in
the object identifier. For example, the identifier for the second object
to use a table entry will contain a sequence number of 1. Although
not reflected in Figure 10-5, the sequence number is represented by
the most-significant four hexadecimal digits of the identifier. As the
sequence number reaches its maximum value (16,383), the C that

is normally the most-significant digit in the identifier is replaced,
successively, by a D, an E, and an F.

Kernel Objects and Their Management 10-11

Figure 10-5: Formation of an Object Identifier

31 30 29 16 15 12 11 54
1 1 0 0 127 2
s T Sequence #MBZ Base Index
1 1 00000000000000 | 0000 1111111 00010
1100 0000 | 0000 0000 } 0000 1111] 1110 0010
o} [} 0 0 ¢ 0 F E 2
CO000FE2

Actual Field Values

Binary Representation
of Fields

Binary Representation
by Nibble

Identifier in
Hexadecimal

MLO-003247

10.1.1.5 Kernel Object Structures

A kernel object occupies one 128-byte system pool block, which is
allocated from the system pool when the object is created. An object
therefore resides in system address space, where it is protected from

uncontrolled access by user programs.

The structure of an object depends largely on its type. As an example,

Figure 10-6 shows the structure of an event object.

All the fields in the event object (EVT), except the EVT$B_TYPE and
EVT$L_SEQUENCE fields, are specialized to meet the requirements of

event operations. The ninth byte in all kernel objects contains a unique

value representing the object’s type. Table 10-3 shows the constant
values that can appear in an object’s type field.

10-12 Kernel Objects and Their Management

Figure 10-6: Structure of an Event Object

EVT$A_WAIT_FLINK

EVT$SA_WAIT_BLINK

EVT$B_TYPE

EVT$L_SEQUENCE

EVT$B_LOCK EVT$B_STATE

MLO-003248

The type field is used by the kernel to ensure that an operation is
appropriate for a particular object. For example, the KER§DELETE
procedure is used to delete all object types; within the procedure, the
kernel uses the type field to determine what kind of object will be
deleted. It then takes the appropriate action to delete that type of
object. The seugnce field, which always occupies the fourth longword in
an object, is used in validating object identifiers.

Table 10-3: Kernel Constants That identify Object Types
Constant/Type Value

OBJ$K_DEVICE
OBJ$K_EVENT
OBJ$K_MESSAGE
OBJ$K_NAME
OBJ$K_PORT
OBJ$K_SEMAPHORE
OBJ$K_PROCESS
OBJ$K_AREA 13

W =3 O Ot b~ N =

Kernel Objects and Their Management 10-13

10.1.2 Creating Kernel Objects

Kernel objects are created when a job calls one of the KER$CREATE
procedures, such as KERSCREATE_PROCESS or KER$CREATE_
EVENT. Each of these procedures is responsible for the aspects of
object creation that are specific to its type of object, but all of them
call the internal subroutine KERSALLOCATE_OBJECT (in module
ALLOCATE) for these tasks: generating an object identifier and re-
turning the address of the entry in the object pointer table that will
hold the address of the new object.

The kernel procedure KER$CREATE_EVENT (in module CREATEEVT)
offers a brief example of object creation. The relevant portions of its
code are shown in Figure 10-7. The procedure executes as follows:

1. The kernel macro ALLOCATE POOL generates a branch to a
subroutine to allocate a pool block for the object.

2. The kernel macro REMOVE obtains the address of the pool block.

3. The kernel macro ALLOCATE OBJECT generates a branch to the
routine KERSALLOCATE_OBJECT. This routine generates an
object identifier for the new event object and returns the address
of the object pointer table entry where the object address will be
stored.

4. The fields of the event object are initialized.

5. The address of the initialized event object (that is, the address of
its pool block) is inserted into the object pointer table using the
table entry address returned by KERSALLOCATE_OBJECT. The
sequence number for the allocated identifier is inserted into the
EVT$L_SEQUENCE field of the event object.

The internal subroutine KERSALLOCATE_OBJECT (invoked by the
ALLOCATE kernel macro) plays a key role in object creation. The
routine has these responsibilities:

* Generate and return an object identifier for the new object.

® Generate and return a sequence number for the new object.

* Return the address of the entry in the current object pointer table
that will receive the address of the new object.

10-14 Kernel Objects and Their Management

Figure 10-7: Creation of an Event Object

KER$CREATE_EVENT_S: :

MOVL $1,R0 ; set number of pool blocks to allocate

ALLOCATE POOL ; allocate event object pool block
bsbw KER$ALLOCATE_POOL

BLBC RO, 208 ; if lower bit clear, failure

REMOVE Ré6 ; remove event object block from pool
remghi (R1),Ré

ALLOCATE OBJECT ; allocate object table entry
bsbw KER$ALLOCATE_OBJECT

BLBC RO, 308 ; failure if all tables full

; Rl contains ID, R2 object address
. initialize the Event object

MOVL R6, (R2) ; store address of event object in pointer table
MOVL R3,EVT$L_SEQUENCE (R6) ; store secquence number in event object

* If the current object pointer table is full, allocate and initialize a
new table and place its address in the base table.

KER$ALLOCATE_OBJECT executes as follows to allocate an object for
the calling KER$CREATE routine:

1. The value of JCB§W_OBJECT _FREE is obtained. This value en-
codes the location of the next available pointer table entry and
therefore determines the object identifier for the new object. For
example, before the very first object in a job (the master process) is
created, JCB§W_OBJECT_FREE has the value FE1,q, represent-
ing the 127th base table entry (the first pointer table created) and
the first entry in that pointer table.

2. If ICB$W_OBJECT_FREE is 0, this means that the current pointer

table is full and a new table must be allocated (this process is
examined later).

If JCB$W_OBJECT_FREE is not 0, then the current table will hold
the object address of the new object.

3. The value of JCB§W_OBJECT_FREE is reduced by 1 to generate
the actual index value for new object’s identifier. In other words,
the nonzero value of JCB§W_OBJECT_FREE is always one higher
than that of the object identifier it will generate. (This offset of 1 is
required to adjust for the 0 used as the marker for the end of the
pointer table.)

Kernel Objects and Their Management 10-15

4. The base field is extracted from the adjusted value of JCB$W_
OBJECT _FREE. This value represents the base value in the object
identifier; that is, the value is the offset into the base table of the
longword of the appropriate pointer table. For example, a base
value of 127 indicates that the address of the pointer table appears
in the last longword in the base table.

5. The index field is extracted from the adjusted value of JCB$W_
OBJECT_FREE. This value represents the index value in the object
identifier; that is, the value is the offset into the pointer table of the
longword that will hold the address of the new object. For example,
an index value of 2 indicates that the address of the object will
appear in the third longword in the pointer table.

6. The address of the object pointer table is obtained from the appro-
priate entry in the base table by indexing the table by the base
value obtained from JCB$W_OBJECT_FREE.

7. The address of the pointer table entry to hold the new object’s
address is calculated by using the index value as an index into the
pointer table. For example, if the index value is 2, the address of
the third entry in the pointer table is obtained. The KER$CREATE
procedure that called KERSALLOCATE_OBJECT will use this
address to copy the address of the object it creates into the pointer
table.

8. The prototype identifier value in the selected pointer table entry
is copied to JCB$W_OBJECT_FREE. This means that when the
next object is allocated, its address will be placed in the pointer
table entry following that of the object just created. If the prototype
entry copied to JCB$W_OBJECT_FREE is 0, then the pointer table
is now full, and a new one will be allocated when the next object is
created.

9. The sequence field value is extracted from the prototype identifier
in the table entry and inserted into the same field in the object
identifier. This sequence value is also returned to the caller so that
the sequence can be set in the created object.

10. The system and type bits are set in the constructed object identi-
fier. The KER$CREATE procedure that called KERSALLOCATE_
OBJECT returns the value to its caller as the identifier of the ob-
ject it created. In the subsequent object operations, the identifier
will allow the kernel to locate the pointer table entry that holds the
address of the object.

11. The pointer to the allocated pointer table entry is returned to the
KER$CREATE procedure.

10-16 Kernel Objects and Their Management

When KER$ALLOCATE_OBJECT discovers the value of JCB$W_
OBJECT_FREE to be 0, it must attempt to allocate a new object pointer
table. It does so by branching to a series of instructions that execute as
follows:

1.

The base table is searched from bottom to top for an unused entry.
If none is found, the procedure returns a failure status to the
KER$CREATE procedure to indicate that no new object can be
created by the job until another is deleted, freeing a pointer table
entry.

If a table entry is available, a pool block is allocated to hold the
table, and the address of the block is placed in the free base table
entry. The offset of this entry in the base table will become the
base field in the identifiers for all objects associated with the new
pointer table.

That base field value is shifted into base bit field, and one is added
to initialize the index field to 1. The resulting value (FC1y¢ for the
second pointer table) is then copied into JCB$W_OBJECT_FREE
to establish a pointer to the first entry in the pointer table. The
following instruction sequence is used:

ASHL #JID$V__BASE,R2,R2 ; shift base offset into base field
INCL R2 ; adjust index for pointer table
MOVW R2,JCB$W_OBJ'ECT_FREE (R7) ; set OBJECT FREE for first entry

The table is then initialized by writing prototype identifier values to
all but the last longword in the table; that entry becomes 0 to mark
the end of the table. The prototype values are generated by looping
to add 1 to the index field (which equals JCB$W_OBJECT_FREE)
and writing the result to the first through 32nd entries in the table.
For example, the first prototype value in the second pointer table
will be F'C26; the next to last will be FE0;¢. The sequence field in
the prototype identifiers is 0.

Control branches back to the start of KERSALLOCATE_OBJECT,
which then returns an object identifier, a sequence value, and the
address of the first entry in the newly allocated pointer table to
the calling KER$CREATE procedure. The first identifier returned
for the first object associated with the second pointer table will be
C0000FCO.

Kernel Objects and Their Management 1017

Figure 10-8 shows a job’s object-management values and data struc-
tures as they would appear after the creation of 34 kernel objects. The
addresses of the first 32 objects fill the first pointer table, whose ad-
dress appears in the last longword in the base table. Therefore, objects
associated with the first pointer table all have identifiers with a base
value of 127. The addresses of the thirty-second and thirty-third objects
appear in the first two longwords of the second pointer table, whose ad-
dress appears in the next-to-last longword in the base table. Therefore,
objects associated with the second pointer table all have identifiers with
a base value of 126. This decrease in the base field value as each table
is allocated accounts for the unique identifier values for the objects
within the job.

The value of JCB$W_OBJECT_FREE, as shown in the figure, is FC31¢
and points to the pointer table entry in which the next object created
will appear. Subtracting 1 from FC3;¢ produces the value FC2g,
which decodes to a base value of 126 and an index value of 2; therefore,
the address of the next object created will be in the third longword
(with a zero-based index) in the pointer table whose address appears in
the 127th longword in the base table (again, with a zero-based index).

10.1.3 Translating Object Identifiers

Object translation — the decoding of an object identifier into the ad-
dress of the object it identifies — occurs whenever the kernel must
manipulate an object. In the process of translation, the kernel validates
the object identifier and the address it translates into.

The internal subroutine KER$TRANSLATE_OBJECT (in module
KERNELSUB) translates objects. This routine is called by all ker-

nel procedures that manipulate kernel objects, such as KER§DELETE
and KER$SIGNAL_EVENT. The routine expects two inputs: the iden-
tifier value to be translated and the address of the JCB for the job that
owns the object. When control returns to the calling procedure, the
address of the identified object is located in R1. The kernel uses that
address to access the object.

10-18 Kernel Objects and Their Management

Figure 10-8: Kernel Object Management Structures after the Creation of 34 Objects

JcB
7 ;

JCB$W_OBJECT_FREE [FC3=(Base 126, Index 2, i.e.,3-1)

JCB$A_OBJECT_TABLE >

J 0
{ | 0
0

AN
N\

Pointer Table 2
(BASE = 126)

Address of Table 2 >

Address of Obj. 33

Address of Table 1 Object
Address of Ob). 34 33
ID = CO00OFCO
FCa ¢
FCS Object
34
Y 1 ID = CO00OFC1
FEO
0

Pointer Table 1

Object
(BASE = 127) 1

(Index=0) Address of Obj. 1 ID = COO00FEO

Address ot Obj. 2 >

Object
Address of Obj. 3 2

ID = COO00FE1

N\
P

(Index=31) Address of Obj. 32 >

Object
32

ID = COO00OFFF

MLO-003240

Kernel Objects and Their Management 10-19

Figure 10-9 shows the brief code sequence used to validate and trans-
late an object identifier. KER$TRANSLATE_OBJECT was designed
to complete object translation — a common run-time operation — in
as few instructions as possible. The data items and structures associ-
ated with object management exist to support that goal. The routine
executes as follows:

1. The system and type bits in the identifier are tested. If they are
set, then the identifier is valid. If not, control branches to the error
exit for the routine.

2. The index field of the identifier is extracted.
The base field of the identifier is extracted.

4. The base value is used to obtain the address of the appropriate
object pointer table in the base table. If the result is equal to 0,
then the object identifier must be invalid, because it pointed to an
empty entry in the base table; control branches to the error exit.

o

5. The sequence field in the identifier is compared to the sequence
field in the translated object. If the two values do not match, the
identifier is invalid, and control branches to the error exit. This
mismatch means that an object pointer table has been reused.

6. The pointer table address and the pointer table index are used to
obtain the system address of the object from the pointer table. If
the value obtained from the table is 0 or greater, then the identifier
must be invalid, because system addresses are interpreted as
negative integers by the hardware (bit 31 set); control branches to
the error exit.

7. Control is returned to the caller, with the address of the object in
R1.

Figure 10-10 shows how KER$TRANSLATE_OBJECT is used in the
kernel procedure KER$CLEAR_EVENT. The KER$CLEAR_EVENT
procedure is passed the identifier of the event object in its argument
list. It then passes that identifier to KER$TRANSLATE_OBJECT. If
that routine succeeds, then R1 contains the address of the event object
itself. That address is then used to access the fields in the object to
validate its type and, finally, set its state to clear.

10-20 Kernel Objects and Their Management

Figure 10-9: Kernel Object Translation with KER$TRANSLATE_OBJECT

KE‘.R$TRANSLATE_OBJECT: : ; RO = identifier, R7 = JCB

CMPZV #JID$V_TYPE, #2,R0, #3 ; system and type bits set in ID?
BNEQ 108 ; if not, then invalid ID
EXTZV #JIDSV_INDEX, #JIDSS_INDEX, RO,R1

; extract index offset from ID
EXTZV #JID$V_BASE ’ #JID$S_BASE, RO,R2

; extract base offset from ID
MOVL @JCBSA_OBJECT_TABLE (R7) [R2],R2

; get address of pointer table
BEQL 10$; 1f the addr. is 0, then this

; is a bad ID
MOVL (R2) [R1],R1 ; get address of object from table
BGEQ 108 ; if result is >= 0, then it is

; a prototype ID, not an address
ASHL #—JID$V_SEQUENCE,RO,R0 ; move sequence number to lower word
BICL2 #"C<JID$M_SEQU’ENCE@—JID$V_SEQUENCE>, -

RO ; mask out extraneous bits
CMPL RO, OBJ$L_SEQUENCE (R1) ; compare sequence numbers
BNEQ 108 ; if unequal, this is a bad ID
MOVL #1,R0 ; set success indicator
RSB ; return to caller
10$: CLRL RO ; set failure indicator

RSB ; return with failure

Figure 10-10: Use of KERSTRANSLATE_OBJECT by KER$CLEAR_EVENT

KER$CLEAR EVENT_S::

MOVL

EVENT (AP) ,RO ; get event object ID from arg. list
BSBW KER$STRANSLATE_OBJECT ; translate object ID to pointer
; address of object now in R1
BLBC RO, 20$; invalid ID -~ return KER$_BAD VALUE
CMPB #OBJSK_EVENT, OBJ. $B_TYPE (R1)
; is this an event object?
BNEQ 30§ ; not event ~- return KER$_BAD_TYPE
CLRB EVTSB_STATE(RI) ; set event state to cleared
RETURN_STATUS SUCCESS
20§: RETRUN_STATUS BAD_VALUE
308: RETURN_STATUS BAD_TYPE

10.1.4 Deleting Objects

Kernel Objects and Their Management

10-21

The deletion of a kernel object occurs when a job calls the KER$DELETE
procedure, passing as an argument the variable that holds the identi-
fier of the object to be deleted. In deleting an object, the kernel returns
the pool block occupied by the object to the system pool and replaces the
object’s address in the pointer table with a prototype object identifier.

When a job exits (with the deletion of its master process), all the job’s
objects are deleted and the memory occupied by its base table and
pointer tables is returned to the system.

The following sections describe these two levels of object deletion.

10.1.4.1 Deleting an Individual Kernel Object

When the KER$DELETE procedure is called to delete a kernel object,
the following events occur:

* Object-specific actions are taken to clean up the object’s associa-
tions within the job. For example, if the object is an event or a
semaphore, any processes waiting on the object are unblocked with
the KER$_BAD_VALUE status value.

¢ The object’s pool block is returned to the system pool.

¢ The object’s address is removed from the object pointer table and is
replaced by a prototype object identifier, namely, the current value
of JCB$W_OBJECT_FREE.

¢ The value of JCB$W_OBJECT FREE is replaced by the adjusted
value of the identifier of the deleted object. JCB$W_OBJECT_
FREE then points to the point table entry just freed.

Different portions of KER§DELETE handle the object-specific aspects
of deletion, but, in every case, the internal subroutine KER$FREE_
OBJECT (in module ALLOCATE) is called to remove the object’s ad-
dress from the pointer table.

Figure 10-11 shows the portions of KER$DELETE relevant to deleting
an event or semaphore object. The same code sequence applies to the
deletion of all kernel objects — only the actions specific to each type
of object, such as unblocking processes waiting on deleted events or
semaphores, differ. The deletion sequence executes as follows:

1. The object identifier is copied from the argument list.

10-22 Kernel Objects and Their Management

If the value passed as an identifier is not negative (system bit set),
or if the type bit is clear, then the identifier is actually the address
of a port object. Control branches to the sequence for port deletion
(described in Section 10.2.4).

Control branches to the KER$TRANSLATE_OBJECT internal
subroutine (described in Section 10.1.3) to return the address of the
identified object. If the identifier was invalid, control branches to
return the failure status KER$_BAD_VALUE to the caller.

Control branches to the local label DELETE_OBJECT, where
the object’s type field is examined. For a semaphore or event
object, control then branches to the local label DELETE_
EVENT/DELETE_SEMAPHORE.

The object identifier is again copied from the argument list.

The kernel macro FREE OBJECT generates a branch to the routine
KER$FREE_OBJECT to remove the object’s address from the
appropriate object pointer tables.

Control branches to the internal subroutine FLUSH_QUEUE,
which unblocks any process waiting for the event or semaphore
being deleted.

The kernel macro FREE POOL generates a branch to a subroutine
to return the object’s pool block to the system pool.

Success status is returned to the caller of the KER$DELETE proce-
dure.

The internal subroutine KER$FREE_OBJECT (invoked by the FREE
kernel macro) is responsible for removing the object address from the
object pointer table. The routine expects two inputs: the identifier of
the object and the address of the JCB for the job that owns the object.
KER$FREE_OBJECT executes as follows:

R .

The base field of the identifier is extracted.
The index field of the identifier is extracted.
The sequence field of the identifier is extracted.

The base value is used to obtain the address of the appropriate
object pointer table in the base table.

Kernel Objects and Their Management 10-23

Figure 10-11:

Deleting an Object with KER$DELETE

KER$DELETE_S: :

MOVL

OBJECT_VALUE (AP) ,RO ;
BGEQ 308 ;
BBC #JID$V_TYPE,RO, 30§ ;
BSBW KER$ TRANSLATE_OBJECT ;
BLBC RO, 508 ;
BRW DELETE_OBJECT ;

DELETE_OBJECT:

get object ID
if not negative, it’s a port
if type bit clear, it’s a port

translate object id to pointer
branch on failure
branch to sequence for object deletion

; test object type and branch accordingly

DELETE_EVENT:
DELETE_SEMAPHORE :

MOVL OBJECT_VALUE (AP) , RO ;
FREE OBJECT
bsbw KER$FREE_OBJECT
BSBW FLUSH_QUEUE ;
MOVL R6,R0O ;
FREE POOL ;
bsbw KER$FREE_POOL
RETURN_STATUS SUCCESS ;
movzbl #KER$_SUCCESS, RO
REI

get object id

; free object pointer table entry

flush wait queue, i.e.,
unblock waiting processes

set address 'of object

free the pool block

return success status

5. The pointer table address and the pointer table index are used to
locate the entry for the object being deleted. The value of JCB$W_
OBJECT_FREE is inserted into the pointer table entry, overwriting
the address of the object being deleted. The entry now contains
the low word of a prototype identifier value instead of the object’s

address.

6. The low word of the identifier of the deleted object is increased by 1
and written to JCB$W_OBJECT_FREE. This means that JCB$W_
OBJECT_FREE now points to the pointer table entry just freed.
When the next kernel object is created (assuming that no further
deletions intervene), its address will appear in the pointer table
entry of the object just deleted.

10-24 Kernel Objects and Their Management

7. The sequence value from the deleted object’s identifier is increased
by 1 and inserted into the sequence field in the prototype identifier,
now in the freed table entry.

8. Control is returned to KER$DELETE.

The interaction between the prototype object identifiers and the value
of JCB$W_OBJECT_FREE — that is, their exchange of values on object
creation and deletion — ensures that the kernel will reuse the pointer
table entries of deleted objects before it uses fresh entries, which may
require the allocation of another pointer table. This technique can save
the allocation of pool blocks in certain situations. For example, a job
that creates more than 32 objects but intersperses object creations and
deletions may not require more than the single pointer table allocated
at job creation. The technique also eliminates the need for the kernel
to search the pointer tables for a free entry — JCB$W_OBJECT_FREE
always points to the next free entry. When its value is 0, the current
table is full and a new one must be allocated.

Deleting an object has no effect on the user-supplied variable that holds
the object’s identifier. After the deletion, however, the identifier stored
in the object variable is no longer valid; attempting to use that iden-
tifier in an object operation will end in failure with the KER$_BAD_
VALUE status. The identifier is rendered invalid because the object
pointer table entry it translates to now holds a prototype identifier
value, not the address of the object.

If the pointer table entry is later reused will also return KER$_BAD_
VALUE, because the sequence number in the old identifier and the
object whose address now occupies the table entry will not match.

10.1.4.2 Deleting Object Structures at Job Exit

When a job exits, the kernel deallocates the resources the job had
acquired during its creation and execution. These resources include the
page occupied by the base table and the set of pool blocks occupied by
the job’s objects and object pointer tables.

A job exits when its master process exits or is deleted (that is, process
exit leads to deletion). Master process deletion takes a special path
through KER$DELETE, in which all the resources occupied by objects
and object-management structures belonging to the job are returned to
the system. This process, in KER$DELETE, occurs as follows:

1. The procedure walks the base table from the last pointer table
address to the first, processing each pointer table as its address is

Kernel Objects and Their Management 10-25

accessed. Since the base table is filled in consecutively from the
end, the traversal continues until a zero longword or the end of the
table is encountered.

2. Each pointer table is traversed from beginning to end.

3. If a pointer table entry points to an object (that is, it contains an
address, not a prototype identifier), the identifier for that object is
fabricated and used in a recursive call to KER$DELETE to delete
the object and free its pool block.

4. When the entire pointer table has been traversed and its associated
objects freed, the pool block it occupies is returned to the system
pool.

5. When the base table has been traversed and its associated pointer
tables have been deleted, the system page it occupies is returned to
the communication region.

Ultimately, the job’s JCB is returned to the system pool, rendering the
values of JCB$A_OBJECT_BASE and JCB$W_OBJECT_FREE invalid.

10.2 Creating, Managing, and Deleting Port Objects

Port objects act as holding areas for messages within a VAXELN
system. The maximum number of ports objects that can exist at

any given moment is determined by the Ports entry on the System
Characteristics menu. By default, a system has a limit of 256 ports. A
system must have at least two ports and can have up to a maximum of
32,767.

Each port object is accessed through a 128-bit (octaword) identifier
unique within a DECnet network. Within an individual system, the
port object identifier is used by the kernel to look up the address of the
port object within a table of port object addresses. Within a network,
node address information is used by the network service to route a
message to the correct node on the network.

As with job-specific objects, the addresses of port objects are stored in
a table in system space. Unlike other object address tables, the port
address table is created at system initialization and has only one level.
Ports are created with the KERSCREATE_PORT procedure. When a
job creates a port, the kernel takes the following steps on the caller’s
behalf:

10-26 Kernel Objects and Their Management

It obtains a pool block from the system pool to contain the port
object.

It formulates a unique port identifier that represents an unused
entry in the port address table.

It initializes the port object with appropriate state information.
It inserts the port object into the calling job’s list of ports.

It inserts the address of the port object into the table entry repre-
sented by the port identifier.

It returns the identifier to the calling job in an octaword variable
supplied by the caller.

When a job subsequently passes the port identifier variable in a kernel
procedure call (such as KER$SEND or KER$CONNECT_CIRCUIT),
the kernel uses the value to look up the address of the port object in
the port address table. Using this address, the kernel can then perform
the requested operation on the port, such as placing a message in its
message queue. When a job deletes a port object, the kernel takes the
following steps:

1.

2.
3.
4.

It uses the port identifier value to locate the port table entry con-
taining the address of the port object to be deleted.

It removes the port object’s address from the port address table.
It removes the port from the calling job’s list of ports.

It returns the pool block that the port object had occupied to the
system pool.

The sections that follow describe the data structures involved in the
processing of port objects and discuss creating, using, and deleting port
objects in more detail.

10.2.1 Structures for Managing Port Objects

The kernel maintains a number of data structures and data items to
support the creation, use, and deletion of port objects:

The values for the systemwide data items KER$GW_PORT_SIZE,
KER$GA_PORT_BASE, and KER$GW_PORT_FREE. These values,
stored in the kernel parameter and data blocks, are used to describe
the size of the port address table, the address of the table, and the
next free entry in the table, respectively.

Kernel Objects and Their Management 10-27

® The port address table, which contains the addresses of the existing
ports within the system.

* The port identifier, a value that, when translated, locates an entry
in the port address table containing the address of a port object.
The identifier also describes the network address of the node on
which the port resides.

® The port object itself, which contains information that identifies the
object as a port and defines its state.

* The job port list, which is maintained by each job to keep track of
the ports it has created.

The following sections describe these data items and structures and
how the kernel uses them.

10.2.1.1 Systemwide Data Iltems

The 16-bit value KER§GW_PORT_SIZE in the kernel parameter block
contains the user-specified value representing the maximum number
of ports that can exist simultaneously within the system. The value
determines the size, in longwords, of the port address table. The value
and the size of the port table are fixed for the life of the system.

The longword value KER$GA_PORT_BASE in the kernel data block
contains the address of the port address table. This base address is
established during system initialization when the address table is
allocated from system memory. The value of KER$GA_PORT_BASE
is in fact 4 less than the actual base of the table; this extra longword
allows the table to be accessed as an array of longwords using a base
index of 1 instead of 0.

The 16-bit value KERSGW_PORT_FREE in the kernel data block
contains the offset into the address table of the entry that will hold the
address of the next port object created; the value points to the next free
entry in the port address table.

10.2.1.2 Port Address Table

The port address table contains the addresses of all the port objects
created within the system. The length of the table in longwords is
KER$GW_PORT_SIZE plus 1; this extra longword at the base of the
table allows the table to be accessed using an index based on 1. The
padding longword at the beginning of the table is never accessed.

10-28 Kernel Objects and Their Management

The port table is created during system initialization (in module
INITIAL). To create the port table, the kernel takes the following
steps:

1. It subtracts 4 from the current system virtual address to create
the base address of the port table. (At this stage of initialization,
virtual addresses are being assigned to kernel data structures as
they are created.) The resulting address is copied to the KER$GA_
PORT_BASE cell in the kernel data block.

2. It determines the number of physical pages required to hold
KER$GW_PORT_SIZE longwords, plus 1 for the padding longword,
and allocates that number of pages.

3. It generates prototype port object identifiers by calling the internal
routine KER$FREE_PORT (in module ALLOCATE), which inserts
them into the table as placeholders. When the table is initialized,
KER$GW_PORT_FREE points to the last longword in the table.
The function of KER$FREE_PORT is described in Section 10.2.4.

After the table is initialized, it appears as shown in Figure 10-12.
In the figure, the values in the table are the prototype identifiers,
which play a part in the creation of a port identifier, and the bracketed
numbers represent the index values used to access the port table entry.

When port objects are created within the system, the table begins to
fill with addresses from the end, because after initialization KER$GW_
PORT_FREE points to the last entry in the table. As ports are created,
the value of KERSGW_PORT_FREE decreases as it points to succes-
sively lower positions in the table (assuming, of course, that no ports
are deleted in the meantime). When the value of KER$GW_PORT_
FREE reaches 0, this signals that the table is full and that no more
port objects can be created until another one is deleted.

The port object addresses in the table are accessed through VAX in-
dexed instructions (in PC relative deferred-indexed addressing mode)
using the index field in the port object identifier as the index into the
port address table. For example, if RO holds the index field of the port
object identifier, the following instruction copies the address of the
identified port into R1:

MOVL @KER$GA_PORT BASE[RO],R1

Kernel Objects and Their Management 10-29

Figure 10-12: Port Address Table

31 29 16 15 0
Padding Longword <F KER$GA_PORT_BASE
o]0 1 0 :[1] Prototype Identifiers (Sequence | Index)
ofo 1 1 1[2)
ojo 1 2 :[8]
o010 1 n-2 :[n-1)
0ojo 1 n-1 :[n] <«— KER$GW_PORT_FREE points
to next free table entry (n)
(n = KER$GW_PORT_SIZE) MLO-003260

The port object address obtained from this instruction — performed
by the internal routine KERSTRANSLATE_PORT — is used by such
port operations as KER$SEND and KER$CONNECT_CIRCUIT to
manipulate ports.

10.2.1.3 Port Object Identifiers

All port-object procedures, such as KER$SEND, require their callers to
supply the address of an octaword variable that contains or receives the
identifier for the port. The port identifier and its address should not
be confused with the port object itself, which resides in a system pool
block, or with the address of the port object, which resides in the port
address table.

Figure 10-13 shows the structure of a port object identifier, and
Table 104 describes the significance of the bit fields within the 128-bit
identifier.

10-30 Kemel Objects and Their Management

Figure 10-13: Structure of a Port Object Identifier

System (always 0)
‘ rTypa (always 0)

31 30 29 16 15 0

S T Sequence Index

Bl Number Bl Node # Reserved Bl Add. Type

e— Node Address —

MLO-003261

Kernel Objects and Their Management 10-31

Table 10-4: Bit Fields Within the Port Object Identifier

Bit field Size Meaning

Index 16 The longword offset into the port address table
to the address of the identified port.

Sequence 14 The generation number of the port in its port

address table entry; used to detect mismatches
between an identifier and a port object.

Type 1 When clear, indicates that the identified object is
a port object.

System 1 Must be zero.

BI address type 8 Indicates whether the identified port is a port

in a VAXBI-based closely coupled symmetric
multiprocessing system.

BI node number 8 The VAXBI node number of the system on which
the BI port resides. Used only on a KA80O
system.

BI number 8 The VAXBI number of the system on which the
BI port resides. Used only on a KA800 system.

Node address 64 The Ethernet or DECnet node address of the

node on which the port resides.

The node address quadword in the identifier represents two separate
values. The first longword is a constant value for all systems, 4004 A;¢.
The third word in the quadword contains the binary-coded decimal
representation of a DECnet Phase IV node address; for example, the
address 12.345 becomes 12633 (3159;¢), using the following formula:

1024 * area + node

Alternatively, the same 48 bits can contain the Ethernet hard-
ware address of the system as it was entered on the Network Node
Characteristics Menu (for example, AA—00-03—-00—00-0C). The final
word in the quadword is reserved and must be 0.

Several of the bit fields within the identifier are represented within
kernel code by symbolic values. Table 10~5 shows the names, current
sizes, and significance of the symbolic values the kernel uses when
manipulating port object identifiers.

10-32 Kernel Objects and Their Management

Table 10-5: Assembly-Time Symbols Representing Port Identifier Bit

Fields

Symbol Size Meaning

JID$V_SEQUENCE 16 The starting bit number of the sequence
bit field.

JID$S_SEQUENCE 14 The size of the sequence bit field.

JID$M_SEQUENCE N/A A bit mask representing the sequence
field.

JID$W_PORT_ID N/A The first longword in the port identifier,
containing the index and sequence fields.

PID$K_LENGTH 16 The size in bytes of the port identifier.

The sequence field in the identifier plays a role in validating the port
identifier in port operations by allowing the kernel to determine when
port table entries are being reused. Each time a port that reuses a port
table entry is created, the sequence number in the resulting identifier
is increased by 1; this same value is stored within the port object
itself. During the translation of the port identifier to the address of the
port object, the two sequence numbers are compared. If they do not
match, the identifier is invalid. This technique prevents the identifier
associated with a deleted port object from being used to access the port
whose address has subsequently reused the same entry in the port
table.

10.2.1.4 Port Object Structure

A port object occupies one 128-btye system pool block, which is allo-
cated from the system pool when the port is created. The port object
therefore resides in system address space, where it is protected from
uncontrolled access by user programs.

A port object should not be confused with its identifier, which resides
in a job’s address space as a 128-bit variable (a variable of type PORT
in VAXELN languages). The object’s address is recorded in the port
address table, and its unique identifier is returned in the job’s port
variable.

The structure and function of a port object is described in Section B.18.
For purposes of the present discussion, the 16 bytes comprising bytes
44 to 60 in the port object are of interest, because they correspond
exactly to the port identifier; both contain the index, sequence, VAXBI
node information, and the node address fields. During port creation in

Kernel Objects and Their Management 10-33

the KERSCREATE_PORT procedure, the values for these fields, among
others, are inserted into the port object. The procedure’s last function
before returning is to copy those 16 bytes to the caller’s port variable to
create the port’s identifier. During subsequent port operations, the two
16-byte segments are compared to ensure that the identifier is valid for
the associated port object.

10.2.1.5 Job Port Queue

Because port objects are managed across the system rather than by the
job, a job maintains a doubly linked list containing the port objects that
it has created. When the job creates a port, the kernel inserts the port
into the job’s port queue. The sole purpose of the list is to enable the
kernel to locate and delete the ports that belong to a job that is being
deleted.

The listhead for the queue resides in the JCB as a quadword containing
the forward and backward links in the list. The forward address link
appears in the JCB$A_PORT_FLINK field of the JCB; the backward
link appears in the JCB$A_PORT_BLINK field. As ports are created
and deleted by the job, they are inserted into and removed from the list
using the INSQUE (Insert into Queue) and REMQUE (Remove from
Queue) instructions.

10.2.2 Creating Port Objects

Port objects are created when a job calls the KER$CREATE_PORT
procedure (in module CREATEPRT). As with job-specific kernel objects,
the port creation procedure fills in the fields of the port object being
created and calls a subroutine, this time KERSALLOCATE_PORT, to
generate part of the identifier. The job that calls KERSCREATE_PORT
is the owner of the port. The address of the caller’s JCB is recorded in
a field in the port object to allow the verification of ownership in certain
port operations, such as deletion.

Figure 1014 shows the relevant segments of the KER$CREATE_PORT
procedure. These code segments focus on the allocation of the port
object and its identifier; the structure and function of a port object is
described in Section B.18. KERSCREATE_PORT executes as follows:

1. The kernel macro ALLOCATE POOL generates a branch to a
subroutine to allocate a pool block for the object.

2. The kernel macro REMOVE obtains the address of the pool block.

10-34 Kernel Objects and Their Management

10.

11,

12.

The kernel macro ALLOCATE PORT generates a branch to the
subroutine KER$ALLOCATE_PORT. This routine uses the value
KER$GW_PORT_FREE to generate index and sequence fields for
the port identifier and returns.

The fields of the port object are initialized.

The port object is inserted into the calling job’s list of ports. The
listhead appears in the JCB$A_PORT_FLINK field in the job’s JCB.
This list allows the job to keep track of the ports it has created.

The index value is copied into the index field in the port object
(PRT$W_INDEX).

The sequence value is copied into the sequence field in the port
object (PRT$W_SEQUENCE).

The longword in the kernel data block indicating whether the

system is running on a KA80O processor is copied to the port object
(PRT$L_BIPORT).

The quadword in the kernel data block holding the node address
of the system (KER$GQ_NODE_ADDRESS) is copied to the port
object (PRT$Q_NODE_ADDRESS).

The address of the port object is inserted into the port address table
using the index value as an index into the port table (KER$GA_
PORT_BASE).

The 16-byte identifier field in the port object, beginning with
PRT$W_INDEX, is copied to the job’s port variable, whose address
was passed as an argument to KER$CREATE_PORT.

Success status is returned to the caller.

Kernel Objects and Their Management 10-35

Figure 10-14:

Creation of a Port Object

KER$CREATE_PORT_S: :

. check access to job’s port variable

308: MOVL

ALLOCATE POOL

BLBS

#1,R0 ; set number of pool blocks to allocate
; allocate port object block

bsbw KER$ALLOCATE_POOL

RO, 408$; return KER$_NO_POOL on failure

RETURN_STATUS NO_POOL

movzwl #KER$_NO_POOL, RO
rei

40$: REMOVE R6 ; remove port object block from pool

ALLOCATE PORT

BLBS

remghi (R1l),R6

; allocate port table pointer
bsbw KER$ALLOCATE_?ORT
RO, 508 ; branch on success

. return KER$_NO PORT on failure

508:

set up fields in the port object using address in R6

INSQUE PRT$A PORT_FLINK(R6),- ; insert port into job’s port list

MOVW
MOVW
MOVL

MOVQ

MOVL
MOVC3

MOVL

RETURN_STATUS SUCCESS

JCB$A_PORT_FLINK (R7)

R1,PRT$W_INDEX (R6) ; set index of port object
R2,PRT$W_SEQUENCE (R6) ; set sequence number of port object
WAKER$GL_PRT_BIPORT, -

PRT$L_BIPORT (R6) ; set VAXBI node info field
WAKER$GQ_NODE_ADDRESS, - ;set node address to host node
PRT$O_NODE_ADDRESS (R6) ;

R6, W KER$GA_PORT_BASE [R1]

; store pointer to port object in table
#PIDSK_LENGTH,PRT$W_INDEX(RG),-
@PORT_ADDRESS (AP) ; store port object ID in job’s port variable
R6,R1 set address of port object
return success

. N

movzbl $#KER$_SUCCESS,RO
rei

The internal subroutine KERSALLOCATE_PORT returns the infor-
mation KERSCREATE_PORT requires to create the port identifier
and store the address of the port object in the port address table.
KER$ALLOCATE_PORT executes as follows to allocate a port for the
KER$CREATE_PORT procedure:

10-36 Kernel Objects and Their Management

1. The value of KERSGW_PORT _FREE is obtained. This value rep-
resents the index value of the next free entry in the port address
table.

2. If the value of KER§GW_PORT FREE is 0, the table is full, so
control branches to return an error status from the subroutine.
KER$CREATE_PORT will return the status value KER$_NO_
PORT in response to the failure of KER$ALLOCATE_PORT

If KER$GW_PORT_FREE is not 0, then a port can be created.

3. Using the current value of KER$GW_PORT_FREE as an index
into the port table, the index field in the prototype identifier in the
current table entry is copied to KER§GW_PORT FREE. In other
words, KER$§GW_PORT_FREE now points to the next free table
entry after the current one; this value will be used when the next
port is created.

4. Again using the original value of KER$GW_PORT _FREE as an in-
dex into the port table, the sequence field in the prototype identifier
in the current table entry is obtained. This value represents the
sequence value for the last port, if any, whose address appeared in
the current table entry. If this is the first time the entry will be
used, then the sequence value will be 1, its initialized value.

5. The sequence value is increased by 1. This value will be the se-
quence value for the port being created. The value will appear in
both the port object and its identifier and will be used to ensure a
match between the two during later port operations.

6. The bit above the sequence field is cleared, just in case increasing
the sequence value caused it to overflow its 14-bit limit.

7. Control returns to KER$CREATE_PORT.

KER$ALLOCATE_PORT returns the index and sequence values for
the new identifier. The KER$CREATE_PORT procedure uses these
values to create the first longword of the port identifier and to insert
the address of the new port object into the current entry in the port
address table.

Figure 10-15 shows the configuration of the port data structures after
the creation of three ports in a system that can have a maximum of
ten ports (KER$GW_PORT_SIZE equals 10). The value of KER$GW_
PORT_FREE, as shown in the figure, is 8 and indicates that the ad-
dress of the next port object created will appear in the eighth field in
the table (not counting the padding longword and assuming that no ex-
isting port is deleted in the meantime). In the identifiers generated for
these port objects, the sequence value has been increased to 2 from the

Kernel Objects and Their Management 10-37

prototype value of 1; this sequence value also appears in the PRT$W_
SEQUENCE field in the port object itself to associate the port with its
identifier in subsequent port operations.

Figure 10-15: Port Address Table after the Creation of 3 Ports

Port Address Table

31 29 1615 0
Padding Longword <t KER$GA_PORT_BASE
0o}j0 1 0 :[1] Prototype ID (Index from Base)
0|0 1 1 :[2}
oo 1 2 :[3]
o|o 1 3 :[4)
oo 1 4 :[5)
[I} 1 5 :[6]
[I} 1 6 :[71
KER$GW_PORT_FREE = 8
0|0 1 7 points to next free entry
Address of 3rd Port ID <31:0>
00020009
Address of 2nd Port Port3 | Sequence = 2
Address of 1st Port index & &
0002000A
Port 2 | Sequence =2
Index = 10
00020008
Port 1 | Sequence = 2
Index = 11

MLO-003282

10-38 Kernel Objects and Their Management

10.2.3 Translating Port Object Identifiers

Port object translation — the decoding of the port identifier into the
address of the port — occurs whenever the kernel must manipulate a
port object. In the process of translation, the kernel validates the port
identifier by ensuring that it matches the identifier portion of the port
object itself.

Port objects are translated by the internal subroutine KER§TRANSLATE _
PORT (in module KERNELSUB), which is called by all kernel pro-
cedures that manipulate port objects, such as KER$SEND and
KER$CONNECT_CIRCUIT. The routine expects as input the address

of the port identifier variable to be translated into a port address. This
identifier variable will be stored in an octaword owned by the caller of
the port procedure. When control returns from the subroutine, R1 will
contain the address of the identified port object.

Figure 10-16 shows the brief code sequence used to validate and
translate a port identifierr KER$TRANSLATE_PORT was designed

to complete port translation — a common run-time operation — in as
few instructions as possible. The data items and structures associated
with port management exist to support that goal. The routine executes
as follows:

1. The node address in the port object identifier is compared to the
system’s node address, stored in the global quadword KER$GQ_
NODE_ADDRESS. If the node addresses do not match, then the
port being translated is a port on another node and cannot be
translated on this node.

2. If the identifier points to a port on a remote node, the status KER$_
REMOTE_PORT is returned to the calling port procedure. In some
cases, such as KERSRECEIVE, the procedure will return the status
value KER$_NO_SUCH_PORT to its caller to indicate that the
requested operation cannot be carried out on a remote port. In
other case, such as KER$SEND, the KER$_REMOTE_PORT status
indicates that the network service must become involved in the
requested operation.

3. The index value (a word) is obtained from the first longword of the
identifier (JID$W_PORT_ID). If that value is 0, the routine returns
with a failure status, because valid index values start at 1.

4. The port table index value from the identifier is compared with the
maximum number of entries in the port address table, KER$GW_
PORT_SIZE. If the index exceeds the size of the table, the routine
returns with a failure status.

Kernel Objects and Their Management 10-39

Figure 10-16:

5. The index value is used to obtain the address of the identified port
object from the port address table. If the value obtained is that
of the prototype identifier (bit 31 clear), the port object has been
deleted, and the routine returns a failure status.

6. The first longword of the caller’s port identifier is compared with
the 16-bit identifier value in the port object itself to validate the
identifier.

7. If the identifiers match, the identifier is valid, and the routine
returns with the address of the port object in R1. If the two identi-
fiers do not match — probably because they have different sequence
values — the identifier is invalid, and the routine returns with a
failure status. In such cases, the mismatch indicates that the iden-
tifier was associated with a port object that was previously deleted;
the port table entry that the deleted port’s address once occupied
now holds the address of another port.

Port Object Translation with KER$TRANSLATE_PORT

KERS TRANSLATE_PORT: :

CMPL

BNEQ
CMPL

BEQL
15%: MOVZWL
RSB

20$: MOVZWL
BEQL
CMPW
BGTRU
MOVL

BGEQ
CMPL

BNEQ
MOVL
RSB

JID$Q_NODE_ADDRESS (RO), -
W"KER$GQ_NODE_ADDRESS ; test lst longword of node address

; to see whether this is a local port
15¢ ; 1f no match, not a local port
J’ID$Q_NODE_ADDRESS+4 (RO), -
W‘KER$GQ_NODE_ADDRESS+4 ; test 2nd longword of node address

; to see whether this is a local port

; if no match, not a local port

; set remote port failure indicator

; and return

208
#KER$_REMOTE_PORT, RO

JID$W_PORT_ ID(RO),R1 ; get table index from port ID

108 ; if it’s 0, something’s wrong
Rl,W"KERSGW_PORT_SIZE ; index within the table limit?

108 i if over the limit, something’s wrong

€W KER$GA_PORT_BASE[R1] ,R1
; get the address of the port object

108 ; 1f 0 or greater, not a system address
JID$W_PORT__ID {(RO), -
PRT$W;;NDEX(R1) index and sequence number match

between port and ID?
if they don’t match, invalid ID
set success indicator
and return

10$
#1,R0

N we we %o Ne

Figure 10-16 Cont'd. on next page

10-40 Kernel Objects and Their Management

Figure 10-16 (Cont.): Port Object Translation with KER$TRANSLATE_PORT

108: CLRL RO ;
RSB i

set failure indicator

Figure 10-17 shows how KER$TRANSLATE_PORT is typically used
by a kernel procedure that performs port operations, in this case,
KERS$RECEIVE. The procedure is passed the address of the caller’s
port identifier in its argument list. It first tests whether it can

read that address in the caller’s memory. Next, control branches to
KER$TRANSLATE_PORT. If that routine succeeds, then R1 contains
the address of the port object itself. That address is then used to access
the fields in the port object. The one port operation shown involves
testing whether the calling job is in fact the owner of the identified

port.

Figure 10-17: Use of KER$TRANSLATE_PORT by KER$RECEIVE

KERSRECEIVE_S:

. process other arguments in the argument list

MOVL SOURCE_ADDRESS (AP) ,RO ;
IFN_READ PIDSK_LENGTH, (RO),50§ ;

BSBW KER$TRANSLATE PORT ;
BLBC RO, 308 i
CMPL R7,PRT$A_OWNER (R1) ;

get address of source port ID
if not readable, return error

translate source port ID
branch to return failure status
is the current job the owner of port?

. complete operation using port object address in R1

Kernel Objects and Their Management 10-41

10.2.4 Deleting Port Objects

The deletion of a port object occurs when a job calls the KER$DELETE
procedure, passing as an argument the address of variable that holds
the identifier of the port to be deleted. In deleting a port object, the
kernel returns the pool block occupied by the object to the system pool,
replaces the object’s address in the port address table with a prototype
port identifier (returning it to the list of free table entries), and removes
the port from the calling job’s list of ports.

When an job exits (with the deletion of its master process) all the ports
created — and thus owned — by that job must be deleted from the
system as well.

The following sections describe these two levels of port object deletion.

10.2.4.1 Deleting an Individual Port Object

When the KER$DELETE procedure is called to delete a port object, the
following events occur:

1. Action is taken to dissociate the port object from any unreceived
messages it contains, any circuit connection it belongs to, and any
processes waiting for it. For example, any processes waiting on the
port are unblocked with the KER$_BAD_VALUE status value.

2. The port’s address is removed from the port address table and is
replaced by a prototype object identifier.

3. The port’s pool block is returned to the system pool.

The process of removing the port’s address from the kernel’s port
address table is performed by the internal subroutine KER$FREE_
PORT (in module ALLOCATE). The routine expects two inputs: the
index and sequence values from the first longword of the port identifier.
The kernel macro FREE PORT within KER$DELETE generates a
branch to KER$FREE_PORT, which executes as follows:

1. The sequence value is shifted into the upper word of the identifier
to create the sequence field in the prototype identifier.

2. The value of KER$GW_PORT_FREE is inserted into the low word
of the identifier to create the index field in the prototype identifier.

3. The prototype identifier is copied into the port address table to
overwrite the address of the port being deleted. The entry now
contains a prototype identifier value instead of the port’s address.

10-42 Kernel Objects and Their Management

4. The index value of the port being deleted is copied into KER$GW_
PORT_FREE. This means that KER$GW_PORT_FREE now points
to the port table entry just freed. When the next port object is
created (assuming that no further deletions intervene), its ad-
dress will appear in the port table entry of the port just deleted.
KER$GW_PORT_FREE will now contain the prototype identifier of
the originally deleted port.

5. Control returns to KER$DELETE.

The interaction between the prototype port identifiers and the value
of KER§GW_PORT_FREE — that is, their exchange of values on port
creation and deletion — ensures that the kernel will reuse the port
table entries of deleted port objects before it uses fresh entries. This
way, the beginning of the port address table (where the address of
the last port created will appear) will be reached only when the table
is actually full. The technique eliminates the need for the kernel to
search the entire table for a free entry — KER$GW_PORT _FREE
always points to the next free entry. When its value is 0, the table is
full.

Deleting a port object has no effect on the variable that holds the port’s
identifier. After the deletion, however, the identifier stored in the port
variable is no longer valid; attempting to use that identifier in a port
operation will end in failure. The identifier is rendered invalid be-
cause the port table entry to which it translates now holds a prototype
identifier value, not the address of the port.

10.2.4.2 Deleting Port Objects at Job Exit

When a job exits, the kernel deallocates the resources the job

had acquired during its creation and execution. As described in
Section 10.1.4.2, the kernel deletes an exiting job’s jobwide kernel
objects by traversing its object pointer tables and deleting each object
whose address it encounters.

A job’s port objects must be deleted as well, but deleting ports dif-
fers from normal object deletion because the addresses of port objects
are held in a systemwide table controlled by the kernel for all jobs.
Moreover, walking the port address table in search of only the ports
owned by the exiting job could be a time-consuming process in a large
system. Instead, the kernel requires that each job keep track of its own
ports by maintaining a doubly linked list of the ports it has created.
The listhead of the port list appears in the job’s JCB as the quadword
represented by the fields JCB$A_PORT_FLINK and JCB$A_PORT_

Kernel Objects and Their Management 1043

BLINK. When the job is deleted, the kernel can access this list and
quickly locate the ports owned by the job being deleted.

As with normal objects, a job’s port objects are deleted when
KERS$DELETE is called to delete the master process in a job. The
deletion of the job’s ports occurs as follows:

1. The procedure obtains the address of the first port object in the
job’s port queue from the JCB$A_PORT_FLINK in the JCB.

2. The address of the 16-byte copy of the port’s identifier value is
passed as an argument in a recursive call to KER§DELETE. This
deletes the port object as described in Section 10.2.4.1. Deleting the
port removes it from the job’s port queuem, updating the listhead
in JCB$A_PORT _FLINK for the next iteration of the deletion loop.

3. When the job’s queue of ports has been exhausted, the procedure
continues with the deletion of the master process.

The port address table itself exists for the life of the system. The only
effect on the table is the removal of the deleted job’s port addresses.

10-44 Kernel Objects and Their Management

Chapter 11
Job and Process Synchronization

The kernel provides the VAXELN programmer with a set of procedures
and data structures that synchronize jobs and processes around the
occurrence of specified events or the availability of certain resources.
The programmer first identifies explicit synchronization points within
the design of the application and selects appropriate kernel objects —
areas, devices, events, ports, processes, or semaphores — to represent
those points of synchronization. Next, coding calls to the KER$WAIT
and KER$SIGNAL procedures allows processes to respond to events or
the availability of resources.

When a process waits for a kernel object, the KER§WAIT procedure
associates a structure called a wait control block (WCB) with the
object being waited for by inserting it at the end of its wait queue.
The WCB represents the waiting process and describes the conditions
under which the wait will be satisfied. If the state of the object does
not require a wait (for example, an event is already signaled), the
process continues immediately. Otherwise, the process is placed into
the waiting state, and the scheduler is invoked to select a new process
to run.

When a process signals an object, the KER$SIGNAL procedure ex-
amines the WCBs associated with the signaled object to find a pro-
cess whose wait has been satisfied by the signal. If one is found,
KER$SIGNAL updates the state of the signaled object, dequeues the
process’s WCBs, and removes the process from the waiting state.

This chapter describes the kernel’s support for job and process synchro-
nization. It first treats, in Section 11.1, the data structures involved in
synchronization, including WCBs and kernel objects. Section 11.2 fol-
lows with a description of the KER§WAIT_ALL and KER$WAIT ANY
procedures themselves, and Section 11.3 describes how a wait is satis-
fied with the KER$SIGNAL and KER$SIGNAL_DEVICE procedures.

Job and Process Synchronization 11-1

This last section also describes three subroutines used by the kernel
to support synchronization: KER$TEST_WAIT, KER$SATISFY_WAIT,
and KERSUNWAIT.

Certain terms and phrases that are used frequently throughout the
chapter should be understood from the outset:

KER$WAIT: the kernel’s wait code, entered through the unique
entry points KER§WAIT_ALL and KER$WAIT_ANY. This term is
used to refer to the bulk of the wait logic that is common to both
procedures.

Block: to enter the waiting state.

Unblock: to leave the waiting state. An unblocked process returns
first to the ready state; from there it returns to the running state
as permitted by the overall scheduling state of the system.

Wait conditions: the set of objects a process wishes to acquire or to
synchronize with.

Wait-all wait: a waiting state entered through a call to KER$WAIT_
ALL. In this state, a process waits for all of a set of conditions to
be satisfied. Even though some of a process’s wait conditions may
be momentarily satisfied, if all them are not satisfied at the same
time, the process remains in its waiting state.

Wait-any wait: a waiting state entered through a call to
KER$WAIT_ANY. In this state, a process waits for any of a set of
conditions to be satisfied. As soon as any one of the wait conditions
is satisfied, the process unblocks.

Wait condition satisfied: the state of a kernel object that allows a
process whose wait is completely satisfied to unblock.

Completely satisfied wait: the state in which all of a process’s wait
conditions are satisfied. For wait-all waits, this means all of the
wait conditions are satisfied. For wait-any waits, this means at
least one of the wait conditions is satisfied.

Potentially satisfied wait: the state in which one or more of a
process’s wait conditions are satisfied. This phrase normally refers
to the signaling of an individual kernel object which may or may
not result in a process being unblocked.

Signal: an action that causes a kernel object to enter a state that
potentially satisfied a process’s wait conditions.

11-2 Job and Process Synchronization

Object wait queue: a list of WCBs linked to an object being waited
for. A WCB is inserted at the end of the wait queue when a process
waits for the object. WCBs can be removed from anywhere in

the queue when the object is signaled. WCBs are removed from
the object wait queue when the wait of the associated process is
completely satisfied.

11.1 Data Structures for Job and Process Synchronization

The wait for a kernel object involves creating a network of data struc-
tures linked through a number of queues. This section describes these
data structures:

The wait control block (WCB). This structure, established by the
KER$WAIT procedure, represents the context of a process’s wait for
a kernel object or a time value. Chained together, multiple WCBs
represent the multiple wait conditions that a caller can specify to
the KER$WAIT_ANY and KER$WAIT_ALL kernel procedures.

Synchronization-related kernel objects. The structures — area
(ARA), device (DEV), event (EVT), port (PRT), process (PCB), and
semaphore (SEM) — are the entities for which a process can

wait.l

The kernel vectors for the KERWAIT procedures. Located in the
kernel vector block, these small procedures reexecute a wait request
that has been interrupted by the delivery of an asynchronous
exception to a waiting process.

The timer queue. This queue holds the WCBs of processes that are
waiting for an absolute or interval time to expire.

The following discussions of these data structures focus on their indi-
vidual contributions to the task of placing a process into the waiting
state. Section 11.2 then shows how KER$WAIT builds these individual
components into the relationships that represents a wait.

1 The kernel uses message objects in wait and signal operations to synchronize communication among
KAB800 processors in closely coupled symmetric multiprocessing systems. This use of message objects is
reserved and is unsupported for user programs.

Job and Process Synchronization 11-3

11.1.1 Wait Control Block

The wait control block (WCB) is the currency in which synchronization
transactions are conducted. Each object that a process waits for is rep-
resented by a WCB, and this collection of WCBs defines the conditions
whereby the wait will be satisfied.

To represent a wait condition, a WCB is involved in the following
relationships:

* As the representative of an object a process is waiting for, it is
linked into a list of WCBs permanently attached to the process’s
process control block (PCB).

® As the representative of a process in the waiting state, it is linked
into a queue of processes waiting for the same object.

* As the representative of a wait’s timeout value, it is linked into the
kernel’s timer queue.

Fields in the WCB shown in Figure 11-1 and described in Table 11-1
record the details of the structure’s relationship to the process it repre-
sents, to the object being waited for, and to other WCBs owned by the
waiting process.

11-4 Job and Process Synchronization

Figure 11-1: Structure of a Wait Control Block

WCBS$A_WAIT_FLINK

WCB$A_WAIT_BLINK

WCB$B_SATISFIED | WCB$B_ARGUMENT WCBS$B_WAIT WCB$B_TYPE

WCBS$A_NEXT

WCB$A_OBJECT

WCBS$A_PCB

WCBSA_LIST

CB$B_OBJECT_TYPE|

64-Bit Time Value
(PCB-Resident Timer WCB Only)

MLO-003253

Job and Process Synchronization 11-5

Table 11—1: WCB Fields

Field

Meaning

WCB$A_WAIT_FLINK
WCB$A_WAIT_BLINK

WCB$B_TYPE

WCB$B_WAIT

WCB$B_ARGUMENT

WCB$B_SATISFIED

11-6 Job and Process Synchronization

The forward and backward links to the next and
previous WCBs waiting for an object. These fields
are used to queue the WCB to the object being
waited for. The listhead for the queue resides in
the wait queue links in the object data structure
(see Section 11.1.8). Every process waiting for an
object has one of its WCBs linked into the object’s
wait queue using these WCB link fields.

The type of WCB. A WCB for a timed wait, called a
timer WCB, is type WCB$K_TIMER; a WCB for an
object wait, called an object WCB, is type WCB$K_
WAIT.

A Dbit field recording characteristics of the wait. The
setting of the low bit in this byte reflects whether
the WCB was created by a call to KER§WAIT ANY
(bit 0 clear) or KER$WAIT ALL (bit O set).

In timer WCBs, the setting of the second bit
(WCB$V_WAIT _DELTA) indicates the type of
timed wait requested. If the bit is clear, the wait
is for an absolute time; if the bit is set, the wait is
for an interval, or delta, time. This information is
required for correcting interval waits after calls to
KERS$SET_TIME (see Section 5.3.6.1).

The argument in the KER$WAIT call to which the
WCB corresponds. Timer WCBs are marked as
argument 0. The first object argument in the call
is marked as 1, and so on for each object specified.
This value is returned to the caller in the optional
result argument to indicate which object satisfied a
wait condition.

The state of a wait for a process object. When
the wait on a process is satisfied (the process
terminates), the low bit in this byte is set to show
that this portion of a wait has been satisfied.

Table 11-1 (Cont.): WCB Field

Field

Meaning

WCB$A_NEXT

WCB$A_OBJECT
WCB$A_PCB

WCBS$A_LIST

WCB$B_OBJECT_TYPE

WCB$Q_TIME

A pointer to the next WCB associated with the cur-
rent wait. Since all WCBs allocated for a process
need not be used in every wait (for example, the
wait may be for one object, or no timer value may
be involved), this singly linked list stores only the
addresses of the WCBs required for the current
wait. The field is initialized by the KER$WAIT
procedure. The list is walked by the kernel sub-
routines that test and satisfy wait conditions. The
PCB$A_FIRST _WCB field in the associated PCB
points to this list.

The address of the object being waited for.

The address of the PCB that owns the WCB. When
a wait has been satisfied, this address is used to
locate the PCB of the process to be unblocked.

A pointer to the next WCB in a process’s list

of WCBs. The singly linked list of WCBs built
through this field is created during process cre-
ation, originates with the PCB-resident timer
WCB, and includes every WCB allocated for a pro-
cess. At process deletion, the list is walked by the
KER$DELETE procedure to free the pool blocks
occupied by a process’s WCBs.

The type of object for which this WCB represents
a wait. This field, a copy of the type field in the
object being waited for, is used in testing whether
a wait has been satisfied or in satisfying a wait.
These operations vary according to the object type.

The time value for a timed wait. The 64-bit binary
time value appears only in the timer WCB resident
in the PCB. This value represents the absolute
system time at which the wait expires.

When the kernel creates a process (either a master or subprocess), it
creates and initializes five WCBs (including the timer WCB), as shown
in Figure 11-2. The four WCBs not resident in the PCB are allocated
from a single system pool block. Additional WCBs are allocated four
at a time (one pool block’s worth), as required, by the KER§WAIT

procedure.

Job and Process Synchronization 11-7

Figure 11-2: Relationship of WCBs to the PCB

PCB
WCB$B_TYPE = WCB$K_WAIT
WCB$B_TYPE = WCB$K_TIMER WCBSB_ARGUMENT = 1
PC WCB$B_ARGUMENT = 0 WCB$A_PCB ®
WCBS$A_LIST o
PCB$Q_TIME

WCBS$B_TYPE = WCB$K_WAIT
WCB$B_ARGUMENT = 2
WCB$A_PCE o
WCBS$A_LIST

WCB$B_TYPE = WCBSK_WAIT
WCB$B_ARGUMENT = 3

WCBSA_PCB

WCBSA_LIST e

WCB$B_TYPE = WCBSK_WAIT
WCB$B_ARGUMENT = 4
WCB$A_PCB o
WCBS$A_LIST = 0

MLO-003264

The KER$CREATE_JOB, KER$CREATE_PROCESS, and KER$WAIT
procedures initialize the following fields when creating a WCB:

e WCB$B_TYPE is set to either WCB$K_TIMER or WCB$K_WAIT.
Only the first, PCB-resident WCB is marked as a timer WCB.

e WCB$B_ARGUMENT is set to the number of the wait argument
to which the WCB will correspond. The timer WCB is set to 0;
the next WCB is 1, the next 2, and so on, up to the limit of 250
WCBs for object wait. (Including the timer WCB, a process can
have up to 251 WCBs.) When KER$WAIT sets up the WCBs for a
wait, it associates each successive WCB with each successive wait
argument, reserving the timer WCB for a timeout argument.

11-8 Job and Process Synchronization

e WCBS$A_PCB is set to contain the address of the PCB that owns
the WCB.

* WCBSA_LIST is set to point to the next WCB in the list of the pro-
cess’s WCBs. In the last WCB, this field is set to zero to terminate
the list.

The values set in these fields endure for the life of the process. The
remaining fields in the WCB are set by the KER§WAIT procedure, as
described in Section 11.2.

11.1.2 Process Control Block

The process control block (PCB) has a dual nature in wait operations.
It represents both a process that wishes to wait and a process that is
waited for. This section describes the aspects of the PCB that relate to
its role in allowing a process to wait for other objects. Section 11.1.3.3
focuses in turn on the portions of the PCB that function in its role as
an object for another process’s wait.

The PCB contains several elements that associate it with the WCBs
that represent the conditions of its wait. These elements are shown in
Table 11-2. Figure 4-3, which illustrates the PCB, shows where these
elements appear in the structure.

Table 11-2: PCB Fields to Support Process Waliting
Field Meaning

PCB$A_FIRST_WCB The address of the first of the WCBs that define
the current wait conditions for the process. This
address is set by the KER$WAIT procedure and
passes the address of the start of the active WCB
list to several kernel subroutines. For a timed wait,
this field contains the address of the timer WCB;
for waits without a time value, the address of the
first object WCB is used.

Job and Process Synchronization 11-9

Table 11-2 (Cont.): PCB Fields to Support Process Waiting
Field Meaning

PCB$B_WCB The PCB-resident WCB. This WCB is dedicated for
use as a timer WCB; its 64-bit time value appears
in its WCB$Q_TIME (PCB$Q_TIME) field. Its
WCB$A_WAIT_FLINK and WCB$A_WAIT_BLINK
fields link the timer WCB into the system timer
queue; its WCB$B_ARGUMENT field is set to O to
signify its role as the timer WCB.

PCB$Q_TIME The WCB$Q_TIME field for PCB$B_WCB. The
64-bit absolute time value used for timed waits.
The time values for interval waits are converted to
absolute times before being stored here.

11.1.3 Kernel Objects

Some kernel objects — the event and the semaphore — exist solely

to support synchronization. This section describes all aspects of their
creation and function. Other objects — the area, the device, and the
port — participate in synchronization operations as resources for which
processes wait. This section describes only those aspects of these
kernel objects that relate to synchronization. Discussions of their other
aspects are deferred to other sections. The common aspects of object
creation, such as the allocation of object identifiers, are described in
Chapter 10.

11.1.3.1 Event Object

The event object records whether a user-defined event has occurred. If
the event has not occurred, the event’s state is said to be cleared. If the
event has occurred, the event’s state is said to be signaled. A process’s
wait for an event object is satisfied when the event is signaled. When
this occurs, all waits for the event are potentially satisfied. Contrast
this with the semaphore and area objects, for which a signal allows the
wait of only one process to be satisfied.

Figure 11-3 shows the structure of an event object, and Table 11-3
describes its fields.

11-10 Job and Process Synchronization

Figure 11-3: Structure of an Event Object

EVTSA_WAIT_FLINK

EVTSA_WAIT_BLINK

EVT$B_TYPE

EVT$L_SEQUENCE

EVT$B_LOCK EVT$B_STATE

MLO-003248

Job and Process Synchronization 11-11

Table 11-3: Event Fields
Field Meaning

EVT$A_WAIT_FLINK The listhead for the queue of processes waiting for

EVT$A_WAIT_BLINK this object. The WCB representing a waiting pro-
cess is inserted into this queue by the KER$WAIT
procedure. When the event is signaled, processes
whose waits are completely satisfied are removed

from the queue and unblocked.

EVT$B_TYPE The object type: OBJ$K_EVENT.

EVT$L_SEQUENCE The object sequence number. This value must
match the sequence field in the object identifier
during object translation.

EVT$B_STATE The current state of the object, either cleared (0)

or signaled (1). Signaling and clearing the event
change this field’s value.

EVT$B_LOCK An interlock bit indicating that the event object is
in use. This field is used exclusively by the error-
logging subsystem in awakening the ERRFORMAT
job. See Section 7.1.3.2.

Event objects are created by the KER$CREATE_EVENT kernel pro-
cedure (in module CREATEEVT). The procedure expects three argu-
ments: the optional address to receive a status value, the address to
receive the object’s identifier, and a value representing the initial status
of the event (0 for cleared, 1 for signaled). KER§CREATE_EVENT
creates an event object with the following steps:

1. A pool block is allocated to hold the event object. If no pool is
available, KER$_NO_POOL status is returned.

2. An object identifier is allocated for the object by calling the sub-
routine KER$ALLOCATE_OBJECT. The routine also returns the
address of an entry in an object pointer table and the current se-
quence number for the object. If the job’s object pointer tables are
filled to capacity, the KER$_NO_OBJECT status is returned.

8. The wait queue listhead is initialized. EVT$A_WAIT_FLINK and
EVT$A_WAIT BLINK are both set to point to EVI$A_WAIT_
FLINK to signify that the queue is empty.

4. EVT$B_TYPE is set to OBJSK_EVENT.
5. The initial state is set in EVT$B_STATE as specified by the caller.

11-12 Job and Process Synchronization

6. The interlock bit in EVT$B_LOCK is cleared.

7. The object address is stored in the allocated entry in the object
pointer table.

8. The allocated sequence number is set in EVT$L_SEQUENCE.

When an event object is signaled with the KER$SIGNAL procedure,
the event’s state is set to signaled, and all processes queued to the
event whose waits are thereby satisfied are returned to the ready
state. The signaling of an event object is described in more detail in
Section 11.3.1. An event object can be returned to the cleared state
with the KER§CLEAR_EVENT kernel procedure, which simply clears
the low bit of EVT$B_STATE.

When an event object is deleted, the waits of all processes in the object’s
queue are immediately unblocked with KER$_BAD_VALUE status.

11.1.3.2 Semaphore Object

The semaphore object represents a resource to which access must be
limited to one or a limited number of processes. Access to a semaphore
is controlled by a pair of values: a maximum count and a current
count. A semaphore with a maximum count of 1, a binary semaphore,
provides exclusive access to the resource the semaphore protects. A
semaphore with a count greater than 1, called a counting semaphore,
allows metered access to the resource. The semaphore’s current count
defines the state of the semaphore; this count determines how many
accesses are allowed at a given moment.

A successful wait for a semaphore causes its count to decrease by one,
down to a minimum of zero. Signaling a semaphore causes its count
to increase by one, up to its maximum count. A wait for a semaphore
object is satisfied when the semaphore’s count becomes greater than
0. Signaling a semaphore beyond its maximum count returns KER$_
COUNT_OVERFLOW status and usually indicates an error in pro-
gramming logic.

Figure 114 shows the structure of a semaphore object, and Table 114
describes its fields.

Job and Process Synchronization 11-13

Figure 11-4: Structure of a Semaphore Object

SEMS$A_WAIT_FLINK

SEMS$SA_WAIT_BLINK

SEMS$B_TYPE

SEMS$L_SEQUENCE

SEMS$L_COUNT

SEMSL_LIMIT

SEMSA_LIST

MLO-003286

11-14 Job and Process Synchronization

Table 11-4: Semaphore Fields

Field

Meaning

SEM$A_WAIT_FLINK
SEM$A_WAIT_BLINK

SEM$B_TYPE
SEM$L_SEQUENCE

SEM$L_COUNT

SEM$L_LIMIT

The listhead for the queue of processes waiting
for this semaphore. A WCB representing a wait-
ing process is inserted into this queue by the
KER$WAIT procedure. When the semaphore is
signaled, the first process whose wait is completely
satisfied is removed from the queue and unblocked.

The object type: OBJ$SK_SEMAPHORE.

The object sequence number. This value must
match the sequence field in the object identifier
during object translation.

The number of processes that can yet access the
resource protected by the semaphore. If this value
is greater than zero, a process waiting on the
semaphore can acquire immediate access to the
protected resource. A satisfied wait for a semaphore
decreases the count by one. Signaling a semaphore,
in turn, increases its count by 1. A count of 0,
then, means that a process will have to wait for the
semaphore to be signaled before gaining access to
the resource it protects.

The maximum number of processes that may have
access to the semaphore. When the semaphore
count equals this limit, all the units of the protected
resource are available.

Semaphore objects are created by the KER§CREATE_SEMAPHORE
kernel procedure (in module CREATESEM). The procedure expects
four arguments: the optional address to receive a status value, the
address to receive the object’s identifier, a value specifying the initial
count for the semaphore, and a value specifying its maximum count.
KER$CREATE_SEMAPHORE creates a semaphore object with the

following steps:

1. The initial value is compared to the maximum value. If the initial
value is greater than the maximum, KER$_BAD_VALUE status is

returned.

2. A pool block is allocated to hold the event object. If no pool is
available, KER$_NO_POOL status is returned.

Job and Process Synchronization 11-15

3. An object identifier is allocated for the object by calling the sub-
routine KERSALLOCATE_OBJECT. The routine also returns the
address of an entry in an object pointer table and the current se-
quence number for the object. If the job’s object pointer tables are
filled to capacity, KER$_NO_OBJECT status is returned.

4. The wait queue listed is initialized. SEM$A_WAIT FLINK and
SEM$A_WAIT_BLINK are both set to point to SEM$A_WAIT_
FLINK to signify that the queue is empty.

5. SEM$B_TYPE is set to OBJ$K_SEMAPHORE.

6. The specified initial and maximum counts are set in SEM$L,_
INITIAL and SEM$L_MAXIMUM, respectively.

7. The object address is stored in the allocated entry in the object
pointer table.

8. The allocated sequence number is set in EVT$L_SEQUENCE.

When a semaphore object is signaled with the KER$SIGNAL proce-
dure, the value of SEM$L_COUNT is increased by one, and the first
process in the queue whose wait is thereby satisfied is returned to the
ready state. The signaling of a semaphore object is described in more
detail in Section 11.3.1.

When a semaphore object is deleted, the waits of all processes in the
object’s queue are unblocked with KER$_BAD_VALUE status.

The VAXELN run-time library uses a semaphore object to implement
an optimized synchronization object called the mutex (for mutual
exclusion semaphore). The mutex consists of a binary semaphore and a
signed-word count value initialized to —1. Locking the mutex amounts
to increasing the count by one. If the new count does not equal 0, the
mutex has already been locked, and the calling process is forced to
wait on the mutex semaphore (that is, KER§WAIT_ANY is called by
the lock routine on behalf of the locking process). Unlocking the mutex
means to decrease the mutex count by 1. If the new count is not -1,
the mutex semaphore is signaled (that is, KER$SIGNAL is called by
the unlocking routine on behalf of the unlocking process). The mutex
offers optimized performance by requiring the call to KER§WAIT_ANY
and KER$SIGNAL only when ownership of the mutex is in contention.

11-16 Job and Process Synchronization

11.1.3.3 Process Object

A process object represents an independent thread of execution within
a job. A wait for a process is satisfied when the process terminates by
exiting or being deleted.

When one process waits for another process, the KER§WAIT procedure
inserts a WCB to represent the waiting process at the end of the wait
queue of the process being waited for. The listhead for the queue of
WCBs is located at the PCB$A_WAIT_FLINK and PCB$A_WAIT_
BLINK fields in the PCB of the process being waited for.

When that process terminates, the process-deletion logic in KER$DELETE
sets the low bit in the WCB$B_SATISFIED field in every WCB in the
terminating process’s wait queue. It then tests the wait conditions of
every process waiting for the deleted process. If the deletion of the
process satisfies the wait, the waiting process is unblocked. If the dele-
tion of the process does not satisfy the wait (this may be the case for
wait-all waits), the waiting process remains in its waiting state; how-
ever, the setting of the WCB$B_SATISFIED bit in the waiting process’s
WCB will signify for later tests that this portion of the wait has been
satisfied.

A process can be forced to exit with the KER$SIGNAL procedure. This
procedure raises the asynchronous exception KER$_QUIT_SIGNAL

in the signaled process. If that process does not handle the exception,
it is forced to exit, and the waits of all processes waiting for it are
potentially satisfied. Process signaling is described in Section 6.5.2.1.

The creation of the process object itself is described in Section 4.5.
Process deletion is described in Section 4.6.

11.1.3.4 Area Object

An area object represents a region of physical memory that can be
shared among multiple jobs by being mapped into their respective PO
address spaces. Each job that maps the same area has an area object
that points to a jobwide structure, the area control block (ACB), that
synchronizes access to the shared memory. The structure and function
of the area object and the ACB are described in Sections B.3 and B.1,
respectively. This section looks briefly at the synchronization aspects of
areas.

Job and Process Synchronization 11-17

When a process waits for an area object, it is in fact waiting on a bi-
nary semaphore built into the area’s ACB by the KERSCREATE_AREA
procedure. This internal semaphore is defined by its current and max-
imum counts, maintained in the ACB’s ACB$L_COUNT and ACB$L_
LIMIT fields. When the ACB is created, these fields are initialized to
1, meaning that at most one process may access the area and that the
area is initially available. As with semaphore objects, gaining access to
the area causes the current count to decrease by 1. Signaling the area
with KER$SIGNAL causes the count to increase by 1.

The ACB, not the area object, also contains the listhead (ACB$A_
WAIT_FLINK and ACB$A_WAIT_BLINK) for the queue of WCBs that
represent the processes (most likely in separate jobs) waiting for the
area. When a process waits for the area object, a WCB for the process
is inserted in the associated ACB’s wait queue. When the area is
signaled, the first process in the queue whose wait is thereby satisfied
is returned to the ready state.

The run-time library also supplies a mutex, called the area-lock vari-
able, that optimizes access to areas. The lock mutex consists of the
ACB’s internal semaphore and a signed-word count value. The function
of a mutex is described in Section 11.1.3.2.

11.1.3.5 Port Object

A port object represents a storage area for unreceived messages. A
wait on a port object is satisfied when a message is inserted into
the port’s message queue. The structure and function of the port
object are described in Section B.18. This section looks briefly at the
synchronization aspects of ports.

When a process waits for a port, a WCB that represents the waiting
process is inserted into the wait queue at the listhead defined by
PRT$A_WAIT_FLINK and PRT$A_WAIT BLINK in the port object.
The waits of all processes waiting for the port are potentially satisfied
when the port object changes state in one of the following ways:

* A message arrives in the port. All processes whose waits are
completely satisfied by the arrival of the message are unblocked.

* The port’s partner in a circuit disconnects its part of the circuit. All
processes whose waits are completely satisfied by the disconnection
of the circuit are unblocked.

® The port is deleted. In this case, all processes waiting for the port
are immediately unblocked with KER$_BAD_VALUE status.

11-18 Job and Process Synchronization

A process may enter a waiting state for a port by explicitly calling

the KER$WAIT procedure, or the kernel may implicitly put it into a
wait for a port after a call to KERSACCEPT_CIRCUIT (waiting for a
circuit connection), KER§CONNECT_CIRCUIT (waiting for a circuit
connection to be accepted), or KER$SEND (waiting for a port to become
nonfull).

11.1.3.6 Device Object

A device object represents a channel to a hardware device connected
to the target computer. A wait on a device object is satisfied when the
device object is signaled with the KER$SIGNAL_DEVICE kernel proce-
dure. A device is signaled from an interrupt service routine associated
with the device to indicate that an interrupt has been serviced. The
structure and function of the device object is described in Section B.5.
This section looks briefly at the synchronization aspects of devices.

Waiting for a device to be signaled allows a device driver process to
synchronize its execution with the device and its interrupt service
routine. When a process waits for a device, a WCB that represents the
waiting process is inserted into the wait queue at the listhead defined
by DEV$A_WAIT_FLINK and DEV$A_WAIT_BLINK in the device
object.

When a device is signaled with KER$SIGNAL_DEVICE, the device
object is inserted into the global device queue, located at KER$GQ_
DEVICE_LIST, using the DEV$A_FORK_FLINK and DEV$A_FORK_
BLINK fields to form the link with the queue. An IPL 8 software
interrupt is then requested to service the queue. The function of
KER$SIGNAL_DEVICE is described fully in Section 11.3.2.

When it executes, the IPL 8 interrupt service routine, KER$DEVICE_
SIGNAL in module SIGNALDEYV, removes the device object from the
system device queue and sets the low bit in DEV$B_STATE to show
that the device has been signaled. Finally, it scans the list of WCBs
queued to the device and unblocks the first waiting process whose wait
conditions are completely satisfied by the device signal. KER$DEVICE_
SIGNAL is also described in Section 11.3.2.

Job and Process Synchronizaton 11-19

11.1.4 KERSWAIT Kernel Vectors

Kernel vectors are brief procedures that represent the global entry
point for public and internal kernel procedures. These vectors, dis-
cussed fully in Chapter 8, transfer control to the procedure’s internal
entry point, check the procedure’s completion status, and return control
to the caller.

The kernel vectors for KER§WAIT_ALL and KER$WAIT_ANY perform
a special role in allowing asynchronous exceptions to be delivered to
waiting processes or to processes about to enter the waiting state.
These vectors execute a special test immediately after control returns
to the vector from the KER$WAIT procedure. Figure 11-5 shows the
kernel vector for KER$WAIT _ANY, which tests the value of RO.

Figure 11-5: Kernel Vector for KER$WAIT_ANY

KER$WAIT ANY::
.WORD KER$WAIT ANY M

; define kernel service entry
; KERSWAIT_ANY entry mask
30086$: CHMK #CHMK_CODE ; CHMK to procedure, return via REI
TSTL RO ; wait condition satisfied?
BEQL 300868 ; if eql, no - reexecute the wait
TSTL 8 (AP) ; did caller request the wait result?
BEQL 300878 ; if eql, no - so don’t return one
MOVL R1, @8 (AP) ; return the wait result
30087§:
BRW KER$RETURN_STATUS
; return kernel service status

If the procedure succeeded, the value of RO will be 1; if the procedure
failed, the value will be greater than 1. In both cases, execution will
proceed through the vector to return the status to the calling process.
A value of 0 in R0, however, indicates that the process’s wait was
interrupted by the delivery of an asynchronous exception. The Change
Mode to Kernel (CHMK) instruction is therefore reexecuted to allow
the process to return to the waiting state it was in before the delivery
of the asynchronous exception, if the conditions of the wait were not
satisfied in the meantime.

11-20 Job and Process Synchronization

The 0 value is placed into RO either by KER$WAIT itself, when it
discovers that an asynchronous exception is pending against the call-
ing process, or by the internal subroutine KER§UNWAIT, when it
unblocks the waiting process to allow the asynchronous exception to
be delivered. The role of the KER$WAIT procedure in clearing RO is
described in Section 11.2, and the role of KER§UNWAIT is described
in Section 11.3.3.3. Section 6.5 deals with the asynchronous exception
mechanism itself.

11.1.5 Timer Queue

When a process requests a timed wait by supplying a time value to
the KER$WALIT procedure, a timer WCB representing the process is
inserted into a global list called the timer queue, whose listhead is
located at KER$GQ _TIME_QUEUE. The PCB-resident WCB, PCB$B_
WCB, and its associated 64-bit time value, PCB$Q_TIME, are used for
this purpose.

The WCBs in the timer queue are ordered according to the time values
they contain — the WCB with the shortest wait appears first in the
queue, the longest appears last. The ordering is based on absolute time
values.

If the timed wait was requested as a interval (relative or delta) time,
KER$WAIT converts it to an absolute time, by adding the specified
interval time to the current system time, and writes it to the WCB$Q_
TIME field in the timer WCB. The second bit (WCB$V_WAIT _DELTA)
in WCB$B_WAIT is also set; this allows the time values of relative-wait
entries to be adjusted if the system time is changed.

If the wait was requested as an absolute time, the specified time value
is simply copied into WCB$Q_TIME. The timer WCB is then inserted

at the appropriate point in the timer queue, and the calling process is

placed into the waiting state.

Whenever the interval clock interrupt service routine finds that the
first entry in the timer queue has come due (its time value is less
than or equal to the system time), a software interrupt is requested
to activate the software timer ISR. This routine walks the queue of
WCBs in the timer queue and unblocks every process whose timer has
expired.

The role of KER$WAIT in establishing timed waits is dealt with in
Section 11.2. Other time-related kernel functions are described in
detail in Section 5.3.

Job and Process Synchronization 11-21

11.2 KERSWAIT Procedures

Two kernel procedures, KER§WAIT_ALL and KER$WAIT_ANY, en-
able a process to synchronize its execution with one or more events
or resources represented by VAXELN kernel objects. Calling the
KER$WAIT_ANY procedure specifies that the calling process should
unblock when any one of its wait conditions is satisfied. Calling the
KER$WAIT_ALL procedure specifies that the calling process should
unblock when all of its wait conditions are satisfied. (When a wait
condition is satisfied depends on the object being waited for: waits on
area, device, event, process, and semaphore objects are satisfied when
the object is signaled; waits on port objects are satisfied when a mes-
sage arrives in the port. A wait on a process is also satisfied when the
process terminates.)

The two procedures are separate entry points to the WAIT module,
where they share the majority of their code. On entry into one of the
procedures, a flag is set to indicate which procedure was called, and
control then branches to common code.

The goal of the KER$WAIT procedures is to establish a set of WCBs to
represent the conditions of the calling process’s wait, test the conditions
of the wait, and, if the wait is not completely satisfied, insert the
WCBs into kernel object wait queues and place the calling process into
the waiting state. If the procedure’s test finds that the conditions of
the wait are already satisfied, the WCBs are not inserted into the wait
queues, and the calling process is allowed to continue execution without
blocking.

This section describes the operation of the KER$WAIT procedures by

dividing it into the following functional stages:

1. The procedure is entered, the wait-all/wait-any flag is set, and
control is transferred to common code. See Section 11.2.1.

2. The WCBs for the wait are established. See Section 11.2.2.

3. If the caller specified a timeout value, the timer WCB is estab-
lished. See Section 11.2.3.

4. The address of the first WCB in the wait list is saved in the PCB.
See Section 11.2.4.

5. The WCBs are used to test the wait conditions. See Section 11.2.5.

6. If the wait conditions are not completely satisfied, a test for a
pending asynchronous exception is performed. If one is present,
entry to the waiting state is postponed. See Section 11.2.6.

11-22 Job and Process Synchronization

7. The WCBs are inserted into the appropriate wait queues. See
Section 11.2.7.

8. The scheduler is called to remove the process from execution and
select a new process to run. Section 11.2.8.

The KER$WAIT procedure executes in kernel mode and expects at
least three arguments: the address of an optional status variable, the
address of an optional result variable, and the address of an optional
timeout value for the wait. These arguments can be followed by the
object identifier values for up to 250 kernel objects (for port objects, the
address rather than the value of the identifier is passed). If the result
argument is specified, the kernel will return to the caller the argument
number of the object that first satisfied the wait.

11.2.1 Step 1 — Enter the Procedure

If KER$WAIT is entered through the KER§WAIT_ALL entry point, the
lower bit in a general register is set as a wait-all flag. When WCBs
are established for the wait, this flag is copied into the WCB$B_WAIT
field to record the nature of the wait for later tests. If the procedure
i? entered through the KER§WAIT_ANY entry point, the wait flag is
cleared.

Once the flag is set, control branches to common code within the WAIT
module. Here, the procedure first obtains the address of the PCB-
resident timer WCB, PCB$B_WCB. It next determines whether any
objects have been specified in the call by subtracting the minimum
number of arguments for the call (3) from the number of arguments
actually specified in the call (pointed to by the argument pointer). If
the result is 0, no objects were specified, and execution branches to step
3 to determine whether a timeout value was specified. If objects were
specified, the process of establishing WCBs begins.

11.2.2 Step 2 — Establish WCBs for the Wait

If the caller specified kernel objects to be waited for, KER$WAIT must
establish a WCB to test the object’s condition and to possibly be in-
serted into each object’s wait queue. Establishing a WCB means
setting its dynamic fields, those that vary from wait to wait or can
change during a wait: WCBB_WAIT, WCBB_SATISFIED, WCB$A_
NEXT, WCB$A_OBJECT and WCB$A_OBJECT_TYPE. If the number

Job and Process Synchronization 11-23

of specified objects exceeds the number of WCBs allocated to the pro-
cess, a local subroutine is called to allocate additional WCBs from a
system pool block, four at a time, as needed.

The following steps execute in a loop until all the objects specified in
the call have been processed into corresponding WCBs:

1. The object identifier is obtained from the argument list. If the
system or type bits in the identifier are set, the argument is an
identifier for a jobwide kernel object. If either bit is clear, then the
object argument is assumed to be the address of an identifier for a
port object.

Jobwide kernel objects are treated as follows:

a. The kernel subroutine KER$TRANSLATE_OBJECT is called to
return the address of the kernel object. If the translation fails,
KER$_BAD_VALUE is returned to the caller.

b. Execution continues, using the address of the object.

Port identifiers are treated as follows:

a. The LOCK macro is executed to ensure exclusive access to the
port address table.

b. The kernel subroutine KER$TRANSLATE_PORT is called to
return the address of the port object. If the port is not found,
KER$_BAD_VALUE is returned to the caller.

c. The address of the caller’s JCB is compared to the value of
PRT$A_OWNER, the address of the JCB of the job that created
the port. In most cases, if the two values do not match, KER$_
BAD_VALUE is returned. Normally, a process is allowed to
wait only for ports it created; however, if the caller was in
kernel mode before calling KER$WAIT, and if the port is not
connected in a circuit, the process may wait on a port not owned
by its job.

d. Execution continues, using the address of the port object.

2. The validity of the object for wait operations is tested. The value
in the OBJ$B_TYPE field of the object is compared to the setting
in a bit mask located at KER$GL_WAIT_OBJECT within the WAIT
module. The mask contains a set bit for each object that can be
waited for. If the current object’s bit is not set in the mask, KER$_
BAD_TYPE is returned to the caller.

11-24 Job and Process Synchronization

3. The WCB$A_NEXT field of the current WCB is initialized by copy-
ing the value of WCB$A_LIST into it. The first time through the
loop, the current WCB is the PCB-resident timer WCB. The initial-
ization of this WCB is not completed unless the caller specified a
timeout argument.

If the value of WCB$A_LIST is 0 at this point, the last WCB cur-
rently allocated to the process has been reached. Before continuing,
KER$WAIT calls the local subroutine KER$EXPAND_PROCESS_
WAIT to allocate four additional WCBs and link them into the
process’s WCB list through their WCB$A_LIST fields. If the sub-
routine succeeds, this step is reexecuted. If the subroutine fails,
KER$_NO_POOL is returned to the caller.

4. The address of the next WCB is obtained from the WCB$A_LIST
field of the current WCB. The first time through the loop, this is
the address of the first object WCB in the list.

5. The wait flag stored in a general register is written to the low bit of
WCB$B_WAIT to establish whether the WCB was established by a
call to KER$WAIT_ALL or KER$WAIT_ANY.

6. The low bit of WCB$B_SATISFIED is cleared. If this WCB repre-
sents a wait for a process object, the setting of this bit indicates
whether this wait has been satisfied in a wait-all wait.

7. The address of the object, returned by the translation subroutines,
is written to WCB$A_OBJECT. This address is used later to queue
the WCB to the object.

8. The type field in the object is copied to the WCB$B_OBJECT._
TYPE field of the WCB. This field will be used later in testing and
satisfying the wait for this object.

9. The loop continues by returning to the first step until all the speci-
fied objects have been processed.

11.2.3 Step 3 — Establish the Timer WCB

Once the object WCBs have been established, KER$WAIT checks to
see whether a timeout argument was specified. If none was specified,
and no objects were specified, KER$_SUCCESS and a wait result of 0
are returned to the caller. If no timeout was specified but at least one
object was, execution branches to the next step.

Job and Process Synchronization 11-25

If a timeout value was specified, the timer WCB must be initialized.
First, the time value is tested. If it is an absolute time (0 or greater),
its value is copied to the WCB$Q_TIME (PCB$Q_TIME) field of the
timer WCB.

If the timeout value is specified as an interval time (a negative value),
it is transformed to the absolute system time of the timeout by negating
its value and adding it to the value of KER$GQ SYSTEM_TIME, the
current system time. Then the second bit in WCB$B_WAIT (WCB$V_
WAIT_DELTA) is set to show that the timeout was specified as a
relative (delta) time. This allows the KER$SET_TIME procedure to
adjust its time value if the system time is reset, preserving the relative
nature of its wait (see Section 5.3.6.1).

11.2.4 Step 4 — Save the Address of the First WCB

Once all the WCBs for the wait have been established, KER$WAIT
saves the address of the first WCB in the list by writing it to the
PCB$A_FIRST_WCB field in the waiting process’s WCB. If the wait has
a timeout, this address is that of the timer WCB; otherwise, it is the
address of the first object WCB in the list. The value of PCB$A_FIRST_
WCB can be used by other kernel routines to locate the process’s
established WCBs.

The WCBs for this wait are now connected in a circular list by their
WCB$A_NEXT fields. If there is only one WCB in the wait, either the
timer WCB or the first object WCB, this field points to that WCB. If
there are multiple WCBs, the last WCB completes the list by pointing
back to the first WCB (either the timer WCB or the first object WCB),
whose address is saved in PCB$A_FIRST _WCB.

11.2.5 Step 5 — Test the Wait Conditions

The process that called KERSWAIT is placed into the waiting state only
if its wait is not already completely satisfied at the time of the call. If
the caller specified a timeout value of 0, then the wait is is immediately
completely satisfied (nonblocking), regardless of the wait conditions

of any objects specified. (Specifying a timeout value of 0 acts a “test
wait” by allowing a process to determine whether its wait conditions
are satisfied at the time of the call to KER$WAIT without having to
risk entering the waiting state.)

11-26 Job and Process Synchronization

If the caller specified only a (nonzero) timeout value for the wait, no

objects must be tested. Instead, in later steps, the timer WCB will be
inserted into the timer queue, and the process will enter the waiting
state.

If the process is waiting for at least one object, KER$WAIT calls the
internal subroutine KER$TEST_WAIT (in module KERNELSUB). This
subroutine, described in Section 11.3.3.1, walks the list of WCBs, tests
the objects they represent, and, if the wait is completely satisfied,
returns the argument number of the object that satisfied the wait.

If the specified wait is completely satisfied, the KER$SATISFY_WAIT
procedure is called (see Section 11.3.3.2), and the argument number
and KER$_SUCCESS are returned to the caller. If the wait is not
yet satisfied, execution continues with the next step, unless the caller
also specified a timeout value of 0. In that case, the “test” wait is
immediately satisfied, and the argument number 0 (timeout) and
KER$_SUCCESS are returned to the caller.

11.2.6 Step 6 — Test for a Pending Asynchronous Exception

The kernel will not place a process into the waiting state if an asyn-
chronous exception is pending against the process and the process is
capable of accepting the asynchronous exception. If these conditions
are met, the process’s wait is deferred until the asynchronous exception
has been delivered. If the process handles the exception, it reenters the
KER$WAIT code and possibly enters the waiting state. The use and
delivery of asynchronous exceptions are described in Section 6.5.

KER$WAIT tests whether an asynchronous exception is pending by
examining the PCB$B_REASON field of the current PCB. If none of
the asynchronous exception bits is set, execution continues with the
next step to place the process into the waiting state.

If the test reveals that an asynchronous exception is pending against
the process, KER$WAIT next determines whether the process is capable
of accepting the exception by testing the following conditions; if any test
fails, execution continues with the next step:

* The delivery of asynchronous exceptions must be enabled for the
process. Namely, the PCB$V_SIGNAL_DISABLE bit in PCB$B_
REASON must be clear.

Job and Process Synchronization 11-27

® The IPL of the process prior to the call to KER$WAIT must be 0. If
the previous IPL was not 0, then KER§WAIT was called implicitly
by the kernel on behalf of a process; that is, the process is entering
an implicit waiting state. Therefore, the kernel defers the delivery
of the asynchronous exception until the kernel procedure requesting
the implicit wait has completed.

® The hardware must be able to deliver the asynchronous excep-
tion. Namely, the access mode of the process before the call to
KER$WAIT must not be more privileged than the process’s base
access mode (JCB$B_MODE). The REI instruction that exits the
KER$WAIT code also performs a comparable test to determine
whether to request an IPL 2 software interrupt, which initiates
the delivery of the asynchronous exception (see Section 6.5.1.1).
Therefore, if the asynchronous exception cannot be delivered by the
hardware, the process is allowed to enter the waiting state.

If the asynchronous exception can be delivered, control branches to a
special exit sequence that clears general register RO and then executes
an REI instruction. The REI microcode initiates the delivery of the
asynchronous exception. If the process handles the exception, it contin-
ues normal execution at the instruction following the CHMK instruc-
tion in the kernel vector for either KER$WAIT ALL or KER$WAIT _
ANY. As described in Section 11.1.4, the next instruction in the vector
tests the value of RO. Because its value is 0, the vector reexecutes the
CHMK instruction to reenter the KERSWAIT code. This time, with the
asynchronous exception cleared, the process should succeed in entering
the waiting state if its wait was not satisfied in the meantime.

11.2.7 Step 7 — Insert the WCBs into Wait Queues

The conditions of a process’s wait are represented by its WCBs and
their connections to the objects for which the process is waiting. The
KER$WAIT procedure establishes those connections by inserting each
WCB for the wait at the tail of the wait queue for its associated object.
Timer WCBs are inserted at the appropriate position in the kernel’s
timer queue.

Figure 11-6 illustrates the network of connections established for

two waiting processes. For the sake of clarity, each process is shown
waiting for a timeout and for the same kernel object. To enter the
WCBs into the appropriate queues, KER$WAIT walks the list of WCBs
from the first to the last.

11-28 Job and Process Synchronization

Figure 11-6: Two Processes in the Waiting State

Timer Queue

FLINK Key:
Dummy)
WCB BLINK Timer Queue Links
------- Object Queue Links
| . WCB Links
PCB A
This timer WCB
is first in the »> <
timer queue. FLINK
BLINK WCB A
r—=>» < ——
NEXT + FLINK F~ = —l—1 This WCBis
| I 1 atthe tail of
TIME > -1 Ior - BLINK I | ObjectC's
[| 1 waitqueue.
Il NEXT I
(I [
[[
PCBB [[
[[
This timer WCB [[
is second in the > < fooocot (|
timer queue. FLINK b [
(| [
‘— BLINK (| WCBB [
e < -+ —l-
NEXT ¢ > FLINK t—~=i—2 | | ThisWCBis
| I 1 atthe head of
TIME > A ! BLINK t——i—~ | | ObjectC's
[1 | | waltqueue.
[NEXT b
| [
| [|
| OBJECTC [
| - — —— 4]
| FLINK r —————— 4
t
L=-— BLINK
MLO-003256

Job and Process Synchronization 11-29

If the wait has specified a timeout, KER$WAIT inserts the timer WCB
into the timer queue as follows:

1. The address of the timer queue listhead is obtained from KER$GQ_
TIME_QUEUE.

2. The address of the first entry in the queue is obtained.

3. The value in the timer WCB’s time field is compared to the same
field in the queued WCB.

If the time value in the current WCB is less than that of the queued
WCB, then the proper location has been found.

Otherwise, the address of the next queue entry is obtained, and the
comparison is repeated until the proper location or the end of the
queue is found.

4. The INSQUE instruction is used to insert the current timer WCB
before the WCB with a greater time value or at the end of the timer
queue.

Next, KER$WAIT begins its scan of the list of object WCBs for the
wait and inserts the WCBs in the appropriate object queues. The
scan completes when the last WCB is queued. To queue an WCB to
an object, KER$WAIT first obtains the address of the object from the
WCB$A_OBJECT field of the current WCB. This address also points to
the listhead for the object’s queue.

Next, the type field in the object is checked. If the object is not an
area object, the WCB is inserted at the tail of the object queue by
the INSQUE instruction. If the object is an area, the address of its
associated area control block (ACB), which contains the wait queue for
the area, is obtained. The address of the ACB also points to the area’s
wait queue. The WCB is then inserted at the tail of the area queue
with the INSQUE instruction.

11.2.8 Step 8 — Remove the Process from Execution

Once its WCBs have been queued to the object queues and the timer
queue, the calling process is placed into the waiting state until condi-
tions of its wait are satisfied. To inform the scheduler that the process
is no longer eligible for execution, KER$WAIT places the process into
the waiting state. The waiting process can unblock under the following
circumstances:

11-30 Job and Process Synchronization

* The conditions of its wait are satisfied. The kernel procedure that
satisfies the process’s wait, such as KER$SIGNAL or KER$SEND,
removes the process from the waiting state and places it in the
ready state, so that it is once again eligible to execute.

* The wait times out. When the kernel’s hardware and software
interval-clock ISRs discover that a process’s wait has expired, the
process is unblocked, regardless of the status of its other wait
conditions.

* The waiting process receives an asynchronous exception. When
an asynchronous exception is posted against a waiting process, the
kernel moves the process from the waiting to the ready state. When
the process next executes, the asynchronous exception is delivered.
If the process handles the exception, it returns to its previous
waiting state, unless its wait conditions have been satisfied in the
meantime. In that case, it continues to execute.

To place a process into the waiting state, KER$WAIT first sets PCB$B_
STATE field in the PCB to PCB$K_WAITING. This informs the sched-
uler that the process is ineligible to execute. Next, the scheduler
subroutine KER$WAIT_PROCESS is called to remove the process from
execution.

KER$WAIT_PROCESS (in module SCHEDPRO) immediately executes
a SVPCTX instruction to save the hardware context of the process
entering the waiting state and to switch execution to the interrupt
stack. The scheduler then takes over to find the next process to place
into execution.

11.3 Satisfying a Process Wait

A process placed into the waiting state stays there until its wait is
satisfied, its wait times out, or the process itself is deleted. This section
focuses on the kernel mechanisms for satisfying a wait on objects that
are explicitly signaled. The process timeout mechanism is described in
Section 5.3.5, and process deletion is described in Section 4.6.

Signaling an area, device, event, process, or semaphore object causes
the object itself to change state and sets in motion a series of kernel
operations that can cause one or more processes to leave the waiting
state and enter the ready state. The KER$SIGNAL procedure sig-
nals area, event, process, and semaphore objects, and is described in
Section 11.3.1. A separate procedure, KER$SIGNAL_DEVICE, signals
device objects and is described in Section 11.3.2. Since KER$SIGNAL_

Job and Process Synchronization 11-31

DEVICE is usually called from device interrupt service routines at
elevated IPL, it is provided as a separate, optimized routine.

KER$SIGNAL and KER$SIGNAL_DEVICE both employ three kernel
subroutines to test a process’s wait conditions, make necessary alter-
ations to the objects that satisfied the wait, and remove the process
from the waiting state: KER$TEST _WAIT, KER$SATISFY_WAIT, and
KER$UNWALIT, respectively, which are described in Section 11.3.3.
These same routines are used by the KER$SEND routine to satisfy a
process’s wait on a port object.

11.3.1 KERS$SIGNAL Procedure

Signaling an area, event, process, or semaphore object may change the
object’s state and allow one or more processes waiting for the object

to leave the waiting state. The meaning of a call to KER$SIGNAL
depends on the program’s synchronization scheme. In general, a signal
signifies one of the following: that a process no longer requires access
to the resource it has acquired by waiting for it (area and semaphore
objects), that a thread of execution is no longer required (process ob-
ject), or that a specific synchronization point in the program has been
reached (event and semaphore objects).

Whether the signal will enable a waiting process to unblock depends
on the conditions of its wait. For a wait-any wait, only one signal will
enable the process to unblock. For a wait-all wait, all the process’s
other wait conditions must also be satisfied at this time for this one
signal to unblock it.

More specifically, signaling these objects has the following effects:

* Area object. Signaling an area increases its internal semaphore
count by one and unblocks at most one waiting process.

* Event object. Signaling an event changes its state to signaled
(signaling a signaled event has no effect) and unblocks all processes
waiting for the event whose waits are otherwise satisfied.

* Process object. Signaling a process raises the asynchronous ex-
ception KER$_QUIT_SIGNAL for the process. If the process does
not handle the exception, it is forced to exit. All processes wait-
ing for the process are then unblocked if their waits are otherwise
satisfied. (A wait condition for a process is also satisfied when the
process terminates normally or is deleted.)

11-32 Job and Process Synchronization

* Semaphore object. Signaling a semaphore increases its count by
one and unblocks at most one waiting process.

KER$SIGNAL (in module SIGNAL) executes in kernel mode and
expects two arguments: the address of an optional status variable and
the object identifier for the object to be signaled. The procedure first
calls the KER§TRANSLATE_OBJECT subroutine to obtain the address
of the object to be signaled. For all objects except areas, the address
of the object is also the address of the object’s wait queue. For area
objects, the address of the wait queue is the address of its associated
area control block.

The procedure theén dispatches execution based on the value in the
object’'s OBJ$B_TYPE field. If the object is not valid for a signal opera-
tion, KER$_BAD_TYPE status is returned to the caller.

The following sections describe how KER$SIGNAL processes a signal
for each kind of object.

11.3.1.1 Signaling an Area Object

When an area object is signaled, at most one waiting process can be
unblocked. KER$SIGNAL takes the following steps to signal an area
object:

1. The address of the area’s associated, systemwide ACB is obtained
from the ARA$SA_ACB field in the area object.

2. The current count of the area’s internal semaphore (ACB$L_
COUNT in the ACB) is compared to its maximum count (ACB$L_
LIMIT), which is always 1. If the two counts are equal, then the
area has already been signaled, and KER$_COUNT _OVERFLOW
is returned to the caller.

3. The LOCK macro is executed to ensure this thread’s exclusive
access to the global area queue.

4. The value of ACB$L_COUNT is increased by one to signify that the
area object is now available to another process.

5. The KER$TEST_WAIT subroutine is called for each WCB in the
area’s wait queue until it finds an associated process whose wait
is completely satisfied by this signal. Only one process can be un-
blocked by the signal. If a satisfied wait is not found, the procedure
exits without unblocking a process.

Job and Process Synchronization 11-33

6. If a process is found whose wait is completely satisfied, the
KERS$SATISFY_WAIT subroutine is called to decrease the area
semaphore’s count by 1. If this process was in a wait-all wait,
the state of all the objects it was waiting for could be changed by
KER$SATISFY_WAIT.

7. The KER$UNWAIT subroutine is called to unblock the process
that is gaining access to the area and remove its WCBs from their
respective wait queues.

8. KER$_SUCCESS is returned to the caller.

11.3.1.2 Signaling an Event Object

When an event object is signaled, every process waiting for the event
can be unblocked. KER$SIGNAL takes the following steps to signal an
event object:

1. The low bit in the EVT$B_STATE field is set to signify that
the event’s state is now signaled. It remains signaled until the
state bit is cleared with the KER§CLEAR_EVENT procedure (see
Figure 10-10).

2. The KER$TEST_ WAIT subroutine is called for each WCB in the
event’s wait queue to search for associated processes whose waits
are completely satisfied by this signal. Every process whose wait is
now completely satisfied will be unblocked. If no satisfied waits are
found, the procedure exits without unblocking a process.

3. For each process with a satisfied wait, the KER$SATISFY_WAIT
subroutine is called. The subroutine makes no change to the event
object itself to show that a process’s wait on it is satisfied. For a

process in a wait-all wait, the state of all the object’s it was waiting
for could be changed by KER$SATISFY_WAIT.

4. For each process whose wait is satisfied, the KERSUNWAIT sub-
routine is called to unblock the process and remove its WCBs from
their respective wait queues.

11-34 Job and Process Synchronization

11.3.1.3 Signaling a Process Object

When a process object is signaled, every process waiting for that pro-
cess can be unblocked. A process signal depends on the delivery of a
KER$_QUIT_SIGNAL asynchronous exception to the signaled process;
this delivery mechanism is described in detail in Section 6.5. To set the
delivery in motion, KER$SIGNAL simply sets the PCB$V_SIGNAL,_
QUIT bit in the PCB$B_REASON field of the PCB of the process be-
ing signaled. It then calls the KER$SIGNAL_AST subroutine, which
sets the ASTLVL values required to allow the hardware to deliver the
asynchronous exception. KER$SIGNAL then returns success to its
caller.

When the signaled process receives the asynchronous exception, the
kernel searches for a condition handler established by the signaled
process. If no handler is found, or if the handler does not continue from
the signal, the kernel calls KER$EXIT to force the signaled process to
exit. KER$EXIT in turn calls KER§DELETE to delete the process.

KER$DELETE then takes the following steps to process the signal
and possibly unblock any processes waiting for the signaled process to
terminate:

1. An attempt is made to remove a WCB from the process object’s wait
queue. The WCB represents a waiting process. If no WCBs remain
in the queue, the operation is complete.

2. The low bit in WCB$B_SATISFIED is set to signify that the process
has terminated.

This bit is set to record the fact that this portion of a waiting
process’s wait has been satisfied by the termination of the signaled
process. This fact must be preserved for processes whose wait-

all waits are not completely satisfied when the process they are
waiting for is deleted. Because the PCB for the deleted process
no longer exists, it cannot be used in subsequent tests for wait-all
waits; the satisfied bit in the WCB must be used instead.

3. The KER$TEST_WAIT subroutine is called for each WCB in the
process’s wait queue to search for associated processes whose waits
are satisfied by the termination of this process. Every process
whose wait is now completely satisfied will be unblocked. If no sat-
isfied waits are found, KER$DELETE deletes the process without
unblocking another process.

4. For each process with a satisfied wait, the KER$SATISFY_WAIT
subroutine is called. The subroutine makes no change to the pro-
cess object itself to show that a process’s wait for it is satisfied.

Job and Process Synchronization 11-35

5.

For each process whose wait is satisfied, the KER§UNWAIT sub-
routine is called to unblock the process and remove its WCBs from
their respective wait queues.

11.3.1.4 Signaling a Semaphore Object

When a semaphore object is signaled, at most one waiting process
can be unblocked. KER$SIGNAL takes the following steps to signal a
semaphore object:

1.

The current count of the semaphore (SEM$L_COUNT) is compared
to its maximum count (SEM$L_LIMIT). If the two counts are equal,
then the semaphore has already been signaled to its maximum
count, and KER$_COUNT_OVERFLOW is returned to the caller.

The value of SEM$L_COUNT is increased by one to signify that the
semaphore object is now available to another process.

The KER$TEST_WAIT subroutine is called for each WCB in the
semaphore’s wait queue until it finds an associated process whose
wait is completely satisfied by this signal. Only one process can
be unblocked by the signal. If a satisfied wait is not found, the
procedure exits without unblocking a process.

If a process is found whose wait is completely satisfied, the
KER$SATISFY_WAIT subroutine is called to decrease the
semaphore’s count by 1. If this process was in a wait-all wait,
the state of all the objects it was waiting for could be changed by
KERS$SATISFY_WAIT.

The KER$UNWAIT subroutine is called to unblock the process that
is gaining access to the semaphore and remove its WCBs from their
respective wait queues.

KER$_SUCCESS is returned to the caller.

11.3.2 KERS$SIGNAL_DEVICE

Waiting for a device object allows a device driver process to synchro-
nize its execution with an interrupt service routine (ISR). The driver
process blocks its execution until a device interrupt arrives and is ser-
viced. Within the ISR, a call to KER$SIGNAL_DEVICE results in the
ultimate unblocking of the waiting driver process.

11-36 Job and Process Synchronization

Unlike the KER$SIGNAL procedure, KER$SIGNAL_DEVICE (in mod-
ule SIGNALDEV) does not directly unblock the waiting process; rather,
it inserts the signaled device object into the global device queue to be
serviced at IPL 8, instead of device IPL. Deferring the work of un-
blocking the waiting process minimizes the time IPL must remain at
device level. This mechanism is roughly equivalent to the role of fork
processing under the VMS operating system.

Because it normally executes at device IPL, KER$SIGNAL_DEVICE
contains only a handful of instructions — the minimum number to in-
sert the signaled device into the device queue. In fact, the VAXELN
Pascal compiler generates a JSB subroutine call to a special ker-

nel vector, KER$SIGNAL_DEVICE_R2. This vector then executes a
BRW instruction to transfer control to the start of the actual code for
KER$SIGNAL_DEVICE, KER$SIGNAL_DEVICE_R2_S. Control never
returns to the kernel vector; the RSB that exits the kernel code returns
control directly to the ISR.

VAX languages whose processors do not generate JSB linkages
must call KER$SIGNAL_DEVICE through another kernel vector,
KER$SIGNAL_DEVICE. This kernel vector then uses the BSBW in-
struction to branch to the location KER$SIGNAL_DEVICE_S. Code
at this entry point executes five instructions to move the arguments
expected by the main routine code at KER$SIGNAL_DEVICE_R2_
S into general registers, then branches to that location. The RSB
that exits the routine will then return control to the kernel vector at
KER$SIGNAL_DEVICE, which executes a RET instruction to return
control to the ISR. Kernel vectors and their linkages to kernel routine
code are described in Chapter 8.

The register input expected by KER$SIGNAL_DEVICE_R2_S is the rel-
ative device number of the device object to be signaled and the address
of the interrupt dispatch block (IDB) for the device, which contains the
array of relative device object addresses. (These register arguments are
automatically established by the VAXELN Pascal compiler; for other
languages, they are established at the entry point KER$SIGNAL_
DEVICE_S). The structure and function of the IDB are described in
Section B.9.

Executing in kernel mode at device IPL, KER$SIGNAL_DEVICE_R2_S
executes as follows:

1. The address of the signaled device object is obtained by indexing
the device list located at IDB$A_DEVICE_LIST by the relative
device number. If no relative device number was specified, the first

Job and Process Synchronization 11-37

5.

device in the list is used. If a null address is obtained, the routine
returns KER$_BAD_VALUE.

The interlocked instruction BBSSI is executed to set the device lock
in the low bit of DEV$B_LOCK. If the lock is already set, then the
device has already been signaled, and the routine exits with success
status.

The interlocked instruction INSQTI is executed to insert the device
object at the tail of the kernel’s device queue, located at KER$GQ_
DEVICE_QUEUE. If the insertion fails because of another inter-
lock, the instruction is repeated until it succeeds.

If this device object was the first in the device queue, an IPL 8
software interrupt is requested to activate the device queue ISR,
KERS$DEVICE_SIGNAL.

The routine returns success.

When it runs, the IPL 8 ISR, KER$DEVICE_SIGNAL (also in module
SIGNALDEYV), walks the device queue and unblocks waiting processes.
KER$GQ_DEVICE_QUEUE can contain a number of device objects,
not just a single object from one device signal. The ISR processes all
the devices in the queue at this time.

KER$DEVICE_SIGNAL, running at IPL 8 on the interrupt stack,
executes as follows:

1

2.

A device object is removed from the queue. If the queue is empty,
an REI instruction is executed to dismiss the interrupt.

The SEIZE macro is executed to prevent other processors from
accessing to the device queue.

The lower bit in the DEV$B_STATE field is set to signify that the
device has been signaled.

The interlocked instruction BBCCI is executed to clear the low bit
in DEV$B_LOCK, so that the device can again be signaled.

The KER$TEST_WAIT subroutine is called for each WCB in the
device’s wait queue until it finds an associated process whose wait
is completely satisfied by this signal. Only one process can be
unblocked for each signaled device. If no satisfied waits are found,
the routine does not unblock any processes waiting for this device
object; it moves on to the next signaled device object in the device
queue.

11-38 Job and Process Synchronization

6. If a process is found whose wait is completely satisfied, the
KERS$SATISFY_WAIT subroutine is called to clear the low bit
in DEV$B_STATE, signifying that a process’s wait for the device
is satisfied. If this process was in a wait-all wait, the state of all
the objects it was waiting for could be changed by KER$SATISFY_
WAIT.

7. The KER$UNWAIT subroutine is called to unblock the process
that was waiting for the device and remove its WCBs from their
respective wait queues.

8. The routine loops back to service the next device object in the
device queue.

11.3.3 Kernel Subroutines to Support Object Signaling

The kernel code that manages the blocking and unblocking of a pro-
cess relies on a set of subroutines in module KERNELSUB. These
three subroutines, KER$TEST WAIT, KER$SATISFY_WAIT, and
KER$UNWAIT, are described in the following sections.

11.3.3.1 KERS$TEST_WAIT

When the kernel needs to determine whether a process’s wait condi-
tions have been completely satisfied, it calls the internal subroutine
KER$TEST_WAIT, passing it the address of the WCB that represents
the waiting process. That WCB provides the information that the sub-
routine requires to test the wait conditions of the process: the kind of
wait (all or any) and the linkages to the other WCBs established for the
wait. KER$TEST_WAIT returns the status of the wait and, if the wait
is satisfied, the address of the WCB that satisfied the wait.

How KER$TEST_WAIT functions depends on whether the waiting
process called KER$WAIT_ALL or KER$WAIT_ANY, as determined by
the setting of the low bit in the WCB$B_WAIT field in the WCB passed
in the subroutine call. If the WCB represents a wait-any state, then
the test succeeds as soon as a WCB that reflects a satisfied state is
found. If it is a wait-all wait, then the test succeeds only when all the
WCBs in the wait reflect a satisfied state.

The heart of KER$TEST_WALIT is the local subroutine TEST WAIT.
When passed the address of a WCB, TEST_WAIT tests the wait status
reflected by the WCB and returns success if the wait is satisfied. The
test depends on the type of object the WCB is queued to, as determined

Job and Process Synchronization 11-39

by the value of WCB$B_OBJECT_TYPE. Table 11-5 describes the test
performed for each type of object.

Table 11-5: Wait Tests Performed by KER$TEST_WAIT

Object Field Tested Condition to Satisfy Wait

Area ACB$L_COUNT Count must be greater than 0.

Device DEV$B_STATE Low bit in field must be set.

Event EVT$B_STATE Low bit in field must be set.

Port PRT$L_COUNT Message count must be greater than 0;
PRT$W_STATE or the state bit for port full or circuit

connection/disconnection must be set.
Process WCB$B_SATISFIED Low bit in WCB field must be set.

Object itself cannot be tested because it
may have already been deleted.

Semaphore SEM$L_COUNT Count must be greater than 0.

Timer WCBs are ignored by the test. Instead, timeouts are handled
handled independently by the software timer ISR, as described in
Section 5.3.5.

When it is called, KER$TEST_WAIT checks the setting of the low bit in
WCB$B_WAIT. If it is set, KER$TEST_WAIT performs its wait-all test
as follows:

1. The address of the current WCB is passed to the TEST WAIT sub-
routine. The subroutine tests the WCB as described in Table 11-5
and returns.

2. The status returned by the subroutine is tested. If the test of
this object failed, then all wait conditions have not been satisfied.
KERS$TEST WAIT therefore returns failure status to its caller.
Otherwise, execution continues with the next WCB.

3. Because the last test succeeded, the address of the next WCB in the
list for this wait is obtained from WCB$A_NEXT.

If all the WCBs have been tested at this point, execution continues
with the next step. Otherwise, the loop repeats from the beginning.

4. Since all the WCBs have now been tested successfully, the entire
wait condition is satisfied. To show that the wait did not time out,
the value of the WCB$B_ARGUMENT field of tiie first object WCB
in the list is returned to the caller, along with success status.

11-40 Job and Process Synchronization

If WCB$B_WAIT indicates a wait-any wait, KER$TEST_WAIT per-
forms its test as follows:

1. The address of the current WCB is passed to the TEST_WAIT sub-
routine. The subroutine tests the WCB as described in Table 11-5
and returns.

2. The status returned by the subroutine is tested. If the test of
this object succeeded, the wait conditions have been satisfied.
KER$TEST_WAIT therefore returns success status and the address
of the WCB that satisfied the wait. The caller of KER$TEST WAIT
will use the WCB$B_ARGUMENT field in this WCB to return the
wait result argument to its caller.

If the test of the object failed, execution continues with the next
step.

3. Because the last test failed, the address of the next WCB in the list
is obtained from WCB$A_NEXT.

If all the WCBs have been tested at this point, the entire test has
failed, and that status is returned to the caller. Otherwise, the loop
repeats from the beginning.

11.3.3.2 KERS$SATISFY_WAIT

When the kernel determines that an object signal (or process termina-
tion or message arrival) will cause a waiting process to be unblocked,
it calls the internal subroutine KER$SATISFY_WAIT to make ap-
propriate changes to the object or objects that process was waiting
for.

The address of the WCB that apparently satisfied the process’s wait
is passed to the subroutine. That WCB provides the information the
subroutine needs to satisfy the wait conditions of the process: the kind
of wait (all or any) and the linkages to the other WCBs established
for the wait. The subroutine alters only area, device, and semaphore
objects.

How KER$SATISFY_WAIT functions depends on whether the process
being unblocked called KER$WAIT_ALL or KER$WAIT_ANY to enter
its waiting state, as determined by the setting of the low bit in the
WCB$B_WAIT field in the WCB passed in the subroutine call. If the
WCB represents a wait-any state, then only the state of the single
satisfying object may have to be changed. If it is a wait-all wait, then
the states of all the objects in the wait may have to be changed.

Job and Process Synchronization 1141

The heart of KER$SATISFY_WAIT is the local subroutine SATISFY_
WAIT. When passed the address of a WCB, SATISFY_WAIT checks
the value of WCB$B_OBJECT_TYPE and takes the action necessary
to change the state of the object pointed to by the WCB. Table 11-6
describes the changes performed for each type of object.

Table 11-6: Changes to Objects Performed by KER$SATISFY_WAIT

Object Field Changed Change

Area ACBS$L_COUNT Count increased by 1.
Device DEV$B_STATE Low bit in field cleared.
Semaphore = SEMS$L_COUNT Count increased by 1.

When it is called, KER$SATISFY_WAIT checks the setting of the
low bit in WCB$B_WAIT. If WCB$B_WAIT indicates a wait-all wait,
KER$SATISFY_WAIT calls SATISFY_WAIT repeatedly as a subrou-
tine, passing each successive WCB pointed to by WCB$A_NEXT, un-
til all have been processed. It then executes an RSB (Return from
Subroutine) instruction to return to its caller.

If WCB$B_WAIT indicates a wait-any wait, KER$SATISFY_WAIT sim-
ply branches to SATISFY_WAIT rather than calling it as a subroutine.
This means that SATISFY_WAIT makes the necessary alteration only
to the object that satisfied the wait. The RSB within SATISFY_WAIT
then returns control directly to the caller of KER$SATISFY_WAIT.

11.3.3.3 KER$UNWAIT

When the kernel discovers a process whose wait has been satisfied, it
calls the internal subroutine KER§UNWALIT to remove the process from
its waiting state and place it in the ready state. This subroutine also
removes the process’s WCBs from their object wait queues and returns
the wait’s completion status and wait result to the unblocked process.

As Figure 11-5 shows, the KER$WAIT kernel vectors expect RO to
contain the wait completion status and R1 to contain the wait result
after the wait is satisfied. Since the waiting process is not executing,
KER$WAIT must cause these values to be returned by inserting them
into the save areas for RO and R1 in the process’s hardware context
block (PTX). When the process once again executes, the LDPCTX
instruction executed by the scheduler restores the correct values for RO
and R1 from the PTX. The restored PC for the process points to the
instruction following the CHMK instruction in the KER$WAIT kernel

11-42 Job and Process Synchronization

vector. That instruction is the vector’s test of RO to determine whether
the wait was successfully concluded or interrupted by an asynchronous
exception.

KER$UNWAIT expects two input values: the address of the WCB that
satisfied the wait and the completion status for the wait. Normally,
the completion status is KER$_SUCCESS, but when KER§UNWAIT

is called by the KER$SIGNAL_AST routine to unblock a process with
a pending asynchronous exception, a status value of 0 is specified. If
the process handles the exception, normal execution continues in the
KER$WAIT kernel vector, which encounters the 0 in R0. This causes
the vector to reenter the wait code and possibly return the process to its
interrupted waiting state, if its wait was not satisfied in the meantime.

Likewise, when an object for which a process is waiting is deleted, the
code in KER$DELETE calls KERSUNWAIT for each process waiting for
the deleted object. In the call, it specifies the return status of KER$_
BAD_VALUE, which becomes the completion status for the process’s
call to KER$WAIT.

KER$UNWAIT executes as follows to unblock a process:

1. The address of the PCB is obtained from WCB$A_PCB, and the
address of the PTX is obtained from PCB$A_PTX.

2. The completion status is copied to PTX$L_RO, the save area for
register RO.

3. The value of WCB$B_ARGUMENT, the wait result, is copied to
PTX$L_R1, the save area for register R1.

4. The current WCB is removed from its wait queue (object or timer
queue) with the REMQUE instruction. If the low bit in WCB$B_
SATISFIED is set (the wait was for a process), this step is not
executed, because the WCB was removed from the process object’s
wait queue when the process being waited for was deleted.

5. The address of the next WCB in the wait is obtained from WCB$A_
NEXT, and the previous step is executed until all the WCBs have
been removed from their associated object queues.

6. The scheduler subroutine KER$READY_PROCESS is called to
place the unblocked process in the ready state.

KER$READY_PROCESS in module SCHEDPRO sets the value of
PCB$B_STATE to PCB$K_READY for the process and attempts to
schedule the newly readied process. If the unblocked process has a
higher priority than the currently executing process, the scheduler

Job and Process Synchronization 1143

causes the unblocked process to preempt the current process once it
returns from its kernel procedure call.

1144 Job and Process Synchronization

Appendix A
Kernel Parameters and Data

This appendix summarizes the global parameters and data used by
the VAXELN Kernel. Section A.1 describes kernel parameters, and
Section A.2 describes kernel data.

A.1 Kernel Parameters

Kernel parameters are defined in module PARAMETER. They tranmit
information about the system from the System Builder to the VAXELN
Kernel. The contents of the parameter block are shown in Table A-1.
The parameter block itself is described in Section 2.3.3.

Table A-1: Kernel Parameters

Symbol Meaning

KER$GA_DECW_SCR Address of a record describing the configuration of
the DECwindows server

KER$GA_DEVICE_LIST Offset from this location to the first system configu-
ration record

KER$GA_FP_EMULATOR Addpress of floating-point instruction emulator

KER$GA_KERNEL_DEBUG_CODE Address of debugger code resident in the system
image

KER$GA_KERNEL_DEBUG_DATA Address of kernel debugger data

KER$GA_PROGRAM Address of program list

KER$GA_SHARE_LIST Address of shareable image table

Kernel Parameters and Data A-1

Table A-1 (Cont.):

Kernel Parameters

Symbol

Meaning

KER$GA_STRING_EMULATOR
KER$GA_STRING_EMULATOR_EX
KER$GB_CONSOLE_PRESENT
KER$GB_DECW_CONSOLE

KER$GB_INITIAL_AUTH_REQUIRED
KER$GB_INITIAL_ERRLOG_ENABLE
KER$GB_INITIAL_NAME_SERVER

KER$GB_INITIAL_TRIGGER_
ENABLED

KER$GB_JOB_SCHED_PREEMPT

KER$GB_QBUS_RESPONSE_
OPTIMIZE

KER$GB_REMOTE_DEBUG_PRESENT
KER$GL_BIOS_OFFSET
KER$GL_DUMP_OFFSET
KER$GL_INITIAL_DATAGRAM_SIZE
KER$GL_INITIAL_DEFAULT_UIC
KER$GL_MEMORY_LIMIT
KER$GL_TIME_INTERVAL

KER$GQ_INITIAL_CONNECT_
TIMEOUT

KER$GQ_INITIAL_NODE_ADDRESS
KER$GT_ANNOUNCE_STR
KER$GT_INITIAL_NODE_NAME
KER$GW_EMB_COUNT

A-2 Kernel Parameters and Data

Address of string instruction emulator
Address of string emulator exception fixup handler
Boolean flag for requesting console support

Boolean flag for requesting DECwindows console
driver

Boolean flag for requesting authorization service
Boolean flag for requesting error logging
Boolean flag for requesting name service
Boolean flag for enabling trigger boot

Boolean flag for requesting job rotation on preemp-
tion

Boolean flag for requesting Q-bus interrupt opti-
mization

Boolean flag for requesting the remote debugger
Byte offset to code for the console I/O subsystem
Byte offset to code for system dump routines
Maximum size in bytes of a DECnet datagram
System default UIC

Physical memory limit (in pages)

System time update interval in 100-nanosecond
intervals

Circuit connection timeout value in seconds

Local node’s Ethernet address

System announcement string

Local node name string

Number of error log buffers to preallocate

Table A-1 (Cont.): Kernel Parameters

Symbol

Meaning

KER$GW_IO_SIZE
KER$GW_ISTACK_SIZE
KER$GW_NAME_SIZE
KER$GW_PO_INITIAL_SLOT_SIZE
KER$GW_PO_SLOT_COUNT
KER$GW_P1_INITIAL_SLOT_SIZE
KER$GW_P1_SLOT_COUNT
KER$GW_POOL_SIZE
KER$GW_PORT_SIZE
KER$GW_SYSTEM_SIZE

Number of pages in system (communication) region
Size in pages of the interrupt stack

Number of entries in a name table

Size in pages of a PO page table slot

Number of PO page table slots

Size in pages of a P1 page table slot

Number of P1 page table slots

Number of pages in the system pool

Number of entries in the port object port

Size in pages of system image

A.2 Kernel Data

Kernel data items are defined in module SYSTEMDAT. They record
dynamic information about the system to the VAXELN Kernel. The
contents of the data block are shown in Table A-2. The data block
itself is described in Section 2.3.2.

Table A-2: Kernel Data

Symbol

Meaning

KER$AA_CONIO_CONTEXT
KER$AA_CURRENT_JCB

KER$AA_NEXT_JCB
KER$AB_REASON

KER$AQ READY_HEAD
KER$AQ READY_TAIL

Address of console I/O context block

Pointer to job control block of the currently execut-
ing job (one pointer for each processor)

Pointer to the job control block of the job next in
line for execution (one pointer for each processor)

Interprocessor interrupt reason bit mask (one for
each processor)

Head of scheduler’s queue of ready jobs
Tail of scheduler’s queue of ready jobs

Kernel Parameters and Data A-3

Table A-2 (Cont.): Kernel Data

Symbol

Meaning

KER$AW_CLASS_MASK

KER$B_NBI

KER$B_QBUS

KER$B_VAXBI
KER$GA_ACCESS_VIOLATION

KER$GA_ADAPTER_LIST
KER$GA_BIPORT_DATA
KER$GA_BUGSTACK

KER$GA_CALL_HANDLER_PC

KER$GA_CCA_ADDR
KER$GA_CCA_BUFFER_BASE

KER$GA_CONIO_CODE
KER$GA_CPUREGSP

KER$GA_CRASHLOG

KER$GA_DIGITAL_RESERVED

KER$GA_DISPATCH_EXCEPTION

KER$GA_DUMP_CB
KER$GA_DUMP_CODE
KER$GA_ERRFMT _JCB

A-4 Kernel Parameters and Data

An array of bit masks, one for each job priority,
containing a bit for each processor that is executing
a job of the respective priority

Boolean flag for an NBI nexus
Boolean flag for a MicroVAX II processor
Boolean flag for a VAXBI processor

Address of the access control violation service
routine in module EXCEPTION (used by the VAX
emulators)

Adapter control block listhead
Pointer to a BI port local data block

Address of the bugcheck-in-progress stack (one for
each processor)

Virtual address within module EXCEPTION where
condition handlers are called

Virtual address of VAX 6200 processor header

Virtual address of array of VAX 6200 buffer ad-
dresses

Address of the code for the console I/O subsystem

Virtual address of processor-specific register address
space

Address of the crash-restart log (one for each pro-
cessor)

Virtual address of the reserved operand fault service
routine in module EXCEPTION (used by the VAX
emulators)

Virtual address of the location in module
EXCEPTION where the search for a condition
handler begins (used by VAX emulators)

Virtual address of dump control block
Virtual address of system dump image

Virtual address of the job control block for the error
formatting job

Table A-2 (Cont.): Kernel Data

Symbol

Meaning

KERGA_EXEREFLECT

KER$GA_IO_BASE
KER$GA_ISTACK_BASE

KER$GA_MACHINECHK_DATA

KER$GA NBIA_BASE
KER$GA_NBIB_BASE
KER$GA_NEXUS_BASE

KER$GA_PO_SLOT_BASE
KER$GA_P1_SLOT_BASE
KER$GA_POOL_BASE
KER$GA_PORT_BASE
KER$GA_PROGRAM_LIST
KER$GA_REGION_BASE

KER$GA_RESTART_ISTACK

KER$GA_RPB
KER$GA_SCB_BASE

KER$GA_SHAREABLE_IMAGE_LIST

KER$GA_SPT_BASE
KER$GA_SPT_PHYSICAL
KER$GA_STARTUP_PORT
KER$GA_UNWIND

KER$GB_AMP

KER$GB_AUTH_REQUIRED

Virtual address in module EXCEPTION of the
uniform condition-dispatching logic (used by the
VAX emulators)

Virtual address of the I/O database

Virtual address of the base of the interrupt stack
(one for each processor)

Virtual address of the data block for the machine-
check handler (one for each processor)

NBIA base virtual address (one for each NBIA)
NBIB base virtual address (one for each NBIB)

Virtual address of table of VAX 6200 processor
register addresses

Virtual address of the PO page table slots
Virtual address of the P1 page table slots
Virtual address of the system dynamic pool
Virtual address of the port object table
Program descriptor listhead

Virtual address of the base of the communication
region

Multiprocessor stack restart data (one for each
processor)

Virtual address of the restart parameter block
Virtual address of the system control block
Shareable image table listhead

Virtual address of the system page table
Physical address of the system page table
Address of the start-up job’s job port

Address in module RAISE of the KER§UNWIND_S
procedure (used by the VAX emulators)

Boolean flag for closely coupled symmetric multipro-
cessing

Boolean flag for requesting authorization service

Kernel Parameters and Data A-5

Table A-2 (Cont.): Kernel Data

Symbol

Meaning

KER$GB_BI_NUMBER
KER$GB_CPUHARD_INDEX
KER$GB_CPU_TO_WATCH
KER$GB_CPU_TYPE
KER$GB_CVAX
KER$GB_EPA_ENABLE

KER$GB_ERRLOG_ENABLE
KER$GB_NAME_SERVER
KER$GB_NODE_NUMBER

KER$GB_POWERFAIL
KER$GB_PTOOEY
KER$GB_RTVAX
KER$GB_SMP_FLAGS

KER$GB_SYS_TYPE

KER$GB_TIME_SET
KER$GB_TRIGGER_ENABLED
KER$GL_ACTIVE_SUMMARY

KER$GL_BUGCODE
KER$GL_BUGCPUID

KER$GL_DATAGRAM_SIZE
KER$GL_DEFAULT _UIC
KER$GL_ERRFMT_WAKEUP

KER$GL_FIRST WRT_PAGE

A-6 Kernel Parameters and Data

BI number of the current processor if it is a KA800
Processor hardware dispatching index

Array of CPU numbers for CPU watchdog timers
Processor type code

Boolean flag for MicroVAX 3000 processor

Boolean flag for enabling VAXELN Performance
Utility

Boolean flag for requesting error logging

Boolean flag for requesting the name service

Node number of the NBIB on each BI (one for each
BI)

Boolean flag to enable power-failure recovery
Boolean flag for a KA80O processor
Boolean flag for a KA620 processor

Flags to indicate that the system is running under
tightly coupled symmetric multiprocessing

Copy of internal processor identification register
(SIDEX)

Flag to indicate that the system time has been set
Boolean flag for enabling booting over the network

Summary bit mask representing which of the 32
Jjob priorities has an active job on a processor in the
system

Processor fatal system bugcheck code

Physical identification of the processor suffering a
fatal bugcheck

Maximum size in bytes of a DECnet datagram
Default user identification code

Object identifier for the event object on which the
error format job waits

Virtual page number of the first writeable page in
the system

Table A-2 (Cont.): Kernel Data

Symbol

Meaning

KER$GL_FREEZE_SYSTEM
KER$GL_IPINT_MASK
KER$GL_MULTIPROCESSOR_LOCK

KER$GL_NUMBER_AVAIL_CPU
KER$GL_PAGE_BITMAP_START

KER$GL_POOL_FREE

KER$GL_PRIMARY_CPUNUM
KER$GL_PRT_BIPORT
KER$GL_READY_SUMMARY

KER$GL_SAVED_IPL
KER$GL_SMP_INFO

KER$GL_SPT_LENGTH
KER$GL_VCX_RXDB
KER$GL_VCX_TXDB
KER$GL_WATCHDOG
KER$GL_WATCHDOG_VALUE

KER$GL_XBIA_INIT

KER$GQ AREA_LIST
KER$GQ_CLOCK_OFFSET
KER$GQ CONNECT_TIMEOUT
KER$GQ DEVICE_QUEUE
KER$GQ_EMB_AVAIL
KER$GQ EMB_POSTED
KER$GQ HOST ADDRESS

Interprocess freeze lock
Interprocessor interrupt mask

Multiprocessor lock containing spinlock bits for
interprocessor synchronization

Number of available CPUs

Base physical address of the page frame allocation
bitmap on a KA800 secondary processor

Negated number of free pool blocks in the system
dynamic memory list

Number of the primary CPU
Value for the port ID field

Summary bit mask representing which of the 32 job
priorities contains a ready job

Saved IPL value for use by symmetric multiprocess-
ing virtual console

Mask indicating available CPUs in a tightly coupled
symmetric multiprocessing system

Length in longwords of the system page table
Virtual console receive buffer

Virtual console transmit buffer

Processor watchdog time counter, one for each CPU

Timer value for detecting unresponsive processors
in a multiprocessor configuration

Table of initialized XBI adapters on the VAX 6200
Listhead for queue of area control blocks
Accumulator for all changes to the system time
Interval time for circuit connection timeouts
Listhead for queue of signaled device objects
Listhead for queue of available error log buffers
Listhead for queue of posted error log buffers
Host node Ethernet address

Kernel Parameters and Data A~7

Table A-2 (Cont.): Kernel Data

Symbol

Meaning

KER$GQ_IDB_LIST
KER$GQ_IDLE_TIME
KER$GQ NODE_ADDRESS
KER$GQ_POOL_HEAD
KER$GQ_PREV_JOB_TIME

KER$GQ_START_TIME

KER$GQ_SYSTEM_JOB
KER$GQ_SYSTEM_TIME
KER$GQ_TIME_QUEUE
KER$GQ_TOD
KER$GR_EPA_DATA

KER$GR_LOCAL_NAME

KER$GR_LOCAL_TABLE

KER$GR_NETWORK_CONNECT
KER$GR_NETWORK_DATAGRAM

KER$GR_NETWORK_NAME
KER$GR_PO_SLOT_BITMAP

KER$GR_P1_SLOT_BITMAP

KER$GR_PAGE_BITMAP
KER$GR_REGION_BITMAP

KER$GT_HOST_NAME

A-8 Kernel Parameters and Data

Listhead for queue of interrupt dispatch blocks
Array of idle times for processors

Ethernet or DECnet address of the local node
Listhead fof queue of system pool blocks

Total time used by previous jobs (jobs that have
been deleted)

System initialization time or time of last setting of
system time

Listhead for queue jobs

Absolute system time

Listhead for queue of timer wait control blocks
Host node time-of-day value

Virtual address where VAXELN Performance Utility
data is maintained

Port object identifier for the name server for local
KAB800 processors in a closely coupled symmetric
multiprocessing system

Local name table descriptor, containing the address
of the first table listhead and the total number of
listheads in the table

Port object identifier for the Network Service remote
circuit connection port

Port object identifier for the Network Service remote
datagram port

Port object identifier for the Name Service port

Descriptor for the PO page table slot allocation
bitmap

Descriptor for the P1 page table slot allocation
bitmap

Descriptor for the page frame allocation bitmap

Descriptor for the communication region allocation
bitmap

String descriptor for host node name

Table A-2 (Cont.): Kernel Data

Symbol

Meaning

KER$GT_NODE_NAME
KER$GW_CNT_POSTED
KER$GW_CPUAVAIL_MASK
KER$GW_CPU_ACTIVE

KER$GW_CPU_IDLE

KER$GW_EMB_SIZE
KER$GW_ERRSEQ
KER$GW_JOB_GENERATION
KER$GW_MAX_POSTED

KER$GW_PO_SLOT_LENGTH

KER$GW_PO_SLOT_SIZE
KER$GW_P1_SLOT_LENGTH

KER$GW_P1_SLOT_SIZE
KER$GW_PORT_FREE
KER$GW_VCX_RXCIE
KER$GW_VCX_RXCRDY
KER$GW_VCX_TXCIE
KER$GW_VCX_TXCRDY

String descriptor for local node name
Count of posted error log buffers
Mask of all available processors

Summary bit mask representing active processors
in the system

Summary bit mask representing which of the
processors in a multiprocessing system is idle

Size in bytes of an error log buffer
Error log entry sequence number
Job generation number

Maximum number of error log buffers that can be
posted before the error format job runs

Size in pages of a PO page table slot, which includes
the page table itself and the associated allocation
bitmap

Size in pages of a PO page table slot

Size in pages of a P1 page table slot, which includes
the page table itself and the associated allocation
bitmap

Size in pages of a P1 page table slot

Index of the next free entry in the port object table
Virtual console receive-enable register

Virtual console receive-ready register

Virtual console transmit-enable register

Virtual console transmit-ready register

Kernel Parameters and Data A-9

Appendix B
Kernel Data Structures

This appendix summarizes the data structures used by the VAXELN
Kernel. Each of the following sections describes the purpose of each
structure and its location and source for allocation.

B.1 ACB — Area Control Block

Purpose: Describes characteristics and state of a shared area of
memory.

Location: Linked into global area queue with listhead at KER$GQ_
AREA_LIST.

Allocated from: System pool.

References: Figure B-1, Table B-1.

Kernel Data Structures B-1

Figure B—1:

Structure of an Area Control Block

ACB$A_FLINK

ACB$A_BLINK

ACBS$W_SIZE

ACB$B_TYPE

ACB$L_FRAME

ACBSL_NONPIC_VA

ACBS$SL_REF_COUNT

ACBS$ST_NAME (32 bytes)

ACBSA_WAIT_FLINK

ACBS$A_WAIT_BLINK

ACB$B_SEMA_TYPE

ACB$L_COUNT

ACBSL_LIMIT

MLO-0032680

B-2 Kernel Data Structures

Table B—1: Area Control Block Fields

Field Meaning

ACB$A_FLINK The links for inserting the ACB into the kernel’s queue of
ACB$A_BLINK ACBs, located at KER$GQ_AREA_LIST.

ACB$B_TYPE The object type: OBJ$K_AREA_CONTROL_BLOCK
ACB$W_SIZE Number of characters in the area’s name string.
ACB$L_FRAME The starting page frame number for the physical memory

ACB$L_NONPIC_VA

ACBS$L_REF_COUNT

ACB$T_NAME

ACB$A_WAIT_FLINK
ACB$A_WAIT_BLINK

occupied by the area buffer. This value is used for mapping
the area buffer into the PO virtual address space of a job
that shares the area.

The PO virtual address at which the area buffer is mapped
into a sharing job’s address space. This field is used only if
the creator of the area specifies an explicit virtual address

for the area buffer.

The number of jobs that have called KER$CREATE_AREA
for this area. This count is set to 1 when the area is first
created. As each additional job calls KER$CREATE_AREA
to map this area, the reference count is increased by one. As
each job deletes the area, the reference count is decreased by
1. When the count reaches 0, the ACB and the area buffer
are deallocated.

The ASCII string containing the uppercase name of the
area. The maximum size of the string is 31 characters.

The listhead for the queue of processes waiting for this
area. A WCB representing a waiting process is inserted into
this queue by the KER$WAIT procedure. When the area is
signaled, the first process whose wait is completely satisfied
is removed from the queue and unblocked.

Kernel Data Structures B-3

Table B-1 (Cont.): Area Control Block Fields

Field

Meaning

ACB$B_SEMA_TYPE
ACB$L_COUNT

ACBSL_LIMIT

Unused.

The count value for the area’s internal semaphore, signifying
the number of processes that can yet access the area. This
field is initialized to 1, meaning that at most one process can
access the area. A successful wait for an area decreases the
count to 0. Signaling an area, in turn, restores its count to
1. A count of 0, then, means that a process will have to wait
for the area to be signaled before gaining access to its data
buffer.

The limit value for the area’s internal semaphore, signifying
the maximum number of processes that may have access

to the area. This value is always 1. When the area count
equals this limit, processes must wait for the area to be
signaled.

B-4 Kernel Data Structures

B.2 ADP — Adapter Control Block

Purpose: Describes characteristics and state of an I/O adapter.

Location: Linked into global adapter queue with listhead at KER$GA_
ADAPTER_LIST.

Allocated from: System pool.

References: Figure B-2, Table B-2.

Figure B-2: Structure of an Adapter Control Block

ADP$A_NEXT

ADP$A_ADAPTER

ADP$A_DEVICE

ADP$A_PAGEMAP

ADP$A_DATAPATH

ADPS$A_IOPAGE

ADP$B_ADAPTER_NUMBER| ADP$B_BI_NUMBER

ADP$A_MAP_BITMAP (12 bytes)

ADPS$A_PATH_BITMAP (12 bytes)

ADPS$SB_STATE ADP$B_TYPE

ADP$B_PATH_MAP (5 bytes)

MLO-003268

Kernel Data Structures B-5

Table B-2: Adapter Control Block Fields

Field

Meaning

ADP$A_NEXT

ADP$A_ADAPTER

ADP$A_DEVICE

ADP$A_PAGEMAP

ADP$A_DATAPATH

ADP$A_IOPAGE

ADP$B_BI_NUMBER

ADP3$B_ADAPTER_NUMBER

ADP$A_MAP_BITMAP

B-6 Kernel Data Structures

The address of next the ADP in the system’s list of
adapters, located at KER$GA_ADAPTER_LIST. A
new ADP is created with a call to the KER$CREATE_
ADAPTER subroutine (in module INITIAL) from a
processor-specific initialization routine. Each new ADP
is placed at the head of the adapter list.

The base system virtual address of adapter address space;
0 if there are no adapters.

The base physical address of the device’s control/status
register (CSR), loaded from the SCR$L_DEVICE field of
the system configuration record (SCR) that was passed to
KER$CREATE_ADAPTER.

The base system virtual address of adapter page map
registers, used to map VAX memory to UNIBUS or Q-bus
memory addresses.

The base system virtual address of adapter datapath
registers, used by UNIBUS DMA devices.

The base system virtual address of Q-bus or UNIBUS I/O
space in system memory. For a DWBUA bus adapter on a
VAXBI, the field contains the UNIBUS I/O space address;
the field is O for VAXBI device adapters.

The VAXBI bus number, copied from the SCR$B_BI_
NUMBER field of the SCR passed to KER$CREATE_
ADAPTER. For a VAXBI-based VAX system, the field
represents the number of the VAXBI bus on which the
device or DWBUA adapter is a node. The field is O for a
single-VAXBI system or a non-VAXBI system.

The VAXBI node number or UNIBUS adapter number.
For a VAXBI-based VAX system, the field represents the
node number of the device or DWBUA adapter node on
its VAXBI bus. For a VAX 11-750, the field represents a
UNIBUS adapter number. For all other VAX systems, the
field is O.

The map register allocation bitmap descriptor for allocat-
ing map registers on an adapter.

Table B-2 (Cont.): Adapter Control Block Fields
Field Meaning

ADP$A_PATH_BITMAP The datapath register allocation bitmap descriptor for
allocating datapath registers on an adapter.

ADP$B_TYPE The adapter type, as supplied by the processor-specific ini-
tialization routine that called KER$CREATE_ADAPTER:
ADP$K_UNKNOWN, ADP$K_QBUS, ADP$K_UNIBUS,
or ADP$K_VAXBI.

ADP$B_STATE The adapter state: a value of 1 indicates the adapter is
on-line, 0 indicates it is off-line.
ADP$B_PATH_MAP Datapath register allocation bitmap.

B.3 ARA — Area Object

Purpose: Describes a job’s access to a shared area of memory.
Location: Address recorded in job’s object table.

Allocated from: System pool.

References: Figure B-3, Table B-3.

Kernel Data Structures B-7

Figure B-3: Structure of an Area Object

ARASA_ACB

ARAS$B_TYPE

ARAS$L_SEQUENCE

ARASL_PTE_VIRTUAL

ARASL_PAGE_SIZE

MLO-003261

Table B-3: Area Fields

Field

Meaning

ARA$A_ACB

ARASA_BASE_VA

ARAS$B_TYPE
ARASIL_SEQUENCE

ARASL_PTE_VIRTUAL

ARASL_PAGE_SIZE

The system virtual address of the area control block that
defines the area.

The explicit PO virtual address at which the area has been
mapped in the job’s address space. This field is used only if
the creator of the area specifies an explicit virtual address

for the area buffer. This value must match the value of
ACBS$L_NONPIC_VA in the associated ACB.

The object type: OBJ$K_AREA.

The object sequence number. This value must match the se-
quence field in the object identifier during object translation.

The system virtual address of the first PO page page table
entry used to map the area buffer into the job’s address
space. This value is used to unmap the area buffer when
the job deletes the area.

The number of pages of the area buffer mapped into the job'’s
address space. This value is used to unmap the area buffer
when the job deletes the area.

B-8 Kernel Data Structures

B.4 BMP — Allocation Bitmap Descriptor

Purpose: Describes the size, location, and state of an allocation
bitmap.
Location: Resides in kernel data block (PFN bitmap descriptor) and

system space (PO and P1 page table slot bitmap desrip-
tors; PO and P1 virtual memory bitmap desriptors; and
communication region bitmap descriptor).

Allocated from: System pool.
References: Figure 9-2, Table 9-1.

B.5 DEV — Device Object

Purpose: Describes the characteristics and state of channel to an /O
device.

Location: Address recorded in job’s object table.

Allocated from: System pool.

References: Figure B-4, Table B—4.

Kernel Data Structures B-9

Figure B—4: Structure of a Device Object

DEVS$A_WAIT_FLINK

DEV$SA_WAIT_BLINK

DEV$B_TYPE

DEV$L_SEQUENCE

DEV$B_DEVICE_NUMBER DEV$B_LOCK DEV$B_STATE

DEV$A_ADAPTER

DEV$A_FORK_FLINK

DEV$A_FORK_BLINK

DEV$A_REGION

DEV$L_REGION_SIZE

DEVS$A_CONFIG

DEV$L_ID

DEV$L_REF_COUNT

DEV$A_DISPATCHER

DEVS$B_IPL

MLO-003267

B-10 Kernel Data Structures

Table B—4: Device Object Fields

Field

Meaning

DEV$A_WAIT_FLINK
DEV$A_WAIT_BLINK

DEV$B_TYPE
DEV$L_SEQUENCE

DEV$B_STATE

DEV$B_LOCK

DEV$B_DEVICE_NUMBER

DEV$A_ADAPTER

The listhead for the device’s wait queue — the queue of
WCBs representing processes waiting for the device to be
signaled by its ISR. When the device is signaled, the IPL
8 ISR that services the device queue scans the queue of
WCBs queued to the device and unblocks the first waiting
process whose wait conditions are completely satisfied by
the device signal.

The structure type: OBJ$K_DEVICE.

The object sequence number, generated by the internal
routine KERSALLOCATE_OBJECT that allocates the
device object.

The current device state. If the low bit is set, this device
object has been signaled by an ISR. The bit is set by the
IPL 8 device-signal ISR when it services the device. The
bit is examined by routines that test for satisfaction of
wait conditions. If the wait of a process in this device’s
wait queue is completely satisfied by the device signal,
the process is unblocked and the bit is cleared. (A device
signal unblocks at most one process.)

The device object interlock. If the low bit is set, a device
interrupt is pending for the device. If a device has an
interrupt pending, it means the device cannot be deleted
and, if the device is being signaled again by the ISR, the
kernel does not have to reenter the device object in the
device signal queue or raise the device-signal software
interrupt. The bit is set, interlocking the device object,
when the ISR calls the KER$SIGNAL_DEVICE procedure
to signal the device, and cleared when the IPL 8 ISR
removes the device object from the system’s device queue.

The relative device number. This is the number of the de-
vice relative to others created in the same KER$CREATE_
DEVICE procedure call. Devices are numbered upward
from 0. The device number is used as an index to access
device information stored in arrays.

The system virtual address of the device’s adapter control
block (ADP).

Kernel Data Structures B-11

Table B—4 (Cont.): Device Object Fields

Field

Meaning

DEV$A_FORK_FLINK
DEV$A_FORK_BLINK

DEV$A_REGION

DEVS$L_REGION_SIZE

DEV$A_CONFIG

DEVS$L_ID

B-12 Kernel Data Structures

The forward and backward links to the next and previ-
ous device objects in the system’s device signal queue,
located at KER$GQ_DEVICE_LIST. When an ISR calls the
KER$SIGNAL_DEVICE procedure to signal a device, the
kernel inserts the device object into the device queue to
await servicing.

The system virtual address of the device communication
region, created by the KER$CREATE_DEVICE procedure.
Its address is returned to the caller of KER$CREATE_
DEVICE. This address is also placed in an interrupt
dispatch block (IDB) field, IDB$A_REGION, when the
KER$CREATE_DEVICE procedure sets up vectoring of
the device’s interrupts. The device communication region
address will be passed as an argument to the device’s ISR
when a device interrupt is dispatched.

The allocated size, in pages, of the device communication
region. The size in bytes specified by the KER$CREATE_
DEVICE caller is converted to a page count, rounded up
to the next page if necessary, and used to allocate and free
the region. The value is also used to test shared-device
creations for compatible memory requirements.

The system virtual address of the device’s system con-
figuration record (SCR), containing the System Builder
parameters for the device.

The device object identifier, generated by the internal
routine KERSALLOCATE_OBJECT (in the ALLOCATE
module) and returned to the caller of KER$CREATE_
DEVICE.

Table B—4 (Cont.): Device Object Fields

Field

Meaning

DEV$L_REF_COUNT

DEV$A_DISPATCHER

DEV$B_IPL

The device object’s reference count. This is the count o
the number of jobs that have created the device — greafter
than one only in the case of a shared device. The coun

is incremented for each job that successfully creates the
device and decremented for each job that deletes the
device. When the count reaches 0, the device is removed
from the IDB’s device list and the device object’s pool block
is returned to the system. |

The system virtual address of the device’s interrupt dis-
patcher block (IDB), used when removing a deleted device
object from the IDB’s device list. i

The device’s hardware IPL in the decimal range 20 (low)
to 23 (high), copied from the device’s SCR. The device
hardware IPL is 16 greater than the device bus-request
priority specified in the System Builder device description.
If the KER$CREATE_DEVICE caller specified a location
to return the value, the value is placed there.

Kernel Data Structures B-13

B.6 EMB — Error-Logging Message Buffer Header

Purpose: Links an error message buffer into EMB queues.

Location: Resides at head of error message buffers linked into global
EMB queue at KER$GQ _EMB_POSTED or KER$GQ_
EMB_AVAIL

Allocated from: Error-log buffer in queue located at KER$GQ_EMB_AVAIL.
References: Figure B-5, Table 7-1.

Figure B-5: Structure of an Error-Logging Message Bufter Header

EMBS$A_FLINK

EMB$A_BLINK

EMB$W_SIZE

MLO-003267

B-14 Kernel Data Structures

B.7 ERL — EMB Record Header

Purpose: Records information in the error-log buffer for use by the
VMS Error Log Utility.

Location: Resides in error-log buffer after EMB record header.

Allocated from: Error-log buffer in queue located at KER$GQ_EMB_AVAIL.

References: Figure B—6, Table 7-2.

Figure B-6: Structure of an EMB Record Header

ERLSL_SID
ERL$L_SYS_TYPE ERL$W_HDRREV
£ ERL$L_SYS_TYPE
- ERLSL_SMP_ID
ERLST_NODENAME (16 bytes)
ERL$W_FLAGS

ERLSW_ENTRY

ERL$Q_TIME

ERL$W_ERRSEQ

MLO-003268

Kernel Data Structures B-15

B.8 EVT — Event Object

Purpose:

Location:
Allocated from:

References:

Describes the characteristic and state of a user-defined
event.

Address recorded in job’s object table.
System pool.
Figure 11-8, Table 11-3.

B.9 IDB — Interrupt Dispatch Block

Purpose:

Location:
Allocated from:

Notes:

References:

B-16 Kernel Data Structures

Describes the charactertics and state of an I/O channel and
connects a device object, an interrupt service routine, and a
device communication region.

Linked into global IDB queue located at KER$GQ IDB_
LIST.

System pool (small IDB) or one page of the communication
region (large IDB).

There are two forms of IDB:

* Small IDB, for 9 or fewer device objects
e Large IDB, for more than 9 device objects

Figure B-7, Table B-5.

Figure B-7: Structure of an Interrupt Dispatch Block

IDB$A_FLINK

IDB$A_BLINK

IDB$B_STATE IDB$B_CREATE_COUNT | IDB$B_DEVICE_COUNT IDB$B_TYPE

IDB$A_VECTOR

IDB$A_ISR

IDBSA_POWERFAIL

IDBSB_DISPATCHER (52 bytes)

IDBSL_ARG_COUNT

IDB$A_REGISTERS

IDB$A_REGION

IDB$A_IDB

IDB$A_DEVICE_LIST (36 bytes)

Extension for > 8 Device Objects (220 bytes)

MLO-003260

Kernel Data Structures B-17

Table B-5: Interrupt Dispatch Block Fields

Field Meaning

IDB$A_FLINK The forward and backward links to next and previous

IDB$A_BLINK IDB in the system’s list of IDBs; the listhead is located
at KER$GQ_IDB_LIST. When a job attempts to create
a sharable device, the list of IDBs is walked to locate a
matching IDB with a matching transfer address.

IDB$B_TYPE The structure type: OBJ$SK_INTERRUPT.

IDB$B_DEVICE_COUNT

IDB$B_CREATE_COUNT

IDB$B_STATE

IDB$A_VECTOR

B-18 Kernel Data Structures

The device object count, representing the number of device
objects remaining among those initially created by the
KER$CREATE_DEVICE call. The count is initialized

to the count of devices created and then decreased by

1 for each device deleted. If any device objects have

been deleted, requests by jobs to share this device are
disallowed. When the IDB’s device count reaches zero,
the ISR is disconnected from the interrupt dispatcher, the
device communication region memory is deallocated, the
interrupt dispatcher is removed from the list, and the IDB
memory is deallocated.

The created device count, recording the number of device
objects, up to 64, created for this device. If more than 9
device objects are requested, the IDB is allocated in a 512-
byte system region page rather than a 128-byte pool block.
The value of this field is checked to determine whether
the IDB was allocated in its short or long form. Also, this
value is used to check that any jobs attempting to create
this device for shared access specify the identical number
of device objects.

The IDB state, including the following fields:

IDB$V_STATE_ Bit <24> is set if the device is

DEVSHARED sharable by more than one job
and clear if the device is not
sharable.

IDB$V_STATE_ Bit <25>, the device inter-

DEVLOCK rupt lock, is set if the device
is locked and clear if it is
unlocked.

The system virtual address of the device’s interrupt vector
in the SCB.

Table B-5 (Cont.): Interrupt Dispatch Block Fields
Field Meaning

IDB$A_ISR The system virtual address of the unexpected-event dis-
patcher vector for this device vector. When the device is
created, this field is used to store the displaced address
of the unexpected-event dispatcher for this SCB vector.
When the device is deleted, the unexpected-event dis-
patcher address is restored to the SCB vector from this
field.

IDB$A_POWERFAIL The address of the caller-specified powerfail recovery
routine, if any was specified. In the event of a power
failure, the KER$RESTART routine in the POWERFAIL
module calls the specified routine.

IDB$B_DISPATCHER The code that dispatches control to the device’s ISR when
an interrupt occurs.
IDB$L_ARG_COUNT The ISR argument count (3). This field is the start of a

standard VAX argument list passed to the ISR when it is
called with the CALLG instruction. The next three fields
in the IDB comprise the arguments in the list.

IDB$A_REGISTERS The system virtual address of the device’s CSRs. This is
the first argument passed to the ISR.

Kernel Data Structures B-19

Table B-5 (Cont.): Interrupt Dispatch Block Fields
Field Meaning

IDB$A_REGION The system virtual address of the device communica-
tion region, allocated by the KER$CREATE_DEVICE
procedure. This is the second argument passed to the ISR.

IDB$A_IDB The system virtual address of this IDB. This is the third
argument passed to the ISR. This argument is not used by
the ISR itself; rather, it is used implicitly by the VAXELN
Pascal compiler to pass the address of the IDB when it
generates the JSB call to the KER$SIGNAL_DEVICE_R2
subroutine.

IDB$A_DEVICE_LIST An array of longwords containing the addresses of the
device objects. The number of longwords in this field is
determined by the number of device objects created by the
call to KER$CREATE_DEVICE. If nine or fewer device
objects are created, the IDB is allocated in a pool block,
and the IDB$A_DEVICE_LIST field is 36 bytes long. If
more than nine device objects are created, the IDB is
allocated in a page from the communication region, and
this field is 256 bytes (64 longwords) long. The address
of a device object is obtained by using the relative device
number, from field DEV$B_DEVICE_NUMBER in the
device object, as a longword index into this array.

B.10 KSD — Kernel Section Descriptor

Purpose: Describes the location and virtual memory requirements of
an program or shareable image section.
Location: Linked to program descriptor list at PRG$L_KSD or to

shareable image descriptor at SHT$L_KSD.

Allocated from: System image, within the program list or shareable image
table.

Notes: There are three forms of KSD:

e Private KSD, for describing executable image sections

¢ Shareable KSD, for describing shareable image sections

¢ Global KSD, for describing the location of a writeable
shareable image’s KSDs

References: Figure 2-5 and Table 2-5 (private KSD); Figure 2-6,
Figure 2-7, and Table 2-8 (shareable and global KSDs).

B-20 Kernel Data Structures

B.11 MSG — Message Object

Purpose: Describes the characteristics and state of a region of mem-
ory mapped between jobs on a local node.
Location: Linked to a port object when transmitted with the

KERS$SEND procedure.
Allocated from: System pool.
References: Figure B-8, Table B-6.

Kernel Data Structures B-21

Figure B-8:

Structure of a Message Object

MSG$A_FLINK

MSG$A_BLINK

MSG$B_TYPE

MSG$L_SEQUENCE

MSG$B_MSG_TYPE

MSG$B_EXPEDITED

MSG$L_CREATE_SIZE

MSG$L_SEND_SIZE

MSGS$L_COUNT

MSG$L_FRAME

MSG$L_PTE_VIRTUAL

MSG$B_DESTINATION_ID
(16-byte Port Identifier)

MSG$B_REPLY_ID
(16-byte Port Identifier)

MSG$B_LOCK

MSG$B_STATE

MLO-003262

B-22 Kernel Data Structures

Table B—6: Message Fields

Field

Meaning

MSG$A_FLINK
MGS$A_BLINK

MSG$B_TYPE
MSG$L_SEQUENCE

MSG$B_EXPEDITED
MSG$B_MSG_TYPE
MSG$L_CREATE_SIZE

MSG$L_SEND_SIZE

MSG$L_COUNT

MSG$L_FRAME

MSG$L_PTE_VIRTUAL

MSG$B_DESTINATION_ID

MSG$B_REPLY_ID

MSG$B_STATE
MSG$B_LOCK

The links for inserting the message into a port’s message
queue.

The object type: OBJ$K_MESSAGE.

The object sequence number. This value must match the se-
quence field in the object identifier during object translation.

A Boolean flag that is set when the message is to delivered
to a ports expedited message queue.

Field used in message passing between KA800 processors in
a closely coupled symmetric multiprocessing system.

The size in bytes of the messasge buffer as requested by the
caller of KER$CREATE_MESSAGE.

The number of bytes of the message buffer the caller of
KER$SEND wishes to send. The field is initialized to the
value of MSG$L_CREATE_SIZE.

The number of physical and virtual page occupied by the
message buffer. This value is used to map the message
buffer into a receiving job’s address space and to unmap the
message buffer when the job sends or deletes the message.

The starting page frame number for the physical memory
occupied by the message buffer. This value is used for
mapping the message buffer into the PO virtual address
space of a job that creates or receives the message.

The system virtual address of the first PO page page table
entry used to map the message buffer into a receiving
job’s address space. This value is also used to unmap the
message buffer when the message is sent or delete.

The identifier of the port to receive the message. This field
is set by the KER$SEND procedure.

The identifier of the port to which the receiver of the mes-
sage can reply. This field is set if the caller of KER$SEND
supplies a reply port argument.

Bit fields used to synchronized message passing between

KAS800 processors in a closely coupled symmetric multipro-
cessing system.

Kernel Data Structures B-23

B.12 NAM — Name Object

Purpose: Associates a character string with a port.

Location: Linked to a local name table listhead; global listhead
desriptor resides at KER$GR_LOCAL_NAME and points to
the first of 128 table listheads. The listhead is selected by
indexing the table with the value derived by hashing the
name string.

Allocated from: System pool.

References: Figure B-9, Table B-7.

Figure B-9: Structure of a Name Object

NAMS$A_FLINK
L. NAMS$A_BLINK
NAMS$B_TYPE
NAMS$L_SEQUENCE
NAM$W_SIZE NAMS$B_TABLE

NAMS$B_PORT_ID
(16-byte Port Identifier)

NAMST_NAME

NAMSA_PCB_ID

(31 bytes)

NAMS$A_PCB_ID

MLO-003284

B-24 Kernel Data Structures

Table B-7: Name Fields

Field

Meaning

NAMS$A_FLINK
NAM$A_BLINK

NAM$B_TYPE
NAM$L_SEQUENCE

NAM$B_TABLE

NAM$W_SIZE
NAM$B_PORT_ID
NAM$T_NAME

NAMS$A_PCB_ID

The links for inserting this name into the kernel’s local
name table.

The object type: OBJ$K_NAME.

The object sequence number. This value must match the se-
quence field in the object identifier during object translation.

A fiag to indicate in which name table the name is entered:
0 for the local table, 1 for the universal table.

The size in bytes of the port’s name.
The port identifier for the named port.

The ASCII string containing the uppercase name of the port.
The maximum size of the string is 31 characters.

The identifier for a named process object. This field is not
used for naming port objects.

Kernel Data Structures B-25

B.13 NETCON — Network Connection Message

Purpose: Transmits data required by the kernel and the Network
Service to link two ports into a circuit.
Location: A message buffer mapped into a sending or receiving job’s

PO address space.
Allocated from: A message object.
References: Figure B-10, Table B-8.

Figure B-10: Structure of a Network Connection Messsage

NETCONSL_STATUS

NETCONST_KEY

NETCON$B_SOURCE_PORT (16-byte Port Identifier)

NETCON$B_DEST_PORT (16-byte Port Identifier)

NETCONS$T_DEST_NAME
(82 bytes)

NETCONS$T_DATA (18 bytes)

NETCONS$T_USERNAME (22 bytes)

NETCONS$L_UIC

NETCON$W_NODE_NUMBER

MLO-003265

B-26 Kernel Data Structures

Table B-8: Network Connection Message Fields

Field

Meaning

NETCONSL_STATUS
NETCONS$T_KEY

NETCON$B_SOURCE_PORT

NETCON$B_DEST_PORT
NETCONS$T_DEST_NAME

NETCONS$T_DATA

NETCON$T_USERNAME

NETCON$L_UIC

NETCON$W_NODE_NUMBER

The status of the network connection operation.

The purpose of the request. This field can contain the ASCII
string “CI” for a connection-initiation message or “CC” for
connection confirmation message. The former is sent by the
KER$CONNECT_CIRCUIT procedure; the latter is sent by
the KER$ACCEPT_CIRCUIT procedure.

The identifier for the port to which the circuit will be or has
been connected.

The identifier for the partner port in the circuit.

The string descriptor for the partner’s port name. The first
word in the field contains the size of the name string; the
remaining 80 bytes contain the string.

The string descriptor for the accept or connect data specified
in the call to KER$CONNECT_CIRCUIT or KER$ACCEPT_
CIRCUIT. The first word in the field contains the size of the
string; the remaining 16 bytes contain the string.

The string descriptor for the username of the owner of
the partner port in the circuit. The first word in the field
contains the size of the string; the remaining 20 bytes
contain the string.

The user identification code of the owner of the partner port
in the circuit.

The DECnet node number of a remote partner port in the
circuit.

Kernel Data Structures B-27

B.14 NS — Name Service Request Message

Purpose: Provides information required by the Name Service to
create a universal name for a port.

Location: A message buffer mapped into a sending or receiving job's
PO address space.

Allocated from: A message object.
References: Figure B-11, Table B-9.

Figure B-11: Structure of Name Service Request Messsage

c NS$L_REPLY_STATUS NSSB_REQUEST_FUNCTION'

NS$L_REPLY_STATUS -

NS$T_NAME (33 bytes)

NS$B_PORT (16-byte Port Identifier)

MLO-003286

Table B-9: Name Service Request Message Fields

Field Meaning

NS$B_REQUEST_FUNCTION The name service function requested by the message: create
a name (0), delete a name (1), translate a name (2).

NS$L_REPLY_STATUS The status returned from the name service.

B-28 Kernel Data Structures

Table B-9 (Cont.): Name Service Request Message Fields
Field Meaning

NS$T_NAME The string descriptor for the name to created or translated.
The first word in the field contains the size of the name
string; the remaining 31 bytes contain the string.

NS$B_PORT The identifier for the port to be named or translated.

Kernel Data Structures B-29

B.15 JCB — Job Control Block

Purpose: Describes the characteristic and state of a VAXELN job.
Location: Linked into global job queue at KER$GQ _SYSTEM_JOB.
Allocated from: One page of the communication region.

References: Figure 4-2, Table 4-1.

B.16 JPB — Job Parameter Block

Purpose: Holds the job arguments passed through the Program
Description Menu or a call to KER$CREATE_JOB.
Location: Linked into list of parameter blocks in the program descrip-

tor pointed to by PRG$W_PARAMETER,; at job creation,
linked into list of parameter blocks pointed to by JCB$A_
PARAMETER_LIST.

Allocated from: System pool.

Notes: Parameter blocks reside temporarily in pool blocks dur-
ing job creation. Before normal job execution begins, the
parameter desriptors are copied to a table in the job’s PO
address space and their pool blocks are freed. The argu-
ment table first contains a standard VAX argument list
containing the argument count and the addresses of the
argument descriptors; this argument list is passed to the
job when it is called. Following the argument list are the
descriptors themselves.

References: Figure B-12, Table 2—4.

B-30 Kerne! Data Structures

Figure B-12: Structure of a Job Parameter Block

JPBSA_NEXT

JPB$L_SIZE

JPB$L_TOTAL_SIZE

JPB$B_TOTAL_COUNT

JPB$T_PARAMETER (100 bytes)

MLO-003288

B.17 PCB — Process Control Block

Purpose: Describes the characteritics and state of a process’s software
context.

Location: Linked to the job’s process queue at listhead JBC$A_
PROCESS_FLINK/JCB$A_PROCESS_BLINK.

Allocated from: One page of the communication region, shared with the

References: Figure 4-3, Table 4-2.

B.18 PRT — Port Object

Purpose: Describes the charactertistics and state of a message queue
and/or circuit connection.

Kernel Data Structures B-31

Location: Address recorded in the job’s object table; linked into job’s
port queue with listhead at JCB$A_PORT FLINK/JCB$A_

PORT_BLINK.
Allocated from: System pool.
References: Figure B-13, Table B-10.

B-32 Kernel Data Structures

Figure B-13: Structure of a Port Object

PRT$A_WAIT_FLINK

PRT$A_WAIT_BLINK

PRT$W_STATE

PRT$B_TYPE

PRT$L_COUNT

PRT$A_MESSAGE_FLINK

PRT$A_MESSAGE_BLINK

PRT$A_EX_MESSAGE_FLINK

PRT$A_EX_MESSAGE_BLINK

PRT$A_PORT_FLINK

PRT$A_PORT_BLINK

PRTSL_LIMIT

PRT$W_SEQUENCE PRT$W_INDEX

PRTS$L_BIPORT

PRT$Q_NODE_ADDRESS
(8 bytes)

PRT$A_PARTNER

PRT$L_OWNER

PRT$L_UIC

PRT$T_USERNAME
(22 bytes)

PRT$O_PARTNER_ID (16-byte Port identifier)

PRTSW_NODE_NUMBER

MLO-003263

Kernel Data Structures B-33

Table B-10: Port Fields

Field

Meaning

PRT$A_WAIT _FLINK
PRT$A_WAIT_BLINK

PRT$B_TYPE
PRT$W_STATE

PRT$L_COUNT

PRT$A_MESSAGE_FLINK
PRT$A_MESSAGE_BLINK

PRT$A_EX MESSAGE_FLINK
PRT$A_EX MESSAGE_BLINK

B-34 Kernel Data Structures

The listhead for the queue of processes waiting for a mes-
sage to arrive on this port. A WCB representing a waiting
process is inserted into this queue by the KER$WAIT pro-
cedure. When a message arrives, the processes whose waits
are completely satisfied are removed from the queue and
unblocked.

The object type: OBJ$K_PORT.

A bit field recording the state of the port in circuit-
connection and message-sending operations. When set,
the bits in the field have following meanings:

Bit Meaning

PRT$V_CIRCUIT_ The port is connected in a
CONNECTED circuit.

PRT$V_CONNECT_ A circuit connection is pending
PENDING for the port.

PRT$V_PARTNER_ The port’s circuit partner has
DISCONNECT disconnected the circuit.
PRT$V_FULL_ The partner port in a circuit has
FAILURE reached its message limit.

PRT$V_FULL_ERROR Return an error status on a
send if the partner port is at its

message limit.

A send from this port over a
circuit has blocked until the
partner’s port is no longer full.

PRT$V_FULL_WAIT

The number of messages queue to the port.
The listhead for the queue of messages sent to this port.

The listhead for the queue of expedited messages sent to this
port. At most one expedited message can be queued here.
When a message is received from the port, an expedited
message is dequeued before a normal message.

Table B—10 (Cont.): Port Fields

Field

Meaning

PRT$A_PORT_FLINK
PRT$A_PORT_BLINK

PRT$L_LIMIT

PRT$W_INDEX

PRT$W_SEQUENCE

PRT$L_BIPORT

PRT$Q_NODE_ADDRESS

PRT$A_PARTNER

PRT$A_OWNER
PRT$L_UIC

PRT$T_USERNAME

PRT$O_PARTNER_ID
PRT$W_NODE_NUMBER

The links for inserting the port into the job’s queue of ports,
located at JCB$A_PORT_FLINK.

The maximum number of messages that may be queued to
the port.

The longword offset into the port address table to the
address of this port. This field corresponds to the index field
in the port identifier for this port.

The generation number of the port in its port address table
entry; used to detect mismatches between an identifier and
a port object. This field corresponds to the sequence field in
the port identifier for this port.

VAXBI node information for ports created by KA800 proces-
sors in a closely coupled symmetric multiprocessing system.
This field corresponds to the second longword in the port
identifier for this port.

The DECnet node address or the Ethernet hardware address
of the node on which the port was created. This field cor-
responds to the node address field in the identifier for this
port.

The address of port object to which this port is connected
in a circuit. For a remote circuit, this is the address of port
owned by the Network Service.

The address of the job control block of the job that created
the port.

The user identification code for the owner of the partner
port in a circuit.

The string descriptor for the username of the owner of
the partner port in the circuit. The first word in the field
contains the size of the string; the remaining 20 bytes
contain the string.

The object identifier of the partner port in a circuit.

The DECnet node address of the node on which the parter
port in a circuit resides.

Kernel Data Structures B-35

B.19 PRG — Program Descriptor

Purpose: Records information entered on the Program Characteristics
Menu or supplied implicitly by the System Builder for
system programs.

Location: Linked into the program list with listhead at KER$GA_
PROGRAM in the kernel parameter block; at system initial-
ization, the listhead is transferred to KER$GA_PROGRAM_
LIST in the kernel data block.

Allocated from: System image, within the program list.
References: Figure B-14, Table 2-3.

Figure B-14: Structure of a Program Descriptor

PRGSL_NEXT

PRG$W_KERNEL_STACK PRG$W_CPU_MASK

PRGS$L_TRANSFER

PRGS$L_MESSAGE_LIMIT

PRG$W_JOB_PARAMETER PRG$W_USER_STACK
PRG$L_KSD
PRG$B_PROCESS_PRIORITY] PRG$B_JOB_PRIORITY PRG$B_MODE PRASB_JOB_PARAMETER_COUNT]
PRG$W_REF_COUNT PRGSB_OPTION_FLAGS‘

PRGST_NAME (42 bytes)

MLO-003270

B-36 Kernel Data Structures

B.20 PTX — Process Hardware Context Block

Purpose: Contains the hardware context of a process while it is not
executing.
Location: Address is recorded in PCB$A_PTX.

Allocated from: One page of the communication region, shared with the

References: Figure 44, Table 4-3

B.21 SCR — System Configuration Record

Purpose: Records information entered on the Device Desription Menu
or supplied implicitly by the System Builder for integrated
device controllers.

Location: Linked into the device list in system image at listhead
pointed to by KER$GA_DEVICE_LIST.

Allocated from: System image, within the device list.
References: Figure B-15, Table 2-6.

Kernel Data Structures B-37

Figure B-15: Structure of a System Configuration Record

SCR$L_NEXT
SCR$W_SIZE
SCR$T_NAME (30 bytes)
SCR$L_DEVICE
SCR$B_BI_NUMBER SCR$B_IPL SCR$W_VECTOR

R$B_ADAPTER_NUMBER|

MLO-0032T1

B.22 SEM — Semaphore Object

Purpose: Records the characteristic and state of a gate to control
access to a shared resource.

Location: Address recorded in job’s object table.

Allocated from: System pool.

References: Figure 114, Table 11-4.

B-38 Kernel Data Structures

B.23 SHT — Shareable Image Descriptor

Purpose: Records information about the shareable images included in
a system image; used by the Program Loader to resolve a
dynamic program’s references to shareable images.

Location: Linked into the shareable image table with listhead at
KER$GA_SHARE_LIST in the kernel parameter block;
at system initialization, the listhead is transferred to
KER$GA_SHAREABLE_IMAGE_LIST in the kernel data

block.
Allocated from: System image, within the shareable image table.
References: Figure B-16, Table 2-7.

Figure B-16: Structure of a Shareable Image Table Entry

SHTSL_NEXT

SHTSL_IDENT

SHT$L_KSD

SHTS$L_FIXUP

SHT$B_FLAGS SHT$B_MATCHCTL

SHT$T_NAME (40 bytes)

MLO-003272

Kernel Data Structures B-39

B.24 WCB — Wait Control Block

Purpose:

Location:

Allocated from:

Notes:

References:

B-40 Kernel Data Structures

Records the characteristics and state of a process’s wait for
a kernel object or timeout.

Statically linked to PCB at PBC$B_WCB + WCB$A_LIST,
dynamically linked to PCB at PCB$A_FIRST WCB. Also
linked dynamically to OBJ$A_WAIT FLINK/OBJ$A_WAIT
BLINK fields of the kernel object being waited for. Timer
WCBs are linked dynamically into the global timer queue
with listhead at KER$GQ _TIMER_QUEUE.

Timer WCB allocated within PCB; normal WCBs allocated
four per system pool block.

There are two forms of WCB:

¢ Timer WCB, for waiting with a timeout
* Normal WCB, for waiting for a kernel object

Figure 11-1, Table 11-1.

Index

$CHFDEF macro+ 6-8, 611
$SFDEF macro+ 64
4NNKER kernel image* 2-9
6CCKER kernel image+ 2-9
800KER kernel image+ 2—-10
8NNKER kernel image+ 2-10
8SSKER kernel image « 2-10

A

ACB (area control block) + B-1
contents of (fable)s B-3
defined ¢ 11-17
structure of (figure)+ B—1
use in waiting ¢+ 11-30

Access-control violations 6-16
service routine « 6~16

Adapter
address space+ 3-10, 3-32

Adapter control block
See ADP

ADAWI instruction* 5-6

.ADDRESS reference » 2-42, 2-53

Address relocation+ 2-34, 2-49, 2-52 to 2-55
for dynamically loaded programs « 2-37

.ADDRESS section + 2-54

Address translation» 9-1

ADP (adapter control block) » B-5
contents of (table)> B-6
creating « 3-32
structure of (figure)+ B-5

ALLOCATE macro+ 10-14

ALLOCATE module « 8-26, 1042

Allocation
of POPTs » 4-34, 9-9
of PIPTs » 4-35, 448, 9-12
of physcial memory+ 9-23 to 9-24
of pools 9-42 to 9-44
of process virtual memory « 8-31 to 842
of PTEs+ 9-32 to 9-37
of S0 virtual memory « 9-25 to 9-30
of stacks ¢+ 4-37, 4-50
of virtual memory « 9-24 to 9-42
Allocation bitmap descriptor
See BMP
Application start-up* 3-37 to 3-41
ARA (area object)
See Area object
Area control block
See ACB
Area object+ B-7
contents of (table)e B—8
control block» B—1
defineds 11-17
signaling » 11-33
structure of (figure)s B~7
Area-lock variable » 11-18
Arithmetic exception* 6-16
service routine « 6-17
AST (asynchronous system trap)
See also Asynchronous exception
hardware mechanism+ 6-22, 6-23
ASTCNTRL module+ 6-33
ASTDELIVR module « 54, 6-27
Asynchronous exception+ 6-20 to 6-34
affect on waiting* 11-27
attention signal« 6-26

Index-1

Asynchronous exception (cont'd.)

data structures for- 6-21 to 6-24
delivering* 6-28 to 6-33, 11-28
disabling+ 6-33

effect on waiting+ 8-8
power-failure notifcation « 6-26
quit signal» 6-25

REI instruction « 6-22

requesting e 6-27 to 628
service routine » 6-29

use

by debugger HALT command+ 6-26

in process preemption s 6-29
of ASTLVL » 6-22
of KER$WAIT vector» 6-33
of PCB fields « 6-24
of PTX fields « 6-23
uses of « 6-20, 6-25 to 6-27
Autoloading « 2-32

BBCCI instruction+ 5-6, 5-10
BBSSI instruction+ 5-6, 5-9, 11-38
Binary semaphore* 11-13
Bitmap+ 9-3 to 9-7, 9-33
See also BMP
allocation subroutines « 9-6
example of « 9-3
uses of + 94
Bitmap descriptor
See BMP
Blocking
See also Waiting
defined ¢ 11-2
BMP (bitmap descriptor) ¢+ 9-5, B-9
contents of (table)+ 9-5
for communication region ¢ 9-19, 9-27
for PO memory » 4-10, 911
for PO page table siots + 9-10
for P1 memory + 4-15, 9-14
for P1 page table slots » 9-13
for page frames « 9-23
structure of (figure)s 9-5
Bootstrap sequence+ 3-2 to 3-5
Bugcheck » 1-7, 7-3
defined « 7-16

2-Index

Bugcheck (cont'd.)
fatale 7-17 to 7-18
in multiprocessing configurations 7-17
invokinge 6-19, 7-16
mechanisme 7-16 to 7-18
process-level s 7-16
system+ 7-17
BUGCHECK module s 6-19, 7-16
BUG_CHECK macros 7-16

o

Call frame + 64
See also Condition handling
contents of (table)+ 6-6

skipping, with multiple active signals + 6—41

structure of (figure) 6-4
Call stack

unwinding « 648
CASEL instruction+ 8-8
Change mode

dispatching « 8-8

instruction » 8-5
CHMK instruction 8-5

use in kernel vector+ 8—4
CMSC shareable image » 234, 2-56
COMBQ22BUS module » 3-11
COMBUNIBUS module ¢ 3—11
Communication

using areas* 1-11

using messages * 1-11
Communication region+ 9-8

allocating+ 9-25 to 9-30

bitmap + 3-9

bitmap descriptor for» 3-33

bitmap fore 9—19

mapping in SO memory ¢+ 3-10, 3-33

size of + 3—-19, 9-26

uses of » 825
Condition

asynchronous exception+ 1-6, 6-20 to 6-34

uses of » 6-20
defined s 6-2
dismissing » 6-38
exception* 1-6, 6-2, 6-12, 6-15
service routine* 6-13
multiple active signals

Condition (cont'd.)
multiple active signals
defined » 6—41
modified search during « 641
software+ 1-6, 6-3, 6-19 to 6-20
unhandied - 6-46
Condition dispatching« 6-34 to 6-39
Condition handler+ 1-6
actions taken by « 647
continuing » 647
resignaling « 647
unwinding « 6-48 to 6-56
argument list for+ 6-7, 6-36
calling « 641
common call site fore 641
establishing+ 6-39
for asynchronous exceptions « 6-21
mechanism array « 6-10
searching for+ 6-38, 640 to 641
signal array + 6-8
structure of stack for (figure)- 6-36
Condition handling+ 1-6, 61 to 6-56
cali frame
See Call frame
data structures for 6-3 to 6-12
forcing process exite 6—46
kernel mechanisms « 6-15 to 6-16
VAX standard+ 1-6, 6-1
Console
context block ¢ 3-8, 3-17
mapping in SO memory ¢« 3-21
initializing « 3-14, 3-31
process-spacific aspects of ¢ 3—14
registers ¢ 3—17
initializing « 3-31
mapping in SO memory ¢« 3-8
CONSOLIO module » 3-14
Control region

See P1 virtual address space
COPYSYS command procedure s 2-9
Counting semaphore+ 11-13
Crash-restart logs 7-7

mapping in SO memory + 3-9, 3-31
CREATEEVT module+ 10-14, 11-12
CREATEJOB module+ 4-26
CREATEPRO module « 442
CREATEPRT module » 10-34
CREATESEM module » 11-15

Creation

of event objects ¢« 11-12

of JCBs * 4-29

of job arguments « 4-40

of jobs* 4-26 to 442

of object identifiers « 10-11

of objects* 10-14 to 10-18
of page tables « 9-9, 9-10, 9-12, 9-13
of PCBs+ 445

of port objects » 10-34

of processes « 442 to 4-53
of PTXs» 4-46

of semaphore objects* 11-15
of virtual memory « 9-25, 9-31
of WCBs* 11-7

D

Data structures

for asynchronous exceptions « 6-21 to 6-24

for condition handlings 6-3 to 6-12
for error logginge 7—4 to 7-8

for image processing ¢ 2-15

for jobs and processes * 4-3 to 4-20
for memory management+ 9-2 to 9-23

for object management+ 10-3 to 10-13, 10-27

to 10-34
for shareable images * 2-35 to 2—42
for synchronization s 11-8 to 11-21

DCIO shareable image * 2-56
Deallocation

of POPTs ¢ 9-11

of PIPTs« 9-14

of physical memory » 9-24

of process virtual memory « 9-40
of PTEs+ 9-36

of S0 virtual memory - 8-30

Debugger

as last-chance handler» 6—46
bootstrap « 4—41, 4-52
GO command * 4-41
halting mechanism « 6-26
kernel
initial breakpoint « 3-32
local data
mapping in SO memory ¢ 3-9, 3-32

DEBUGUTIL module* 6-26

Index-3

DECnet address « 10-32
DECwindows Server Characteristics Menu » 2-8
DELETE module » 4-54
Demand-zero image section « 2-23, 2-30, 4-39
DEV (device object)
See Device object
Device Description Menu « 2-8, 2-31, 2-32
Device descriptor« 26, 2-31
See aiso SCR
Device driver
autoloading « 2-32
Device handiing 1-10, B-5, B-6, B-9, B-16
Device list
creatinge 2-31 to 2-33
defined » 2-31
run-time access to 2-32
Device object* B-9
contents of (fable)» B-11
defined+ 11-19
signaling* 11-19, 11-36
structure of (figure)» B-9
waiting for« 11-19
Device queue
servicing *+ 11-38
DISPATCH module - &-2, 8-5
Double mapping
defined+ 9-8

E

EBUILD command + 2-7
ELNS$ALLOCATE_STACK procedure s 4-25
ELNSLOAD_PROGRAM procedure » 2-36, 2-37
ELN$LOG_EVENT procedure « 7-3
ELN$PROGRAM_ARGUMENT procedure » 2-18

ELN$PROGRAM_ARGUMENT_COUNT procedure »

2-18
ELNSTIME_STRING procedure » 5-22
ELSE servers 7-10
ELSE$ERRORLOG logical name » 7-10
EMB (error message buffer) e 7-5, B~14
allocating s 7-11
headers 7-5
contents of (table}s 7-5
structure of (figure)+ B-14
mapping in SO memory * 3-9
record header+ 7-5

4-index

EMB (error message buffer)
record header (cont'd.)
contents of (table)s 7-5
structure of (figure)» B-15
ERL
See EMB
ERRFORMAT job+ 7-9
awakening, by kernel » 7-13
Error log
buffer« 7-5, B-14
buffer queue+ 7-8
entry size 7-8
entry types « 7-6
sequence number+ 7-8
Error Log Characteristics Menu ¢« 3-9, 3-18
Error message buffer
See EMB
Error-logging subsystem+ 1-7, 7-1 to 7-15
components of ¢ 7—4
dump facility « 7-9
ERRFORMAT jobe 7-8, 7-13
error and events logged by « 7-2
operation of ¢ 7-10 to 7-15
servers 7-10
Error-message buffer
mapping in SO memory » 3-31
ERRORLOG modules 7-8
Ethernet address « 10-32
Event objects B~16
contents of (tablg)s 11-12
creating s 10-14, 11-12
defined« 11-10
deleting+ 11-13
signaling « 11-13, 11-34
structure of (figure) 11-10
Event reporting+ 1-7, 7~-1
EVT (event object)
See Event object
Exception
See also Condition; Exception
arithmetic» 6-17
asynchronous
See Asynchronous exception
hardware « 6-12
service routine * 6-13
Exception handler
See Condition handler

Exception handling
See Condition handling
Exception mechanism+ 6-12
EXCEPTION module « 3-29, 6-15, 6-34, 6-38
Executive
See Kernel

F

Fixup
See Address relocation

Fixup sections 2-21, 2-30, 2-41, 2-48
contents of ¢+ 241
duplicate, in shareable image + 2-57, 2-58
role in address relocations 2-53
structure of (figure)» 2-42

FREE macro- 10-23

G

GA (addressing mode) « 2-42, 2-53
Global common » 2-48, 4-39
GOTO Pascal statement « 648
Guaranteed image liste 2—44

H

HALT debugger command ¢ 6-26
Hardware process context block

See PTX

I/O space
configuring s 3-30
mapping in SO memory ¢+ 3-10, 3-32
size of »+ 3-19
IDB (interrupt dispatch block) « B—16
contents of (table)+ B-18
structure of (figure)e B~16
Identifier
See Object identifier; Port identifier
Idle time+ 5-18
IFN_READ macro+ 8-8

Image
See Kernel image; Program; Shareable image;
System image
Image section descriptor
See ISD
INIT8NN module « 3—11
INITIAL module « 2-13, 3-6, 9-43, 10-29
Initializations 1-5, 2-13
configuring /O space during *+ 3-30
enabling memory management during « 3-22 to
3-27
mapped+ 3-27 to 3-36
stages in* 3-27
mapping of system components duringe 3-19 to
3-21
of pool + 943
of port address table* 10-29
of SCB« 3-28
processor state duringe 3—-6
processor-specific factors in+ 3-10
stages in¢ 3-1, 3-6
structure of physical memory (figure)« 3-2
structure of physical memory for (figure)« 3—4
unmapped 3-11 to 3-21
stages ine 3-12
INITUV2 module « 3-11
INSQHI instruction « 5-6
INSQTI instruction« 5-6, 9-44, 11-38
Instruction emulatione 2-34
Interjob communication
See Communication
Interlocked instructions
use in synchronization+ 5-6
Interprocessor interrupt
use in synchronizations 5-10 to 5-11
Interrupt dispatch block
See IDB
Interrupt priority level
See IPL
Interrupt stack » 3-28
bootstrap « 3-5, 3-6
mapping in SO memory + 3-8, 3-21
size of ¢ 3-17
INTERRUPT_ALL_CPUS macros 5-10
INTERRUPT_CPU macro+ 5-10
Interval clock* 5-12 to 5-14
initializing « 3-36

Index-5

Interval timer
ISR+ 5-16
IPL (interrupt priority level) ¢ 2-32
effect on bugcheck mechanism+ 7-16
elevated « 5-6
IPL 2 (IPL$K_AST_LEVEL)+ 54, 5-7, 6-22, 6-23,
6-24,6-28 to 6-33
IPL 3 (IPL$K_DISABLE_SWITCH) - 5-7, 5-10, 8-6
IPL 4 (IPL$K_RESCHEDULE)* 54, 57
IPL5- 54
IPL 6 (IPL$K_AMP)« 54
IPL 7 (IPL$K_TIMER) - 5-4, 5-7, 5-18
IPL 8 (IPL$K_SYNCHRONIZE) - 54, 5-7, 5-9,
5-10, 11-19, 11-38
IPL 23 (IPL$K_INTERPROCESSOR)* 5-7, 5-10
IPL 30 (IPL$K_POWER)+ 57
IPL 31 (IPL$K_KERNEL_DEBUG)+ 5-7, 6-46
ISD (image section descriptor) ¢ 2—15
flags field « 2—24, 241, 245
function of » 2-22
structure of (figure)s 2-21
type field - 2-24, 241, 245

J

JCB (job control block) »+ 4-2, 44, 46 to 4-11,
B-30
contents of (table)+ 4-8
creating » 4-29
fields for memory management » 4-33
structure of (figure)s 4-6
use in memory management « 9-20
JCX (job context page) » 4-23
Jobe 1-5
access mode * 4-11, 4-32
arguments « 2-18, 4-5, 4-30
See also JPB
creating * 4-40
contexts 4—1
defined s 4-3
minimal « 4-27
creatinge 4-26 to 4-42
context of master process * 4-27
creating master process* 4-33 to 4-35
mapping of image sections « 4-37
stages in* 4-27

6-Index

Job (cont'd.)
creating
use of KSDs « 2-29, 2-30, 2-46, 248,
2-49, 2-51, 4-37 to 4-39
verifying arguments « 4-28
data structures fore 4-3 to 4-20
deleting « 4-53
eligibility mask » 4-31
exit porte 4-31
exiting + 4-53
generation number ¢ 4-10, 4-31
initialization characteristic + 3—-37
memory management « 9-20
object management+ 104
page tables
See POPT
priority « 4-8, 4-30
queues scheduling « 4-31
run characteristic + 3—-37
rundown « 4-54
scheduling
See Scheduling
start-up » 3-37
state 4-8, 4-30
synchronization
See Synchronization
Job address space
See PO virtual address space
Job context page
See JCX
Job control block
Ses JCB
Job parameter block
See JPB
JPB (job parameter block) < 4-5, 4-10, B-30
See also Job arguments
contents of (table)+ 2-18, B-30
defined « 2-17
mapping into PO address space * 440
structure of(figure) » B-31

K

KA620 processor + 3-15, 9-9, 9-12, 9-82
page tables for+ 4-36, 4-48
KER$AA_CONIO_CONTEXT kernel datum « 3—21

KER$AA_CURRENT_JCB kernel datum ¢ 3-35
KER$AB_REASON kernel datum« 5-10
KER$ACCEPT_CIRCUIT procedures 11-19
KERS$ALLOCATE_FRAME subroutine « 9-23
KER$ALLOCATE_MEMORY procedure » 9-37
operation of ¢ 9-37 to 9-40
KER$ALLOCATE_OBJECT subroutine» 10-14
KER$ALLOCATE_PO_PTE subroutine+ 9-33
KERS$ALLOCATE_PO_SLOT subroutine« 9-10
KER$ALLOCATE_P1_PTE subroutine+ 9-33
KERS$ALLOCATE_P1_SLOT subroutine s 9-13
KERSALLOCATE_POOL subroutine e 9-44
KERS$ALLOCATE_PORT subroutines 10-36
KERS$ALLOCATE_PROCESS_STACK subroutine »
4-50
KER$ALLOCATE_REGION subroutine » 9-27
KERS$ALLOCATE_SYSTEM_REGION procedure ¢
8-17
operation of+ 8-29 to 9-30
KERS$ALLOCEMB subroutine s« 7-11
KER$AQ_READY_HEAD kernel datum+ 3-34
KER$BUG_CHECK subroutine = 7-16
KER$CALL_HANDLER_PC location 6—41
KER$CLEAR_EVENT procedure» 11-13
KER$CONFIGURE_IOSPACE subroutine « 3-30
KER$CONNECT_CIRCUIT procedure+ 11-19
KER$CREATE_AREA procedures 11-17
KER$CREATE_EVENT procedure » 10-14
operation of+ 11-12
KER$CREATE_JOB procedure » 4-2
operation of ¢+ 4-27 to 4-42
KER$CREATE_PORT procedure « 4-35, 1026,
10-34
KERS$CREATE_PROCESS procedure » 4-2
operation of « 4-42
KER$CREATE_SEMAPHORE procedure
operation of s+ 11-15
KERS$DELETE procedure « 10—22, 1042
operation of + 4-55 to 4-57
KER$DEVICE_SIGNAL interrupt service routine «
11-38
KER$DISABLE_ASYNCH_EXCEPTION procedure »
6-33
KER$DISPATCH_EXCEPTION location « 6-38, 6—40
KERS$ENABLE_ASYNCH_EXCEPTION procedure *
6-33
KERS$ENTER_KERNEL_CONTEXT procedure

KERS$ENTER_KERNEL_CONTEXT procedure
(cont'd.)
operation of « 8-17 to 8-18
KER$ENTER_PROCESS subroutine « 4-52
KERS$EXIT procedure
operation of » 4-53
KER$EXPAND_PROCESS_WAIT subroutine s 11-25
KER$SEXPAND_STACK subroutine « 6~17
KER$FREE_FRAME subroutine » 9-24
KER$FREE_MEMORY procedure
operation of + 940 to 9-42
KER$FREE_OBJECT subroutine » 10-23
KER$FREE_PO_PTE subroutine » 9-36
KER$FREE_PO_SLOT subroutine+ 9-11
KER$FREE_P1_PTE subroutine » 9-36
KER$FREE_P1_SLOT subroutines 9-14
KER$FREE_POOL subroutine » 9—44
KER$FREE_PORT subroutine » 1042
KER$FREE_REGION subroutine » 9-28
KER$FREE_SYSTEM_REGION procedure
operation of + 9-30
KER$GA_CONIO_CODE kernel datum « 3-14, 3-31
KER$GA_CRASHLOG kernel datum+ 3-31, 7-7,
7-17
KER$GA_DEVICE_LIST kernel parameter » 2-32,
3~-32
KER$GA_ERRFMT_JCB kernel datum « 7-7
KER$GA_KERNEL_DEBUG_CODE kernel
parameter « 3-32, 646
KER$GA_KERNEL_DEBUG_DATA kernel parameter
¢ 3-32
KER$GA_LOCAL_TABLE kernel datum ¢ 3-32
KER$GA_NODE_ADDRESS kernel datum+ 10-35
KER$GA_P0_SLOT_BASE kernel datum » 3-32,
9-10, 9-19
KER$GA_P1_SLOT_BASE kernel datum * 3-32,
9-13, 9-20
KER$GA_POOL_BASE kernel datum « 943
KER$GA_PORT_BASE kernel datum « 3-32, 10-28
KER$GA_PROGRAM kernel parameter + 2-16
KER$GA_PROGRAM_LIST kernel datum e+ 2-16,
3-35
KER$GA_REGION_BASE kernel datum+ 3-33,
9-19, 9-27
KER$GA_SHAREABLE_IMAGE_LIST kernel datum
2-36, 2-44
KER$GA_SHARE_LIST kernel parameter » 2-44

index—7

KER$GA_SPT_BASE kemnel datum+ 3-21, 326,
9-18

KER$GA_SPT_PHYSICAL kernel datum+ 3-13,
3-20, 3-21, 3-26, 9-18

KER$GA_STARTUP_PORT kernel datum « 3-38

KER$GB_CPU_TYPE kernel datum+ 3-11

KER$GB_ERRLOG_ENABLE kernel datum+ 7-7

KER$GB_ERRORLOG_ENABLE kernel parameter »
3-31

KER$GB_RTVAX kernel datum+ 3-11, 3-15

KER$GB_TIME_SET kernel datum+ 5-14, 5-22

KER$GET_TIME procedures 5-12

operation of ¢ 5-22
KER$GET_UPTIME procedure s 5-12
operation of ¢ 5-22 to 5-23

KER$GL_BIOS_OFFSET kernel parameter = 3—-14

KER$GL_ERRFMT_WAKEUP kernel datum+ 7-7

KER$GL_FIRST_WRT_PAGE kernel datum« 3-12

KER$GL_KERNEL_DATA locations 3-13

KER$GL_MEMORY_LIMIT kernel parameter» 3—16

KER$GL_MULTIPROCESSOR_LOCK kernel datum »
59

KER$GL_POOL_FREE kernel datum « 944

KER$GL_SPT_LENGTH kernel datum+ 3-20, 8-19

KER$GL_TIME_INTERVAL kernel parameter 3-36,
5-13, 5-15

KER$GQ_CLOCK_OFFSET kernel datum+ 5-15,
5-20, 5-22

KER$GQ_DEVICE_QUEUE kernel datum+ 11-38

KER$GQ_EMB_AVAIL kernel datum+ 7-7, 7-8

KER$GQ_EMB_POSTED kernel datum+ 7-8

KER$GQ_IDLE_TIME kernel datum« 5-15

KER$GQ_NODE_ADDRESS kernel datum + 3—16

KER$GQ_POOL_HEAD kernel datum « 9-44

KER$GQ_START_TIME kernel datum+ 5-15

KER$GQ_SYSTEM_TIME kernel datum+ 5-14,
5-15, 5-20

KER$GQ_TIME_QUEUE kernel datum « 3-36, 5-15,
11-21

KER$GR_P0_SLOT_BITMAP kernel datum+ 3-32,
9-10, 9-19

KER$GR_P1_SLOT_BITMAP kernel datum+ 3-32,
9-20

KER$GR_PAGE_BITMAP kernel datum+ 3-21,
9-19, 9-23

KER$GR_REGION_BITMAP kernel datum » 3-33,
9-19, 9-27

8-Index

KER$GR_STARTUP location » 3-35
KER$GT_HOST_NAME kernel datum » 3-16
KER$GT_NODE_NAME kernel datum » 3-16
KER$GW_CPU_IDLE kernel datum « 3-34
KER$GW_EMB_COUNT kernel parameter ¢ 3-18,
3-31,7-7,7-8
KER$GW_EMB_SIZE kernel datum+ 3-8, 7-8
KER$GW_ERRSEQ kernel datum » 7-8, 7-11
KER$GW_IO_SIZE kernel parameter « 3-10, 3-19,
3-33, 9-26
KER$GW_ISTACK_SIZE kernel parameter » 3-17
KER$GW_MAX_POSTED kernel datum « 7-7
KER$GW_NAME_SIZE kernel parameter+ 3-9,
3-32
KER$GW_PO_SLOT_COUNT kernel parameter
3-18
KER$GW_PO_SLOT_LENGTH kernel datum « 3-19,
9-10, 9-19
KER$GW_PO0_SLOT_SIZE kernel datum+ 3-18,
9-19
KER$GW_P1_SLOT_COUNT kernel parameter ¢
3-18
KER$GW_P1_SLOT_LENGTH kernel datum » 3-19,
9-13, 9-20
KER$GW_P1_SLOT_SIZE kernel datum + 3-18,
9-20
KER$GW_POOL_SIZE kernel parameter 3-18,
9-43
KER$GW_PORT_FREE kernel datume+ 10-28,
10-37
KER$GW_PORT_SIZE kernel parameter 3-89,
3-19, 3-32, 10-28
KER$GW_SYSTEM_SIZE kemnel parameter s 3—12,
3-17
KERSINITIALIZATION_DONE procedure « 3-38
operation of « 3-40 to 3-41
KER$MACHINECHK_BUGCHK subroutine » 7-22
KER$MACHINECHK_PROTECT subroutine s 7-20
KER$POST_ERRORLOG procedure
operation of ¢ 7-12
KER$RAISE_DEBUG_EXCEPTION procedure
operation of + 6-26
KER$RAISE_EXCEPTION procedure » 8-16
operation of ¢+ 6-19 to 6-20
KER$RAISE_PROCESS_EXCEPTION procedure
operation of ¢ 6-26
KER$RECEIVE procedure+ 1041

KER$REFLECT locations 6-15, 6-34
KERS$RELEASEMB subroutine« 7—11
KER$RETURN_STATUS subroutine » 8-15
KER$SATISFY_WAIT subroutines 11—41
KERS$SET_JOB_ELIGIBILITY procedure » 4-31
KER$SET_TIME procedure » 5-12, 5-14
operation of » 5-20 to 5-21
KER$SIGNAL procedure » 6-21, 6-25
operation of ¢ 11-32 to 11-36
KER$SIGNAL_AST subroutine » 6-27
KER$SIGNAL_DEVICE procedure « 11-19
operation of + 11-36 to 11-39
KER$TEST_WAIT subroutine « 11-39
KER$TRANSLATE_OBJECT subroutine s 10-18
KER$TRANSLATE_PORT subroutine 10-39
KERSUNWAIT subroutines 11—42
KERSUNWIND procedure
operation of + 648 to 6-56
KER$VECTOR_START location « 3-12, 3-26
KERS$WAIT vector « 6-33
KERSWAIT_ALL procedure
operation of « 11-22 to 11-31
KER$SWAIT_ANY procedure
operation of « 11-22 to 11-31
KER$WAIT_PROCESS subroutine« 11-31
KER$WAKEUP subroutine» 7-13
Kernel
design goals + 1-2 to 1-3
initialization
See Initialization
objects
See Kernel object
overviews 1-4 to 1-11
role as secondary bootstrap program ¢« 3-5
role in system operation* 1-2 to 1-11
structure of + 1-3, 2-9
synchronization + 1-6, 5-5 to 5-11
time supports 1-6, 5-11 to 523
Kernel data* 2-8, 2-12
See also individual KER$ entries
defined ¢ 2-12
location of ¢ 2-12
mapping into SO memory » 3-20
references to, during unmapped initialization
3-18
resolving references to« 2-12
summary (table)s A-3

Kernel image* 2-9 to 2-10

4NNKER+ 2-9
6CCKER- 2-9
800KER+ 2-10
8NNKER -+ 2-10
8SSKER -+ 2-10
assembly of ¢ 2-10
linker map for+ 2-10
MP88OOKER » 2-10
QBUSKER -+ 2-9, 3-11
UBUSKER - 2-9, 3-11

Kernel mode

KER$ENTER_KERNEL_CONTEXT procedure «
8-17

procedures that enter» 8-5

stack « 4-25, 6-18, 6-36

Kernel object

See also Area object; Device object; Event object;
Message object; Name object; Port object;
Process object; Semaphore object

address table+ 1-8

base table *+ 4-5, 4-32, 10-3, 10-4

creating+ 1-8, 10-2, 10—14 to 10-18

defined ¢ 10-1

deleting+ 10-3, 10-22 to 10-26

job-specific « 101

management
See Kernel object management

maximum number of ¢ 10-2

pointer tables « 4-5, 4-32, 10-3, 10-6

satisfying wait for 11-41

signalings 11-33 to 11-36

systemwide « 10-26

testing wait for 11-39

use for synchronizatione 11-10

uses of ¢ 10-1

wait queue * 11-3

waiting fore 11-22

Kernel object identifier 1-8, 10-2, 10-3, 10-8 to

1011
base field+ 10-9
contents of (tablg)s 10-9
creating s 10-11
index field+ 10-9
prototype s 10-7
sequence field+ 10-9
structure of (figure)+ 10-9

Index-9

Kernel object identifier (cont'd.)
system field« 10-10
translating+ 10-18 to 10-21
type field» 10-10
Kernel object managements 1-8, 10-1 to 10—44
data structures fors 10-3 to 10-13, 10-27 to
10-34
for job-specific objects*+ 10-2 to 10-26
for port objects + 10-26 to 10-44
Kernel parameters « 2-6, 2-12 to 2-13, 3-16
See also individual KER$ entries
defined « 2-12
location of ¢ 2-13
summary (table)s A-1
Kernel procedures « 8-1
access mode of ¢ 1-7
argument count »+ 8-4, 8-5
caller's mode+« 8-9 to 8-13
calling s 8-3
code body« 8-8
dispatcher « 8-5
dispatching * 1-7, 8-1 to 8-18
dispatching (figure)+ 8-6, 8-11, 8-13
entry mask+ 84
kernel mode+ 8-5 to 88
location of » 2-13
publice 8-3
returning status from+ 8-15 to 8-16
returning values from+ 8-6, 8-14 to 8-15
vectors for e 8-2
Kernel section descriptor

See KSD
Kernel vector » 2-6, 2-10 to 2—-11, 8-2 to 8-5
defined « 8-2
example of » 2—11
for wait procedures »+ 8-8, 11—20
location of ¢ 2—10, 8-2
structure of ¢ 2-11, 8-3, 8-10, 8-12
types of »+ 8-4
KERNELSUB module « 10-18, 10-39, 11-39
KSD (kernel section descriptor) 2—14, 2-15, 2-25
to 2-27, 2-35, 2-38 to 2-40, B-20
characteristics of (table)» 2—46
contents of (table)+ 2-26, 2-39
creating e 2-29 to 2-31
defined « 2-25
duplicating « 2-51, 2-57, 2-58

10-Index

KSD (kernel section descriptor) (cont'd.)
relationship to ISD+ 2-24
structure of (figure)+ 2-25, 2-38, 2-39
use in job creation* 4-37
use in shareable image(figure)+ 2-40

L

Last-change handler «+ 646
Last-fail information+ 7-3, 7-17
LCLNUC module+ 441, 4-52
LDPCTX instruction = 622
Local name table

See Name table
LOCK macro+ 5-9, 11-24

Machine check» 1-7, 7-2
defined+ 7-18
handlers 7-19

system data block fore 3-8, 3-18, 3-21

mechanism+ 7-18 to 7-23
recovery block+ 7-20

Macros
$CHFDEF - 6-8, 6-11
$SFDEF - 64
ALLOCATE « 1014
BUG_CHECK+ 7-16
FREE+ 10-23
IFN_READ- 8-8
INTERRUPT_ALL_CPUS ¢ 5-10
INTERRUPT_CPU ¢« 5-10
LOCK. 5-9, 11-24
MCHKPRTCT_END » 7-21
MCHKPRTCT_INIT+ 7-20
RELEASE« 5-10
REMOVE - 9-44, 10-14
SEIZE- 5-9, 11-38
SETIPL. 5-8
SYNCHRONIZE « 5-8, 5-9
UNLOCK+ 5-10

Map registers + 3-33

Master process
See also Job; Process
creating * 4-27
deleting « 4-56

MCHKPRTCT_END macro» 7-21
MCHKPRTCT_INIT macro* 7-20
Mechanism array « 6-10
contents of (table)+ 6-11
creating » 6-35
depth argument in+ 640, 642, 643, 6-50,
6-52, 6-54
frame argument in+ 640, 6—41, 6-43, 6-54
structure of (figurs)> 6-11
use during condition handler search+ 640
Memory management+ 1-7, 9-1 to 9-44
data base+ 1-7
enablings 3-22 to 3-27
features of + 1-7, 9-1
protection » 9-16, 9-26
system pool* 1-8
use of bitmaps in+ 9-3
Message object « B—21
contents of (table)s B—23
structure of (figure)s B-21
MicroVAX |
ROM system+ 3-13
Modules
ALLOCATE« 9-26, 10-42
ASTCNTRL+ 6-33
ASTDELIVR « 5-4, 6-27
BUGCHECK -+ 6-19, 7-16
COMBQ22BUS « 3-11
COMBUNIBUS « 3-11
CONSOLIO » 3-14
CREATEEVT « 10-14, 11-12
CREATEJOB - 4-26
CREATEPRO+ 4-42
CREATEPRT » 10-34
CREATESEM - 11-15
DEBUGUTIL » 6-26
DELETE- 4-54
DISPATCH« &8-2, 8-5
ERRORLOG+ 7-8
EXCEPTION « 3-29, 6-15, 6-34, 6-38
INITBNN » 3-11
INITIAL « 2-13, 3-6, 9-43, 10-29
INITUV2. 3-11
KERNELSUB+ 10-18, 10-39, 11-39
LCLNUC « 4-41, 4-52
MP6CCHRD + 5-10
MP8800HRD + 5-10

Modules (cont'd.)
PARAMETER * 3-16, A-1
POWERFAIL » 6-26
RAISE - 6-19, 6-26, 648
SCHEDPRO ¢ 629, 11-31
SIGNAL - 11-33
SIGNALDEV « 11-19, 11-37
SMEMORY - 9-29
STARTUP - 3-35
SYSTEMDAT - 2-12, A-3
SYSVECTOR- 2-10, 8-2
TIMERINT « 5-16, 5-18
VECTOREND » 2-10
VECTORTAB- 2-10, 8-2
VMEMORY « 9-37
WAIT. 11-22

MP6CCHRD module « 5-10

MP8800OHRD module « 5-10

MP880OKER kernel image+ 2-10

MRV11 PROM module « 2-9

MSG (message object)
See Message object

Multiple active signals « 641
unwinding from+ 6~54

Multiprocessing
configurations « 1-14
interprocessor interrupte 5-10
spinlocks « 5-8
synchronization in+ 5-8

Mutex+ 11-16

N

NAM (name object)
See Name object
Name object+ B-24
contents of (table)s B-25
structure of (figure)» B-24
Name service request message
See NS
Name table
defined+ 3-9
descriptor fore 3-32
mapping in SO memory ¢ 3-9, 3-32
size of ¢ 3-19
NETCON (network connection message) *+ B-26
contents of (fablg)s B-26

Index-11

NETCON (network connection message) (cont'd.)

structure of (figure)» B-26
Network connection message
See NETCON
Network Node Characteristics Menu» 2-8
No-access page* 4-22, 4-25
NS (name service request message) + B-28
contents of (tablg)» B-28
structure of (figure)» B-28

P

PO base register

See POBR
PO page table slot

See POPT
PO virtual address space « 4-3

allocating+ 9-31 to 9-42

contents of (table)s 4-22

creating e 4-38 to 4-39

structure of (figure)+ 4-20

uses for+ 9-31
POBR (PO base register) « 3-15, 4-3, 447, 9-8
POLR (PO length register) » 4-3, 4—47, 9-8
POPT (PO page table) « 4-5, 4-10

creatings 9-9, 9-10

defined+ 9-8

deleting* 9-11

dynamic expansion of ¢ 9-10, 9-33

slote 3-32, 4-34, 9-9

mapping in SO memory *+ 3-8
size of » 3-18

P1 base register

See P1BR
P1 page table slot

See P1PT
P1 virtual address space » 4-3

allocating s 9-31 to 942

contents of (table) s 4-25

defined « 9-12

stack allocation in+ 4-50

structure of (figure)s 4-24

uses for+ 9-31
P1BR (P1 base register) ¢ 3-15, 4-3, 4-48, 9-12
P1LR (P1 length register) « 4-3, 4-49, 9-12
P1PT (P1 page table) « 4-8, 415

12-Index

P1PT (P1 page table) (cont'd.)
creating » 9-12, 9-13
defined 9-12
deleting + 9~14
dynamic expansion of + 9-12, 9-33
slots 3-32, 4-48, 9-12
mapping in SO memory « 3-9
size of» 3-18
Page frame number bitmap

See PFN bitmap
Page tables 9-7 to 9-14
defined » 9-7
PO- 9-8
Pi+ 912
S0+ 9-7
Page table entry
See PTE
Paging * 1-7, 9~1
PARAMETER module+ 3-16, A-1
PASCALMSC shareable image* 2-34
PCB (process control block) » 4-2, 4—11 to 4-16,
B-31
See also Process object
contents of (table)e 4-14
creating « 445
current « 4-8, 4-30
fields to support synchronizatione 11-9
for master process + 4-33, 4-34
relationship to WCBs (figure)s 11-7
role in asynchronous exceptions « 6-24
structure of (figure)s 4-12
use in memory management > 9-21
PCBB (process control block base register) » 4—15,
4-47
PFN bitmap « 3-17, 3-19
defined 3-5
descriptor fore 3-21
initializing » 3-16
mapping in SO memory + 3-8, 3—-21
Physical memory » 9-1
allocating » 9-23 to 9-24
structure after VMB (figure)» 3-2, 3—4
Pool - 1-8, 9-8
allocating » 9-42 to 944
initializing + 943
mapping in SO address space+ 3-9, 3-31
size of » 3-18, 943

Pool (cont'd.)
use for kernel objects* 10-2
uses of ¢ 942
Port address table » 1028, 10-38
initializing « 10-29
mapping in SO memory * 3-9, 3-32
size of ¢ 3-19
structure of (figure) 10-29
Port identifier « 10-27, 10-30
Bl field » 10-32
contents of (table)» 10-32
index field» 10-32, 10-35
node address field » 10-32, 10-35
sequence field + 10-32, 10-33, 10-35, 10-37
structure of (figure)> 10-30
system field « 10-32
translating+ 10-39 to 10-41
type field ¢ 10-32
validating s 10-33
Port object+ 10-2, 10-26, B-31
accessing * 10-29
contents of (table)» B34
creating* 10-34
defined s 11-18
deleting*s 1042 to 1044
structure of (figure)+ B-32
waiting fore 11-18
POWERFAIL module+ 6-26
Powerfailure
notification « 6-26
PR$_ASTLVL register + 6-22, 6-27
PR$_ICCS register » 5-12, 5-13
PR$_ICR register» 5-13
PR$_IPL register+ 8-18
PR$_MAPEN register « 3-26
PR$_NICR register+ 5-13
PR$_SIRR register « 5-3, 6-29
PR$_USP (user stack pointer register) « 4--51
PRG (program descriptor) ¢ 2-16 to 2-21, B-36
defined « 2-6
for device drivers 2-32
structure of (figure)« B-36
structure of (table)s 2-16
use by start-up job ¢ 3-37
Primary bootstap
See Bootstrap sequence

PRO (process object)
See Process object
PROBER instruction » 8-8
Process+ 1-5
argument block « 4-6, 4-15, 446
attention signal « 626
contexte 4—1
components of(figure)» 4-3
defined 4-3
longwords » 4—-26
minimal « 443
creating* 4-42 to 4-53
context of process * 4—43
stages in* 443
verifying arguments » 4—44
data structures for 4-3 to 4-20
deleting » 4-53
reasons fore 4-53
exit
address « 4-14, 446
status ¢ 4-14, 4-55
exiting + 4-53
forced with unhandled exception «
reasons fore 4-53
generation number ¢« 4-10, 4—14, 446
halting, with debugger + 6-26
list of WCBs + 4-15
memory management *+ 9-21
page tables
See P1PT
priority « 4-14, 445
queues* 4-8
reason mask ¢ 4-14, 6-24
scheduling
See Scheduling
signaling « 6-25
state 4-14
synchronization
See Synchronization
transfer address « 4-51
unblocking * 11-42
username * 4-35
Process address space
See P1 virtual address space
Process control block
See PCB

6-46

Index-13

Process hardware context block

See PTX
Process objects 11-17

creating 4-42 to 4-53

defined+ 11-17

deleting+ 11-17

signaling* 11-17

waiting fore 11-17
Processor-specific registers » 3-17

initializing « 3-31

mapping in SO memory - 3-8, 3-21
Program

arguments 2-14

automatic inclusion, by System Builder- 2-18

code+ 2-6

components of + 2-21

datas 2-6

data structures for» 2-15

descriptor

See PRG
dynamically loaded «+ 2-36, 4-57
fixup section » 2-21
image header+ 2-15
image sections » 2-21, 4-22, 4-37
descriptors « 2-15
inclusion in system image » 2-14
processing of, by System Builder« 2-27 to 2-31
rundown « 4-54
structure of (figure)s 2-21
transfer address « 440
Program Description Menus 2-7, 2-14, 2-16, 4-1,
4-10, 4-14, 4-20, 4-25, 4-30, 4-35
Program descriptor
See PRG
Program liste 2-16 to 2-21
defined « 2-15, 2-16
location of » 2-16
sorting of, by System Builder 2-20
structure of (figure)+ 2-18
use by start-up job 3-39
Program region
See PO virtual address space
PRT (port object)
See Port object
PTE (page table entry)
allocatings 9-32 to 9-37
contents of (tablg)s 915

14-Index

PTE (page table entry) (cont'd.)

defined+ 9-15
owner field « 9-16, 9—41
PFN field + 9-16
protection

codes+ 9-16

field« 9-15, 9-16
prototype ¢ 4-9, 4-33
structure of (figure)» 9-15
type

codes+ 9-17

field »+ 9-16, 941
valid field « 9-15

PTX (hardware process context block) » 4-2, 4—-16
to 4-20, B-37

contents of (table)+ 4-19
creating » 4-46
physical address of + 4-15
role in asynchronous exceptions - 6-23
structure of (figure)+ 4-17
virtual address of « 4-15

Q

Q22-bus « 3-10, 3-30
/O space » 3-33
map registers ¢ 3-33
QBUSKER kernel image » 2-9, 3-11

R

RAISE module « 6-19, 6-26, 648
Registers
See also POBR; POLR; P1BR; P1LR; SBR; SLR
PR$_ASTLVL - 6-22, 6-27
PR$_ICCS« 5-12, 5-13
PR$_IPL. 8-18
PR$_MAPEN - 3-26
PR$_PCBB -« 4-15, 447
PR$_SIRR 5-3, 6-29
PR$_USP - 4-51
processor-spocific + 3-8, 3-31
REI instruction
in asynchronous exceptions ¢ 6-22
use by kernel procedures « 8-6
RELEASE macro+ 510
REMOVE macro+ 9-44, 10-14

REMQHI! instruction » 5-6, 9-44
REMQTI instruction+ 5-6
Resignaling

in condition handler» 6—47
Restart parameter block

See RPB
RPB (restart parameter block) « 3-17

defined « 3—4

mapping in SO memory « 3-8, 3-21
rtVAX processor

See KA620 processor

S

S0 base register

See SBR
S0 length register

See SLR
S0 virtual address space
communication region+ 9-8
contents of (table) + 3-8
creating * 3—19 to 3-21
double mapping* 9-8
dynamic components of » 9-8
structure of (figurg)e 3-6
S0 virtual memory
allocating ¢ 9-25 to 9-30
SOBR (S0 base register) « 3-20
SBR (S0 base register) ¢ 9-7
SCB (system control block) ¢ 3-17
bootstrap*+ 34, 3-14
CHMK exception vector+ 8-5
initializing « 3-28
mapping in SO memory + 3-8, 3-21
relationship to unexpected-event dispatch block
(figure) « 3-29
structure of (figure)s 5-2
SCHEDPRO module « 6-29, 11-31
Scheduler
initializing « 3-34
Scheduling* 1-9, 1-10
after job creation« 4-36
after process creation 4—49
job queues « 4-31
SCR (system configuration record) «+ B-37
See also Device descriptor

SCR (system configuration record) (cont'd.)
contents of (table)+ 2-31
defined » 2-31
run-time access to+ 2-32
structure of (figure) e B—-37
use during initialization » 3-32
Secondary bootstap
See Initialization
SEIZE macro+ 5-9, 11-38
Select Target Processor Menu « 2-9
Semaphore object- B-38
binary+ 11-13
contents of (table)+ 11-15
counting+ 11—13
creating* 11-15
defined+ 11-13
deleting» 11-16
signaling» 11-13, 11-16
structure of (figure) 11-13
use as mutex* 11-16
SETIPL macro+ 5-8
Shareable image » 2~7
.ADDRESS references to 2-42, 2-50, 2-51
address relocation 2-52 to 2-55
components of ¢ 2—41
data structures « 2-35
example of use in VAXELN » 2-55
fixup section » 2-41, 2-48, 2-53
contents of « 2-41
structure of (figure) » 2—42
general-mode references to« 2-42
guaranteed image list- 2-44
inclusion into system image » 2-34
mapping in program address space* 2-39, 4-22
processing of, by System Builders 2-42 to 2-56
support for console /O« 2-35
support for instruction emulation« 2-34
transfer vectors » 2-7
use as global common -« 2-48
use of multiple fixup sections (figure)+ 2—49
VMS and VAXELN support compared *+ 2-33 to
2-34
with writeable sections « 249
Shareable image descriptor
See SHT
Shareable image list
See SHL

Index-15

Shareable image table < 2-35, 2-36 to 2-37
creating* 2-44 to 2-51
defined + 2-36
run-time use of ¢ 2-37
SHL (shareable image list) « 2—41, 2-50
contents of « 241
SHT (shareable image descriptor) « 2-35, 2-36,
B-39
contents of (table) e 2-36
creatings 2-44 to 2-51
defined » 2-7
structure of (figure)« B-39
SID (system identification) register« 3-15
Signal array - 6-8
contents of (table)+ 6-10
creating+ 615, 6-20, 6-29
structure of (figure)+ 6-8
SIGNAL module « 11-33
SIGNALDEV module* 11-19, 11-37
Signalings 11-32 to 11-39
See also KER$SIGNAL; KER$SIGNAL_DEVICE
area object+ 11-33
device object+ 11-36
event objects 11-13, 11-34
semaphore objects 11-16
subroutines for« 11-39
SLR (S0 length register) » 9-7
SMEMORY module » 9-29
Software interrupts ¢ 1-6, 5-2 to 5-5
hardware mechanisms « 5-3
relationship to IPL « 5-3
service routines* 5-3 to 5-5
Software timer+ 5-18
Spinlock « 56
defined »+ 5-8
use in synchronizations 5-8 to 5-10
uses of (fable)+ 5-9
SPT (SO page table)» 9-7 to 98
defined ¢ 9-7
initializing + 3-19 to 3-21
mapping in SO memory » 3-8, 3-21
size of + 3-16, 3-19, 9-7
use in double mapping ¢ 9-8
Stack
allocating + 4-37, 4-50
expansion of « 4-25, 6-17
kernels 4-25, 449, 6-18

16-Index

Stack (cont'd.)
pointers « 4-47
use of, for exceptions (table)» 6-13
usere 4-25
Stack frame
See Call frame
STARLET macro library + 6-4, 6-8, 6—-11
Start-up job - 3-37
creating* 3-34 to 3-36
operation of « 3-37 to 3—41
use of program list« 2-20
STARTUP moduie » 3-35
Status values
returning from procedures » 1-7, 8-15
Suspended state
effect on asynchronous exceptions » 6-28
SVPCTX instruction » 4-56, 6-30, 11-31
Synchronization+ 1-10
concepts* 11-2
data structures fore 11-3 to 11-21
defined 5-5
IPLs used for- 5-6
Job and process» 11-1 to 11-44
signaling procedures fore 11-31 to 11-44
use of interlocked instructions ¢ 5-6
wait procedures fore 11-22 to 11-31
within kernel» 1-6, 5-5 to 511
SYNCHRONIZE macro+ 5-8, 5-9
Synchronous exception s 6-3
SYSSUNWIND procedure s 648
System announcement string - 3-36
System Builder utility « 1-4, 2-2 to 2-8
address relocation+ 2-52 to 2-55
functions « 2-3
input tos 2-2
map files 2-7, 2-55
menus -+ 2-2
output files « 2-2
processing
of device drivers « 2-33
of executable images « 2-27
of shareable images « 242 to 2-55
treatment of .ADDRESS references by « 2-51
use of VMS image structures « 2-21, 2-41
System Characteristics Menu « 2-7, 2-8, 2-34, 3-9,
3-10, 3-16, 3-17, 3-18, 4-23, 4-25, 9-9, 9-12
System configuration record
See SCR

System control block
See SCB
System dump facility 7-9
System dynamic pool
See Pool
System identification register
See SID register
System image» 1—4
boot method » 2-8
contents of (table)» 2-6
defined « 2-1
header+ 2-6, 2-8
mapping in SO memory » 3-8, 3-20
structure of (figure)s 2—4
System initialization
See Initialization
System page table
See SPT
System pool
See Pool
System region
See S0 virtual memory; Communication region
System services
See Kernel procedures
System time
See Time
System virtual address space
S0 virtual address space
SYSTEMDAT module » 2-12, A-3
Systemwide object
See Port object
SYSVECTOR module + 2-10, 8-2

T

Terminal Description Menu » 2-8
Time
interval clock ISR+ 5-16
maintaining« 1-6, 5-11 to 5-23
obtaining » 5-22
procedures fore 5-19 to 5-23
setting s 5-20
software timer ISR+ 5-18
uptime » 5-22
Timer queue * 5-15, 5-15 to 5-16, 11-21

Timer queue (cont'd.)
readjustment by KER$SET_TIME « 5-20
structure of (figure)+ 5-16

TIMERINT module - 5-16, 5-18

Translation buffer 9-11, 9-14

U

UBUSKER kernel image « 2-9, 3-11
Unblocking

See also Signaling
defined 11-2
Unexpected-event dispatch block » 317
defined+ 3-8
initializing « 3-28
mapping in SO memory « 3-21
relationship to SCB (figure) 3-29
UNIBUS adapter« 3-33
Uniform condition dispatching
See Condition dispatching
UNLOCK macro« 5-10
Unwinding
call stack» 648 to 6-56
Uptime « 5-22
User mode
stack » 4-25

\'

VAX architecture » 1-12

VAX hardware
AST mechanism+ 1-13, 6-22
bootstrap ¢ 1-12, 3-2
calling mechansim+ 1-13
exception mechanisme 1-12, 6~12
interrupt mechanisme 1-12
interval clock s 5-12
IPL mechanism « 1-13
memory management 1-12
multiprocessing supports 1-14
process structures 1-13
protection mechanism+ 1-12
supported processors (tablg)s 2-9

VAXBI bus* 2-10, 3-10, 3-30
/O space » 3-33

VAXELN Kernel
See Kernel

Index-17

VECTOREND module+ 2-10

VECTORTAB module *+ 2-10, 8-2

Virtual address translation « 9-1

VMB (primary bootstrap) > 3-2 to 3-5
contents of physical memory (table)+ 3—4
layout of physical memory by (figure)+ 3-2
operation of + 3-2
purpose of « 3-2

VMEMORY module « 9-37

VMS Linkere 2-8
image strutures created by« 2-15, 2-21, 2—41
treatment of ADDRESS references by » 2-51

w

Wait conditions
defined« 11-2
satisfying« 11-31, 1141
testing »+ 11-26, 11-39
Wait control block
See WCB
WAIT module » 11-22

18-Index

Wait-all wait
defined* 11-2
Wait-any wait
defined 11-2
Waiting* 11-22 to 11-31
See also KERSWAIT_ALL; KERSWAIT_ANY
relationship between objects (figure)s 11-28
Waiting state
effect on asynchronous exceptions » 6-28
entering* 11-30
leaving e 11-31, 1142
WCB (wait control block) « 4-5, 4-15, 11—4, B-40
contents of (table)s 11-6
creating* 11-7 to 11-9, 11-23 to 11-26
defined+ 114
inserting into wait queues *+ 11-28
relationship to PCB (figure)s 11-7
structure of (figure)> 114
timere 4-16, 446, 5-15 to 5-16, 11-7, 11-25
types of ¢ 11-8
uses of+ 114

HOW TO ORDER ADDITIONAL DOCUMENTATION

From Call Write
Alaska, Hawaii, 603—884—6660 Digital Equipment Corporation
or New Hampshire P.O. Box CS2008

Nashua NH 03061

Rest of U.S.A. 800-DIGITAL
and Puerto Rico!

!Prepaid orders from Puerto Rico, call Digital's local subsidiary (809-754-7575)

Canada 800-267-6219 Digital Equipment of Canada Ltd.
(for software 100 Herzberg Road
documentation) Kanata, Ontario, Canada K2K 2A6

Attn: Direct Order Desk

613-592-5111

(for hardware

documentation)
Internal orders — Software Supply Business (SSB)
(for software Digital Equipment Corporation
documentation) Westminster MA 01473
Internal orders DTN: 2344323 Publishing & Circulation Services (P&CS)
(for hardware 508-351-4323 NRO3S-1/W3
documentation) Digital Equipment Corporation

Northboro MA 01532

Reader’s Comments VAXELN internals Manual
AA-NC72A-TE

Your comments and suggestions will help us improve the quality of our future documen-
tation. Please note that this form is for comments on documentation only.

I rate this manual’s: Excellent Good Fair Poor
Accuracy (product works as described) O 0 O O
Completeness (enough information) O O 0 0
Clarity (easy to understand) O O O O
Organization (structure of subject matter) O 0 O O
Figures (useful) O a] O
Examples (useful) O O O O
Index (ability to find topic) 0O O a O
Page layout (easy to find information) O O O O
What I like best about this manual:
What I like least about this manual:
My additional comments or suggestions for improving this manual:
I found the following errors in this manual:
Page Description
Please indicate the type of user/reader that you most nearly represent:
0O Administrative Support [Scientist/Engineer
[0 Computer Operator O Software Support
[J Educator/Trainer [System Manager
O Programmer/Analyst O Other (please specify)
O Sales
Name/Title Dept.
Company Date
Mailing Address

Phone

10/87

Do Not Tear — Fold Hereand Tape — — — — — — — — — — — — — — — — — — —

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

EHEHHEHTM

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PKO3-1/30D

129 PARKER STREET

MAYNARD, MA 01754-2198

- - Do Not Tear —FoldHere @ —

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Cut Along Dotted Line

